
AI-EDA Lab

Reinforcement Learning or Simulated Annealing 
for Analog Placement? 

A Study based on Bounded-Sliceline Grids
Chou-Chen Lee, Mark Po-Hung Lin

National Yang Ming Chiao Tung University (NYCU)

1

Yi-Chao Hsieh
Novatek Microelectronics Corp.



AI-EDA Lab

v Introduction
} Analog layout synthesis flow
} Analog placement methods, essential constraints, and representations
} The bounded-sliceline grid (BSG) structure

v RL-based analog placement
v Experimental results
v Conclusions

Outline

2



AI-EDA Lab

v Device/Building block generation 
} Create physical layouts of each device or device groups

with different variants, including some internal routing

v Analog placement 
} Determine physical positions of devices according to

the given layout area or aspect ratio, and 
placement constraints while minimizing 
the layout area and estimated wirelength

v Analog routing 
} Finalize the interconnections according to 

the routing constraints while minimizing 
the interconnecting wirelength

Analog Layout Synthesis Flow
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Chapter 1

Introduction

The physical design of the analog layout synthesis, especially the placement and

routing, is one of the most important processes that converts an analog circuit de-

scription from netlists into a geometric one. As shown in Figure 1.1, analog designers

usually follow the traditional analog layout synthesis flow: placement follow by rout-

ing. The analog placement determines all the device positions of an analog circuit

according to given circuit netlists, constraints, and design rules while minimizing

the chip area, wirelength, and satisfying all specified constraints. Then, the analog

routing starts to determine all the wire connections based on the given placement

result while minimizing the routed wirelength and satisfying all specified constraints

for better circuit performance.

Circuit 
Netlists

Analog Placement

Analog Layout

Device Generation

Analog Routing

Constraints Design 
Rules

Physical Design

Performance Evaluation

Figure 1.1: Traditional analog layout synthesis flow.
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v Symmetry / Symmetry-Island [Lin et al., DAC07] 
} Improve matching quality between device components
} Confines symmetric devices to be placed in the closest proximity 

for reducing the sensitivities due to process variations
} Enhance overall circuit performance

v Proximity / Well-Island [Ramprasath et al., ISPD22]
} Restrict devices within common well/substrate regions
} Reduce layout area with common well taps for latch-up prevention
} Avoid performance degradation due to substrate noise and interference

Essential Analog Placement Constraints
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[Lin et al., DAC07 & TCAD’09] Analog Placement Based on Novel Symmetry-Island Formulation. DAC 2007: 465-470
[Ramprasath et al., ISPD22] Analog/Mixed-Signal Layout Optimization using Optimal Well Taps. ISPD 2022: 159-166

M3 M4
M1 M2

M5

M1 M2

M3 M4

M5

M6

M7M8

Mr C1

Aa Ba Ca

Da

Et

Ea Fa H1

Aa Ba Ca

Da

Et

Ea Fa H1

(a) Well tap at center
Aa Ba Ca

Da Et

Ea

Fa H1

Aa Ba Ca

Da Et

Ea

Fa H1

(b) Well tap at boundary

Figure 11: Suboptimality in hierarchical placement; �2 hier-
archy has two instances of �1 one above another.

logically grouped. Hierarchical placement can be visualized as a
tree like structure, where each node represents a level of hierarchy
and the children of the node are the blocks to be placed at that
hierarchy level. The VCO in (Figure 1(b)), has blocks B1–B4 at the
�rst level of hierarchy, and inverter stages at the next level.

In fact, the use of hierarchy in placement is bene�cial for the
ILP formulation in (6), since a smaller problem is solved at every
hierarchy. In practice, we impose a time limit for the solution of the
ILP to avoid long runtimes, and the ILP solution may not be optimal:
reducing the problem size increases the likelihood of obtaining an
optimal layout at each level. Placement at any hierarchical level is
unaware of the global structure, and the locally optimum solution
at some level of hierarchy may not be globally optimum for the
overall layout. The well tap formulation inherits this problem for
hierarchical placement: well taps that are optimal for the current
hierarchy level may be suboptimal for the global layout.

We illustrate two scenarios in Figure 11 using a layout that has
two levels of hierarchy:�1 and�2, where�1 has six cells (�-� ) and
�2 has two instances of �1 that are placed one above another, with
mirror symmetry about the horizontal axis that separates them. In
this case, the tap nodes ⇢C in Figure 11(a) can be combined to retain
a single well that covers all the devices in �2, resulting in overall
savings in the area and potentially HPWL. A second scenario is
shown in Figure 11(b), where no such union is possible. Thus, any
tap nodes that are close to the boundary in a hierarchy may possibly
combine with other tap node or can potentially cover active nodes
in another hierarchy. Using this intuition, we add a distance term
to the cost function in (6) that incentivizes the retention of wells
that are closer to the boundary of a hierarchical block. If 38 is the
Euclidean distance between node 8 and the boundary, the new ILP
cost function, using another importance factor _4, is:
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4 RESULTS
The stochastic placement algorithm, including well island gener-
ation and tap sharing optimization, are implemented in C++ and
compiled using GCC 8.2.0. The ILP solver lp_solve [2] is used to
�nd the optimal number of taps using the formulation in (7). A time
limit of 1ms is set for the solver to arrive at an optimal solution. The
layouts are generated using a commercial 12nm PDK on a Linux
server with Intel Xeon(R) 2.20GHz Silver 4114 processors with
160GB memory. The tools Cadence Spectre, Calibre nmLVS and
Calibre xACT are used for circuit simulation, layout vs schematic
checking and parasitic extraction of the layouts respectively.
Comparisons We compare our approach, which generates well
islands and optimal well-taps during placement, against:

(a) Approach (A) (b) Proposed approach

Figure 12: Comparison of layouts of di�erential ring oscilla-
tor based VCO generated using various approaches.

(a) Approach (A) (b) Approach (B) (c) Proposed
(d) Two stage

di�erential OTA

Figure 13: (a)–(c) Comparator layouts from various ap-
proaches. (d) Non-rectangular islands built by our approach.

Approach (A), which generates layouts using a layout generator
based on [4], with built in well taps for each cell in the layout. These
layouts honor RF constraints by treating each cell as an island with
its own tap and do not need a separate well island generation step.
Approach (B), which uses the placer [4] to generate layouts without
any well taps, and then, for that speci�c placement, manually gener-
ates optimal well islands (minimum number of islands with optimal
HPWL and area) and inserts well taps. This is the best achievable
result from an approach (e.g., WellGAN [17]) that generates well
islands and insert well taps after optimal well-oblivious placement.

From Table 1, the area and HPWL for our method are much
better than Approach (A), and sometimes noticeably superior to the
manual Approach (B). Post-layout performance metrics (Table 2)
from our method are generally superior to Approaches (A) and
(B). For all tested layouts, the ILP solver is able to �nd an optimal
solution in every iteration of the placement within the 1ms limit.

Figure 12 compares the layout of the di�erential ring oscillator
based VCO in Figure1(b), generated using Approach (A) and our
proposed approach. Approach (B) generates a similar layout as
Approach (A), and it is not separately shown here. We achieve 23%
lower area and 11% lower HPWL than Approaches (A) and (B). This
translates to a 49% improvement in the maximum frequency of the
VCO. The maximum frequency depends on the parasitics between
the transistors, which are reduced in our approach. The placement
from Approach (A) and (B) results in a suboptimal layout (as in the
�gure at left in Figure 1(c),(d)) since it does not consider the impact
of well islands, their separation and tap location during placement.
Both layouts have optimal power routing, and it is the improved
signal routing that is the cause of performance enhancement.

[Lin et al., TCAD09] 

[Ramprasath et al., ISPD22]

https://dblp.org/db/conf/dac/dac2007.html
https://dblp.org/db/conf/ispd/ispd2022.html
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v Map placement solutions to some kind of representations
v Embed various placement constraints in the representation
v Find out the best configurations in the representation in terms of 

placement area and interconnecting wirelength

Analog Placement in a nutshell
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v Absolute representation
} Each device/block is associated with an absolute coordinate on a gridless plane.
} No packing is needed, but overlapping may happen.
} A postprocessing step is required to eliminate overlapping.

v Topological representations
} Topological relationships are defined in the representation without absolute coordinates.
} A packing procedure is required to convert the representation into absolute coordinates, which 

guarantee non-overlapping.
} Examples: Slicing tree, B*-tree, Sequence Pair (SP), Bounded Sliceline Grid (BSG), …

Analog Placement Representation
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v Deterministic/Procedural method
} Follow existing layout template, or mimic analog layout designers’ knowledge

v Mathematical programming
} Composed of an objective function and a set of placement constraints
} Optimize the objective through some analytical techniques

v Simulated annealing (SA)
} Treat the placement configurations as states in a search space
} Explores the space by accepting both uphill moves (worse solutions) and downhill moves (better solutions) 

based on a probability distribution that changes over time
} SA is about the most popular approach in the literature due to its effectiveness and efficiency in leveraging 

various topological representations, such as B*-tree, sequence-pair, … etc.
v Reinforcement learning (RL)

} Learns a policy to place components in a way that maximizes a reward function
} Different from supervised learning, RL does not rely on labeled datasets, which is promising for applications 

without much existing data, such as analog placement.

Common Analog Placement Method 
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v Constructed by creating a vertical and a horizontal line segment with two unit length
v Shift the vertical (horizontal) line segment by one unit length and repeating them column 

by column (row by row)
v Area compression can be achieved by looking for the longest path on 𝐺!(𝑉!, 𝐸!) and 𝐺"(𝑉", 𝐸"), 

meanwhile ensuring that there is no overlap. 

Bounded-Sliceline Grid (BSG) Structure
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[Nakatake et al., TCAD98]  Module packing based on the BSG-structure and IC layout applications. IEEE TCAD.17(6): 519-530 (1998)

BSG grid Vertical line segment

Horizontal line segment

𝑠! 𝑡!
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G"(𝑉" , 𝐸")

https://dblp.org/db/journals/tcad/tcad17.html
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Proposed RL-based Placement on BSG Structure
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v GraphSAGE: Inductive Representation Learning on Large Graphs
} Generate the node embeddings by sampling and aggregating neighboring node information from 

the circuit graph

Node Embeddings for Circuit Graph with GraphSAGE
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Figure 2: Overview of the proposed RL methodology for analog placement based on the BSG representation.

M5

M7

M6

M8

M1

M3

M2

M4

M9
M11

M10

3V 3V

0V

VOVBIAS8

V+

VBIAS1

VBIAS7

V-

VBIAS9

CM1

CM2

DP1

CM1 1 1 . . . 0 . . . 0 0
CM2 1 0 . . . 0 . . . 0 0
M5 0 0 . . . 1 . . . 0 0
M6 0 0 . . . 1 . . . 0 1
DP1 0 0 . . . 0 . . . 1 1
M9 0 0 . . . 1 . . . 1 1
M10 0 0. . . 1 . . . 1 0
M11 0 0 . . .0 . . . 1 1

CM1 CM2
CM1 M10
CM2 M5
CM2 M6
CM2 M10
M5 DP1
M6 DP1
DP1 M9
M9 M11
M10 M11

M10

M11

M6M5

M9

CM1

CM2

DP1

Net file

Edge file

Figure 3: Schematic to circuit graph conversion.

as input features, along with a constraint file documenting ana-
log placement constraints that must be adhered to and device lay-
out information storing the various physical dimensions of device
cells and building blocks. The model’s output includes the number
of rows and columns in the BSG structure, device width, device
height, and the device position in the BSG grid. Subsequently, we
derive the x, y coordinates of each device based on the character-
istics of the BSG structure.

3.1 The RL Formulation
Instead of performing simulated annealing, we propose the RL-
based analog placement on the BSG structure. The states, actions,
and reward are formulated as follows:

• States: The states represent the current environment. The
initial state 𝑠0 is the random assignment of devices to the
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Figure 4: GrapSAGE generates the node embedding by sam-
pling and aggregating neighboring node information.

BSG grid. After that, a device will move to a new grid posi-
tion and generate the new state.

• Actions: The agent can select one of the unoccupied BSG
grid to place the current device. The number of actions cor-
respond to the number of BSG grids and the analog place-
ment constraints.

• Reward: The reward is calculated by the weight summation
of normalized area and half-parameter wirelength (HPWL),
as shown in Equation (2), where 𝐷𝑎 represents each device
module area, 𝑁𝐻𝑃𝑊𝐿 represent the HPWL of each net, 𝑃𝑤
represents the width of placement area, 𝑃ℎ represents the
height of placement area, and 𝑁𝑛 represents the number of
nets.

𝑅𝑒𝑤𝑎𝑟𝑑 = 𝑥 ∗
∑

(𝐷) 𝐷𝑎

𝑃𝑤 ∗ 𝑃ℎ
+ 𝑦 ∗

∑
(𝑁 ) 1 − 𝑁𝐻𝑃𝑊𝐿

𝑃𝑤+𝑃ℎ
𝑁𝑛

(2)

We extract the number of wells from the netlist file and calcu-
late the number of devices contained in each well. Subsequently,
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as input features, along with a constraint file documenting ana-
log placement constraints that must be adhered to and device lay-
out information storing the various physical dimensions of device
cells and building blocks. The model’s output includes the number
of rows and columns in the BSG structure, device width, device
height, and the device position in the BSG grid. Subsequently, we
derive the x, y coordinates of each device based on the character-
istics of the BSG structure.

3.1 The RL Formulation
Instead of performing simulated annealing, we propose the RL-
based analog placement on the BSG structure. The states, actions,
and reward are formulated as follows:

• States: The states represent the current environment. The
initial state 𝑠0 is the random assignment of devices to the
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Figure 4: GrapSAGE generates the node embedding by sam-
pling and aggregating neighboring node information.

BSG grid. After that, a device will move to a new grid posi-
tion and generate the new state.

• Actions: The agent can select one of the unoccupied BSG
grid to place the current device. The number of actions cor-
respond to the number of BSG grids and the analog place-
ment constraints.

• Reward: The reward is calculated by the weight summation
of normalized area and half-parameter wirelength (HPWL),
as shown in Equation (2), where 𝐷𝑎 represents each device
module area, 𝑁𝐻𝑃𝑊𝐿 represent the HPWL of each net, 𝑃𝑤
represents the width of placement area, 𝑃ℎ represents the
height of placement area, and 𝑁𝑛 represents the number of
nets.

𝑅𝑒𝑤𝑎𝑟𝑑 = 𝑥 ∗
∑

(𝐷) 𝐷𝑎

𝑃𝑤 ∗ 𝑃ℎ
+ 𝑦 ∗

∑
(𝑁 ) 1 − 𝑁𝐻𝑃𝑊𝐿

𝑃𝑤+𝑃ℎ
𝑁𝑛

(2)

We extract the number of wells from the netlist file and calcu-
late the number of devices contained in each well. Subsequently,

Hamilton,et al., “Inductive representation learning on large graphs,” Advances in neural information processing systems, vol. 30, 2017.
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v State
} Certain placement

assignment on BSG

v Action
} Move a device model

to a different grid

v Reward
} Calculate reward 

in terms of area and
wirelength

The RL Environment on BSG
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v Environment
} CPU: Intel i9-9900KF at 3.60GHz with 64GB memory 
} GPU: RTX-3090 with 24GB memory
} Programming language: Python

v Compared approaches
} For each benchmark, both RL and SA approaches are compared based on the BSG structure. 

v Benchmarks

Experimental Setup

12
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the maximum as the common symmetry axis for 𝑔. We align the
remaining𝑔𝑟 to this common symmetry axis.The result is depicted
in Figure 8(d), while the horizontal symmetry axis can be adjusted
in a similar manner.

4 EXPERIMENTAL RESULTS
Our experiments were implemented using the Python program-
ming language and conducted on a machine with a 3.60GHz CPU,
48GB of memory, and an RTX-3090 GPU. Table 1 presents the con-
figurations of our RL model, where we configured the node em-
bedding dimension for each device to be 128, serving as the input
to our RL model. Both the Actor and Critic models consist of two
hidden layers with sizes (128, 128) and (128, 64) respectively. The
Actor model utilizes a Softmax function to obtain the probability
of each BSG grid, while the Critic model outputs a value between 0
and 1. Hyperparameters set for the RLmodel are detailed in Table 2.

Table 1: Configurations of our RL model. The number of Ac-
tor outputs depends on the number of BSG grids
Model Input Hidden Output
Actor (Policy) 128 (128, 128) N (softmax)
Critic (Value) 128 (128, 64) 1 (linear)

Table 2: Hyperparameter set for our RL model
Hyperparameter Value
Learning rate 0.0001
Optimizer Adam
Episode 15000
Clip (𝜖) 0.2
Gamma (𝛾 ) 0.5
Discount (𝛼 ) 1

We conducted a comparative analysis involving three different
approaches: (1) Manual; (2) Simulated Annealing (SA); and (3) Re-
inforcement Learning (RL). To ensure fairness in the experiment,
all approaches are based on the same BSG structure and utilize
identical constraint files and device layout information. We exper-
imented with three distinct circuits: Bandgap, Opamp, and Cas-
code. Our comparisons involve (1) Area, (2) HPWL, (3) Utility, (4)
Gain, (5) Phase-Margin, (6) Unit-Gain Freq, (7) Power, and (8) GBW
product.

Table 3: Test circuit information

Test case Device
No.

Well-island
No.

Proximity
group

Symmetry
group

Bandgap 15 2 2 2
Opamp 30 2 0 2
Cascode 38 2 3 3

Table 4: Pre-layout simulation for the three test circuits
Gain
(dB)

PM
(degree)

UGF
(MHz)

Power
(𝜇W)

GBW
(dB*GHz)

Bandgap 26.21 62.69 17.5 0.46 0.46
Opamp 79.2 137.63 52.51 94.1 4.16

Cascode 60.31 34.14 239.5 0.41 14.44

Table 4 presents the pre-layout simulation results for the three
circuits. Figures 10, 11, and 12 display the schematic and layout de-
signs for the three circuits under different approaches. The exper-
imental results indicate adherence to the specified constraints, in-
cluding thewell-island constraint, proximity constraint, and symmetry-
island constraint. Tables 5, 6, and 7 provide data for each evaluation
metric using the three different approaches for the respective cir-
cuits. It is evident that our approach performs optimally in these
three circuits and can even outperform the manual approach.

The main difference between SA and RL lies in their optimiza-
tion strategies. SA pursues the immediate best result without con-
sidering the placement of other devices in the subsequent steps.
On the other hand, RL aims to obtain the optimal decision for each
device, taking into account the best placement for all devices. If we
observe a single device, the decisions made by SA for that device
are random, with the selection of the best among them. In contrast,
RL starts with random decisions, but as the training progresses
over time, the results of the decisions also begin to converge. In
Figure 9, the reward versus episode is depicted for both SA and RL.
It is evident that the convergence of RL consistently outperforms
that of SA across all test circuits.
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Figure 9: The reward v.s. episode based on SA and RL, respectively. (a) Bandgap. (b) Opamp. (c) Cascode.

Table 5: Comparisons of Manual, SA and Ours based on Bandgap.

Approach Area HPWL Utility Gain
(dB)

PM
(degree)

UGF
(MHz)

Power
(𝜇W)

GBW
(dB*GHz)

Manual 2160 617 84.4% 26.25 66.93 18.31 0.45 0.48
SA 2280 633 81.2% 26.55 67.08 19.46 0.42 0.52

Ours 2024 613 90% 26.88 67.77 19.53 0.45 0.53

Table 6: Comparisons of Manual, SA and Ours based on Opamp.

Approach Area HPWL Utility Gain
(dB)

PM
(degree)

UGF
(MHz)

Power
(𝜇W)

GBW
(dB*GHz)

Manual 5412 898 70.2% 68.24 141.74 52.24 93.9 3.56
SA 5520 922 70.4% 70.24 137.77 56.47 94.23 3.97

Ours 4883 813 77.8% 74.07 138.6 58.48 94.96 4.33

Table 7: Comparisons of Manual, SA and Ours based on Cascode.

Approach Area HPWL Utility Gain
(dB)

PM
(degree)

UGF
(MHz)

Power
(𝜇W)

GBW
(dB*GHz)

Manual 3268 1238 88% 60.56 35.57 317.8 0.42 19.25
SA 3312 1366 85.8% 40.07 41.79 274.9 0.39 11.02

Ours 3154 1297 90% 60.33 36.34 316 0.42 19.06

5 CONCLUSIONS
This paper introduces a machine-learning approach to address the
analog placement problem. We employ a RL model with Graph-
SAGE, utilizing the BSG structure for analog placement to attain
superior design outcomes. Through self-learning via the RL model,
the agent acquires knowledge of diverse states and receives re-
wards from the environment, updating model parameters based on
these rewards to enhance placement results. We introduce prop-
erties to the BSG structure, leveraging sub-BSG structures and a
constraint file, enabling the clustering of devices of the same MOS
type to satisfy the well-island constraint. Additionally, we bring
strongly associated devices closer, including proximity device groups
and symmetry device groups, which have not been previously ex-
plored. In experimental comparisons, we benchmark our approach
against the simulated annealing.The results demonstrate that, com-
pared to SA, our placement design consistently achieves superior
performance across various cases. This underscores the functional
efficacy of our RL model, highlighting its adaptability to different
designs by introducing new variables to the reward function.
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Table 6: Comparisons of Manual, SA and Ours based on Opamp.

Approach Area HPWL Utility Gain
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SA 3312 1366 85.8% 40.07 41.79 274.9 0.39 11.02

Ours 3154 1297 90% 60.33 36.34 316 0.42 19.06

5 CONCLUSIONS
This paper introduces a machine-learning approach to address the
analog placement problem. We employ a RL model with Graph-
SAGE, utilizing the BSG structure for analog placement to attain
superior design outcomes. Through self-learning via the RL model,
the agent acquires knowledge of diverse states and receives re-
wards from the environment, updating model parameters based on
these rewards to enhance placement results. We introduce prop-
erties to the BSG structure, leveraging sub-BSG structures and a
constraint file, enabling the clustering of devices of the same MOS
type to satisfy the well-island constraint. Additionally, we bring
strongly associated devices closer, including proximity device groups
and symmetry device groups, which have not been previously ex-
plored. In experimental comparisons, we benchmark our approach
against the simulated annealing.The results demonstrate that, com-
pared to SA, our placement design consistently achieves superior
performance across various cases. This underscores the functional
efficacy of our RL model, highlighting its adaptability to different
designs by introducing new variables to the reward function.
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v We employed the RL model and utilized the BSG structure for analog placement 
considering essential analog placement constraints.

v Through self-learning via the RL model, the agent acquires knowledge of diverse 
states and receives rewards from the environment, updating model parameters 
based on these rewards to enhance placement results.

v Compared with the conventional SA approach, the proposed RL approach can 
obtain superior analog placement quality and better convergence rate.

Conclusions
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