Methodology of Resolving Design Rule Checking Violations Coupled with Fully Compatible Prediction Model

Suwan Kim, Hyunbum Park, Kyeonghyeon Baek, Kyu-Myung Choi, and Taewhan Kim

Introduction: Design Rule Check (DRC) Violations

DRC violations are verified after "Routing".

- If the number of DRC violations is too large, the design cannot be taped out!
- Since "routing" takes a significant amount of time, many researchers have addressed the prediction of DRC violations in the early stage (i.e., during placement).

Introduction: DRC Violations Prediction (Machine Learning)

Process for predicting DRC hotspot

- (DRC hotspot refers to the location where DRC violation occurred.)
- □ 1. Divide the placement into a global cell (gcell) grid.
- □ 2. Extract features from inter/intra-gcells.
- 3. Perform supervised learning, assigning a label of 1 to DRC hotspots and a label of 0 elsewhere.

Motivation: Two Main Causes of DRC Violation

1. Pin accessibility (PA)

• (Cause) Blocked pins, (Resolution) Insert whitespace between cells.

2. Routing congestion (RC)

• (Cause) Excessive routing demand, (Resolution) Detour congested regions.

Solutions are not fully interchangeable!

Motivation: Previous Works

Related works

- □ Predict and resolve all types of DRC violations.
 - [1]: Redistribution of whitespace is irrelevant to the prediction value.
- Predict and resolve only a single type of DRC violations
 - [2]: PA, [3]: RC

Proposed framework

□ Separate model and resolution scheme for PA and RC DRC violations.

[1] Chan, Wei-Ting J., et al. (2017) "Routability optimization for industrial designs at sub-14nm process nodes using machine learning." ISPD.
 [2] Yu, Tao-Chun, et al. (2019) "Pin accessibility prediction and optimization with deep learning-based pin pattern recognition." DAC.

[3] Chen, Jingsong, et al. (2020) "PROS: A plug-in for routability optimization applied in the state-of-the-art commercial EDA tool using deep learning." ICCAD.

- Take placement as inputs,
- Propose a methodology to separate
 PA/RC prediction from a given machine
 learning-based prediction model.
- Propose a separate PA/RC resolution scheme.

- □ Take placement as inputs,
- Propose a methodology to separate
 PA/RC prediction from a given machine
 learning-based prediction model.
- Propose a separate PA/RC resolution scheme.

Develop PA/RC-specified DRC Violation Prediction Model

Process

- □ 1. Separate input features (PA: intra-gcell features, RC: inter-gcell features)
- 2. Retraining models while treating dataset having *noisy label*.

- □ Take placement as inputs,
- Propose a methodology to separate
 PA/RC prediction from a given machine
 learning-based prediction model.
- Propose a separate PA/RC resolution scheme.

PA-related DRC Violations Resolution Scheme

Objective

• Refine placement to be *optimal* in terms of the prediction value from $Pred_{PA}$

Process

□ 1. Define a region to optimize.

□ 2. Encode possible whitespace distribution of a row in the region.

	Whitespace distribution	Placement	Encoded value
Expand until	[1, 2, 2, 1, 2]	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1
0.3 0.4 0.8 0.5 0.1 adequate 0.3 0.4 0.8	0.5 0.1 [1, 2, 2, 2, 1]	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2
$Pred_{PA} = 0.1 \ 0.3 \ 0.3 \ 0.5 \ 0.1 \ 0.1 \ 0.1 \ 0.3 \ 0.3 \ 0.5 \ 0.1 \ 0.1 \ 0.1 \ 0.3 \ 0.3 \ 0.3 \ 0.1 \ 0.1 \ 0.3 $	0.5 0.1 [2, 1, 2, 1, 2]	c_1 c_2 c_3 c_4	3
$\longrightarrow 0.1 \ 0.3 \ 0.2 \ 0.1 \ 0.1 \ \longrightarrow 0.1 \ 0.3 \ 0.2$		c_1 c_2 c_3 c_4	4
0.5 0.2 0.1 0.2 0.6 0.5 0.2 0.1 0.6 0.4 0.3 0.2 0.6 0.6 0.4 0.3		$\begin{array}{ c c }\hline c_1 & c_2 & c_3 & c_4 \end{array}$	5
Placement Predicted DRC hotspot Region to c	[2, 2, 1, 2, 1] optimize	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	6

PA-related DRC Violations Resolution Scheme

Process

- □ 1. Define a region to optimize.
- □ 2. Encode placement for each row.
- □ 3. Perform concurrent Bayesian Optimization in units of 5 rows.
 - Update placements synchronously.
- 4. Repeat 1-3 until (1) predicted value < threshold or (2) maximum # iterations is reached.

- □ Take placement as inputs,
- Propose a methodology to separate
 PA/RC prediction from a given machine
 learning-based prediction model.
- Propose a separate PA/RC resolution scheme.

RC-related DRC Violations Resolution Scheme

Suggested method in previous studies [3]

- Manipulating net/via weight to detour congested region
 - \Rightarrow Not applicable without internal tool access.

Proposed method

• Manipulate gcell capacity in DRC hotspot predicted by $Pred_{RC}$ using routing blockage.

[3] Chen, Jingsong, et al. (2020) "PROS: A plug-in for routability optimization applied in the state-of-the-art commercial EDA tool using deep learning." ICCAD.

DRC violations

- □ ECO router: 1.26% / [1]: 6.20% / [1], PA+RC: 23.62% / [4] (PA+RC), PA+RC: 26.54%
- Integrated resolution schemes can synergize with each other.

# DRC	Baselines			Ours					
Predictor		-		[1]			[4] (PA)	[4] (RC)	[4] (PA+RC)
Resolution	-	ECO router	[1]	PA	RC	PA + RC	ΡΑ	RC	PA + RC
B18	331	297	290	323	199	200	224	267	297
LDPC	277	191	277	167	280	167	189	277	189
ETH	1583	1590	1477	1276	1275	1276	1487	1063	1155
B19	863	857	852	752	822	752	860	704	747
ECG	803	760	775	569	486	569	752	474	474
AES	1101	1072	1071	980	1018	980	1011	1013	953
TATE	3627	3244	3386	3123	2370	2370	3041	2894	2958
JPEG	5308	5707	4903	4802	4542	4298	4765	4142	3433
Ratio	1	0.9874	0.9380	0.8632	0.7912	0.7638	0.8874	0.7798	0.7346
Impr.		1.26%	6.20%	13.68%	20.88%	23.62%	11.26%	22.02%	26.54%

[1] Chan, Wei-Ting J., et al. (2017) "Routability optimization for industrial designs at sub-14nm process nodes using machine learning." ISPD.
 [4] Baek, Kyeonghyeon, et al. (2022) "Pin accessibility and routing congestion aware drc hotspot prediction using graph neural network and u-net." ICCAD

Experimental Results

Other design metrics (Wirelength, worst slack, and total power)

- Wirelength: Our RC increases wirelength by 1% in average.
- Worst negative slack: Not degraded by our methodology.
- □ Total power: increased by 0.5% in average.

Average	ICC2	[1]	[4] + Our PA	[4] + Our RC	[4] + Our PA+RC
Wirelength					
increment	0.00%	-0.06%	0.03%	1.02%	0.98%
(\downarrow , the better)					
Worst negative slack					
increment	0.00%	-15.81%	9.65%	3.15%	4.37%
(1 , the better)					
Total power					
increment	0.10%	0.43%	0.41%	0.62%	0.50%
(\downarrow , the better)					

- This work proposed DRC violations resolution model that can be tightly coupled with the prediction model.
- We developed two different methodologies that were able to be selectively applied to PA/RC related DRC violations.
- We reduced # DRC violations by 26.54% compared to the conventional flow with a cost of 0.5% degradation in total power.

THANKS FOR WATCHING! Q&A?