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Background

Introduction to Current Crowding

 Current non-uniformly distributes at the interface between TSV landing pad and via ladder

» Current crowding is caused by the different cross-sectional areas between TSV pillar, TSV landing
pad and via ladder

 Current crowding leads to higher IR drop and reliability issue
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Background

Current Crowding in Face-to-Face 3D ICs

 Inface-to-face 3D ICs, current crowding happens at the interface between TSV pillar, TSV landing

pad and via ladder

 There are two kinds of power rail to TSV connections: power rail to the side of TSV and via ladder to

the top of TSV landing pad

» Most of current flows to power TSV from the via ladder to the top of TSV landing pad
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Previous Work
TSV Resistor Network Model’

Motivation

 Finite element analysis (FEA) is time-consuming, often taking over an hour to analyze.

Methodology

» This method segments TSV structure into a 3D mesh cube network where each mesh cube contains resistors
« Then construct a fine-grained resistor network representing the TSV structure

Problem

* Inregions with severe current crowding, the method lacks accuracy

» For large resistor networks, this method still needs ~2 minutes

_Ground truth

TSV resistor model

(c)
A (a) TSV structure (b) TSV resistor model (c) comparison of the TSV resistor model’s current density map with ground truth

'Xin Zhao, Michael R. Scheuermann, and Sung Kyu Lim. Analysis and modeling of dc current crowding for tsv-based 3-d connections and power integrity. IEEE Transactions on
Components, Packaging and Manufacturing Technology, 4(1):123-133, 2014.



Motivation

Advantages of Graph Attention Network

Self-attention mechanism allows GAT to extract useful information from graph structures

» Multi-head attention enhances GAT to process multiple types of features

« GAT effectively mitigates the accuracy degradation associated with the discretization of cubes
compared to resistor model method

» Our GAT framework accurately predicts the current density distribution with an inference time of only
2-3 seconds



Methodology

Overview

 Fine-grained graph construction

* GAT-based framework
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Methodology

Fine-Grained Graph Construction

» We assign feature vectors to each edge and node in the graph

* Edge
- Each resistor in the resistor model is converted into an edge
- Edge label is current density

* Node
- Each terminal in the resistor model is converted into a node
- Edge label is voltage
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Methodology

Fine-Grained Graph Construction

» We embed various information into node and edge feature vectors
« We introduce two structural similarity metrics to enrich the structural information — global structural
similarity score (GSSS) and local structural similarity (LSSS)? - to edge feature vectors

| Features | Type | Unit GSSS — Singd(NG (l)nNG (]))
coordinates node | pm NG (l) U NG (])
voltage reference | node | bool
input coordinates | edge | pm N (i) and Ng (j) represent the numbers of the neighbor nodes of node i and node j
resistance edge 9] 2
current edge A || h — h ] ||
cross-sectional area | edge | pm® LSSS = Slng ld (eXp (_ L J ))
vollage node V 2
oulput current density edge | A/m?

, h; and h; represent the feature vectors of node i and node j, respectively
A Table 1: Fundamental input and

output for GAT models

ZAnkith Jain Rakesh Kumar and Bir Bhanu. Relational edge-node graph attention network for classification of micro-expressions. In 2023 IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), pages 5819-5828,2023.



Methodology
GAT-Based Framework

Due to the different nature of node prediction task and edge prediction task, we design two different GAT
layers with different aggregation mechanisms — edge-node graph attention layer (ENGAT) with node-
attention aggregation and edge-node graph attention layer (ENGAT) with edge-attention aggregation
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Methodology
GAT-Based Framework

» We use two different GAT models for edge prediction and node prediction
« Each GAT model has four layers of edge-node graph attention layer for encoding and eight-layer
multi-layer perceptron (MLP) for decoding

| 24 |->| 32 H 64 _ Edge-Node Graph Attention Network | 24 |->| 32 |+| 64 _ Edge-Node Graph Attention Network

| [1024, 2048, 512, 128, 31, 1] | Multilayer Perceptron | [1024, 2048, 512, 128, 31, 1] | Multilayer Perceptron
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Experimental Results

Experimental Setup

» Considering four variables, we build a dataset consisting of 108 different TSV structures
» Foreach TSV structure, we build a fine-grained graph which contains thousands of edges and nodes
« We use ANSYS Q3D for simulation to get the current density distribution and voltage distribution of
these 108 TSV structures as ground truth which takes 74 hours in total
» We use supervised learning to train two GAT models. The model of edge prediction is trained in 33.2
hours for 3000 epochs while the model of node prediction is trained in 33.8 hours for 8000 epochs

Configurations Values
TSV diameter (um) 2,3,4,5
TSV aspect ratio 9,10, 11
landing pad thickness (ym) | 0.05, 0.1, 0.2
via ladder width (um) 0.8, 1.0, 1.2
# total data point 108

A Table 1; Variables in our TSV dataset

GAT graph statistics | GAT dataset statistics
Min 31073 | # Graph (datapoint) 108
# Edge Max | 49061 | # Graph for training 87
(per graph) | Mean | 37729 | # Graph for testing 21
Min 20986 # Edge in total 4074732
# Node Max 33082 # Node in total 2759291
(per graph) | Mean | 25549 | Simulation time (hr) 74

A Table 2: Our fine-grained graph dataset statistics
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Ground truth

Experimental Results

Prediction Accuracy

0.9776 for edge prediction. R%is 0.9952 for node prediction
Qur prediction results also show good symmetry
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A Fig 1: (a) Current density prediction vs ground truth (b) voltage
prediction vs ground truth

In the test set, our GAT models achieve good accuracy. The coefficient of determination (R?) is
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Experimental Results

Comparison with Different Methods

« Compared with convolution graph neural network (GCN)3 and MLP, our GAT-based models
demonstrate higher accuracy with 2-3 seconds inference time
» Compared with non-ML methods, our GAT-based models are more efficient for large-scale

inference

Method Current density prediction Voltage prediction
R | RMSE (x10° A/m®) | Inference time (s) R? [ RMSE (x107? V) | Inference time (s)
EMGraph [9] 0.9182 71.7749 1.0271 0.9892 6.8503 1.4266
MLP 0.9076 8.2612 3.0333 0.9909 6.3013 2.6730
Our GAT framework | 0.9776 4.0730 3.0626 0.9952 4.5526 2.7949
A Comparisons with other ML-based methods
Method Current density prediction Voltage prediction
R [ RMSE (x10° A/m?) ‘ Inference time (s) R* ] RMSE (x10~° V) | Inference time (s)
FEA (Ground truth) N/A N/A 2564.6667 N/A N/A 2564.6667
Method in [3] 0.2573 11.6486 136.0979 0.9983 2.3752 136.0979
Our GAT framework | 0.9776 4.0730 3.0626 0.9952 4.5520 2.7949

A Comparisons with other non-ML methods

3Wentian Jin, Liang Chen, Sheriff Sadigbatcha, Shaoyi Peng, and Sheldon X.-D.Tan. Emgraph: Fast learning-based electromigration analysis for multi-segment interconnect using 14
graph convolution networks. In 2021 58th ACM/IEEE Design Automation Conference (DAC), pages 919-924, 2021.



Conclusion

« We investigate the current crowding effect in face-to-face 3D ICs

« We propose a method for constructing fine-grained graphs based on TSV
structures

« We design a supervised GAT-based framework for accurately predicting current
density and voltage distribution

» \We demonstrate that our GAT-based framework outperforms other ML-based

methods and non-ML methods
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