Unified 3D-IC Multi-Chiplet System Design Solution

Thunder Lay, Software Engineering Group Director
03/12/2024
Outline

• 3D-IC Multi-Chiplet System Design Overview & Challenges

• Unified Multi-Chiplet System Design Solution

• Summary
Unleashing the Power of Possibility by 3D-IC
3D-IC Development Challenges

- 3D-IC heterogeneous design integration challenges
- System design challenges from planning, implementation to signoff
- Ecosystem challenges among Foundry/Customer/EDA

Heterogeneous Integration

System Design

- Power
- Thermal
- Timing
- Test
- Platform DB
- DRC
- LVS
- Routing
- SIPI
- System Planning

Si-Interposer
RDL-Interposer
Organic substrate
Digital Die
Analog Die
Silicon bridge
RDL bridge
F2F, F2B, Embedded
Bump, TSV, Ball
Overview 3D-IC Multi-Chiplet System Design flow

3D feasibility planning → Implementation → Signoff

Native 3D Flows
- 3D Memory on Logic
- 3D Placer and Unfold
- Partition

System-Level Planning
- 3D-IC Design Stack
- Die Floorplan
- I/O and Bump/TSV Planning

Implementation
- Assemble in System Planner for System-Level Planning

Top Die
- P/G Synth

Bottom Die
- P/G Synth

Early Analysis
- Thermal Analysis
 - Celsius™
- Timing STA
 - Temps™
- Power IR/EM
 - Voltus™/Clarity™
- SI Analysis
 - Sigtry™

Verification
- DRC/LVS
 - Pegasus™
- LEC
 - Conformal®
Unified 3D-IC Multi-Chiplet System Design Solution “Integrity 3D-IC”

Industry’s first integrated, high-capacity 3D-IC platform that enables 3D design planning, implementation and system analysis in a single, unified cockpit.
Platform Database for 3D Heterogeneous Integration

Database innovation: Can handle **multiple technology nodes**

Integrity™ Platform Database

- Netlist
- DEF or OpenAccess
- mcm
- SDC
- PDK
- MMMC (view definition)
- FlexILM
- ILM
- LEF
- Parasitic
- Metal Fill (physical context)
- SPEF
- Thermal map
- Timing context
- Boundary model
- GDS
- ...

Hierarchical, Multi-Technology, Multi-Level, Multi-Model On-Demand DB
3D Native Partitioning and Floorplan Synthesis (3D-EFS)

- 3D IC block-level partitioning and placement.
- Considers 3D wire length, number of I/O ports/bumps/TSVs, different process node and timing.
- Allow user to assign the die ID for hierarchical modules.
- Per-die timing budgeting and bump assignment to enable per-die P&R or convert to pseudo 3D.
System Planning Capability
Heterogeneous Integration Management & Optimization

Hierarchical Planning and Optimization of System-level Design and Connectivity

- Chip(let)-chip(let)-package-board signal-mapping
- Stack management
- Interface alignment validation
- System-level connectivity verification
- Advanced bump/TSV planning
- Bundle/bus-driven pin optimization

- Digital implementation
- Third-party die
- Analog layout
- BGA/LGA design
- Interposer
- Complete system-level view
Global Bump Planning, Optimization and Evaluation

- Bump/TSV/Ball assignment impacts 3D-IC System PPA.
- Connection optimization driven bump assignment improves routing congestion and wirelength.

![Diagram showing bump pattern design and connection optimization](image)

Bump Pattern design

- **Covered**
- **Not Covered**

Connection optimization (Signal)

- Frontside pin
- Backside pin

Power, Ground bump quality evaluator

- Improve routing congestion compared with tapeoute design
Multi-Chiplet Display in 2D/3D Viewing

2D Canvas and Stack View (side by side)

3D Stack View (w/ Connections)

3D Canvas View (Selected Objects)

3D Canvas View (Wirebond)

3D Thermal View
Implementation Technologies with Digital, Analog, RDL Routers

- Each type of design has different design constraints and routing style.
- Co-design integration with Digital, Analog, RDL routers.
Early System-Level Analysis and Signoff Flow

Volts™/Celsius™ Early Rail (Power and Thermal) Analysis

Integrity™ Flow Manager
Guided Flow
- System Planning
- Implementation
- Power/Thermal/Timing/SIPI Analysis
- System DRC/LVS

Tempus™ Timing Analysis
- STA
 - Die1
 - Coupling Block
 - Die2
 - Model Extraction (Quantus™)
- Die1 SPEF
- Die1-Die2 SPEF
- Die2 SPEF
- Signoff STA

3D Analysis with RAID Technology

Pegasus™ Physical Verification (DRC/LVS)

Clarity/Sigriety™ Signal/Power Integrity Analysis

System-Level Power and Thermal Analysis

System-Level SIPI Analysis

Inter-Die Connectivity Checking
IR/Thermal Early Feasibility Analysis

IR-drop

- Model the 3D design as a resistance network
 - Abstract a chiplet’s metal stack as a grided 2D resistance network
 - Represent bumps/TSVs as resistors
 - Chiplets are connected through bumps and TSVs

Thermal

- Model the 3D design as a layer-based stacking
 - Condense chiplets into conductor or insulator layers
 - Represent bump as a layer affixed to chiplets
 - Model LID/TIM/PCB/Molding as a single structure of homogeneous properties

![Diagram of IR/Thermal Early Feasibility Analysis](image-url)
New 3D-IC Open Standard - 3Dblox™
(https://3dblox.org/)

- 3Dblox Standard aims to streamline the 3D-IC package solutions in Planning, Implementation and Signoff.

3D/2.5D
3Dblox Language Focus

Top-Down Design Methodology
Inter-operability
Chiplet Reuse
Modulization

3Dblox™ 1.0
System Design Infrastructure
2022/10

3Dblox™ 1.5
Global Bump Optimization
2023/04

3Dblox™ 2.0
System Prototyping
2023/09

Key Enablers
Close partnership with TSMC on 3Dblox™

- Integrity 3D-IC platform offers full flow solution

3DFabric EDA Tool Certification Status

<table>
<thead>
<tr>
<th>Design Solution</th>
<th>Ansys</th>
<th>Cadence</th>
<th>Siemens EDA</th>
<th>Synopsys</th>
</tr>
</thead>
<tbody>
<tr>
<td>3Dblox™</td>
<td>⬤</td>
<td>⬤</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Auto Bump Synthesis</td>
<td>⬤</td>
<td>⬤</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Architecture Definition Language</td>
<td>⬤</td>
<td>⬤</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Macro Lib</td>
<td>⬤</td>
<td>⬤</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Design Macro</td>
<td>⬤</td>
<td>⬤</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Implementation</td>
<td>⬤</td>
<td>⬤</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>APR</td>
<td>⬤</td>
<td>⬤</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>DRC</td>
<td>⬤</td>
<td>⬤</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>LVS</td>
<td>⬤</td>
<td>⬤</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Interface LVS</td>
<td>⬤</td>
<td>⬤</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>RCX</td>
<td></td>
<td>⬤</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Electrical Verification</td>
<td>⬤</td>
<td>⬤</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>IR Drop Analysis</td>
<td>⬤</td>
<td>⬤</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Cross-die STA Complexity Reduction</td>
<td></td>
<td>⬤</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Physical Verification</td>
<td>⬤</td>
<td>⬤</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Static and Transient Analysis</td>
<td>⬤</td>
<td>⬤</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>DFT</td>
<td>⬤</td>
<td>⬤</td>
<td>✗</td>
<td>✗</td>
</tr>
</tbody>
</table>

As of 1/31/2024

EDA Alliance - Taiwan Semiconductor Manufacturing Company Limited (tsmc.com)
Summary – Unified 3D-IC Multi-Chiplet System Design Solution

- System PPAC is goal
- Heterogenous integration capability
- A common platform DB
- Full system level multi-physics analysis technology for Thermal, Power, SI/PI and Physical Verification
- Ecosystem with leading foundries

Cadence Integrity 3D-IC Platform

3D System Planning

3D Partitioning, Digital Implementation

Innovus

Analog/RF Implementation

Virtuoso

Package Design

Allegro

Multi-Technology Database

3D Analysis

(On-Chip and Off-Chip)

Thermal

Power

Timing

LVS/DRC

SI/PI