
Parallel and Heterogeneous Timing
Analysis: Partition, Algorithm, and System

Dr. Tsung-Wei (TW) Huang
Department of Electrical and Computer Engineering

University of Wisconsin at Madison, Madison, WI
https://tsung-wei-huang.github.io/

https://tsung-wei-huang.github.io/

2

Static Timing Analysis (STA)
• A key step in the overall design flow

• Verify the timing behavior of a circuit
• Make sure signals can arrive on time

• Analyze the worst-case scenario
• Before clock: setup time constraint

• Latest required arrival time
• After clock: hold time constraint

• Earliest required arrival time

Required arrival time interval

OK – no violation

Hold
violation

Setup
violation

3

Challenge: Modern Circuits are Very Big

0
100
200
300
400
500
600

10 100 1000 10000 100000 1000000 10000000

R
un

tim
e

(s
)

Circuit Size (#Gates + #Nets)

STA Runtime vs Circuit Size1

STA runtime grows exponentially

1: Tsung-Wei Huang, et al, “OpenTimer v2: A New Parallel Incremental Timing Analysis Engine,” IEEE TCAD, 2022

4
4

Why Do We Need to Parallelize STA?
• Advances the runtime performance to a new level

0

100

200

300

400

500

600

1 CPU 8 CPUs 16 CPUs 24 CPUs 32 CPUs 40 CPUs 1 GPU

Time (minutes) to speed up a circuit timing analysis algorithm

10-100x speed-up over manycore CPUs

5

CPU-parallel STA Algorithms
• Levelization-based vs task-parallel STA1 net_delay

init

inc_loop

get_cands

rc1 rc2rc3 rc4

cpu_gpu

cpu_run

0

rc_update

1

merge

0 gpu_run

1

0

stop

1

h2d_slew

elmore_slew

d2h_slew

d2h_at

elmore_delay_0 elmore_delay_1 elmore_delay_2 elmore_delay_3

h2d_atflattern_net_1flattern_net_2

RCP1Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

RCP1+4

SLP1+3

DLP1+3

ATP1+2

JMP1+1

CRP1

RCP1+1

SLP1

DLP1

RCP1+2

SLP1+1

DLP1+1

ATP1

RCP1+3

SLP1+2

DLP1+2

ATP1+1

JMP1

RCP1+5

SLP1+4

DLP1+4

ATP1+3

JMP1+2

CRP1+1

Parallel Parallel Parallel Parallel Parallel Parallel

Level

…

AND

AND
AND …

Pipeline scheduling

Levelize

c1

c2

c3

c4

chk

0
Task parallelism allows
timing propagation to
flow more naturally with
the circuit structure1: Tsung-Wei Huang, et al, “OpenTimer v2: A New Parallel

Incremental Timing Analysis Engine,” IEEE TCAD, 2022

6

Levelization-based vs Task-parallel STA
• OpenTimer v1: levelization-based parallel timing propagation1

• Implemented using OpenMP “parallel_for” primitive
• OpenTimer v2: task-parallel timing propagation2

• Implemented using Taskflow (https://taskflow.github.io/)

1: Tsung-Wei Huang and Martin Wong, "OpenTimer: A High-Performance Timing Analysis Tool," IEEE/ACM ICCAD, 2015
2: Tsung-Wei Huang, et al, “OpenTimer v2: A New Parallel Incremental Timing Analysis Engine,” IEEE TCAD, 2022

https://taskflow.github.io/

7

Overhead of Task-parallel STA
• Task-parallel STA involves two runtime components

• Build a task dependency graph (TDG) – often done in sequential
• Run the built TDG – actual parallelization

• Large circuits induce big TDGs
• >10M tasks and >10M dependencies

• Big TDG has a big scheduling cost
• 500–1000us for scheduling a task
• Dependency breaking
• Dynamic load balancing
• Worker notification
• …

52%
48%

Runtime Breakdown of
Task-parallel STA

Build Graph Run Graph

8

Need for a TDG Partitioning Algorithm
• In practice, task-parallel STA saturates at 8–16 cores

• No need of a TDG of 10M tasks and 10M dependencies
• We can partition a large TDG into a smaller version to

• Minimize TDG construction time (static overhead)
• Minimize TDG scheduling overhead (dynamic overhead)

Saturate at
16 cores

9

Challenges of TDG Partitioning
• TDG partitioning is very different from circuit graph partitioning

• Circuit graph partitioning targets minimizing “cut”
• TDG partitioning targets reducing the graph size without impacting too much

its original task parallelism

• TDG partitioning has other constraints to worry about …
• Cannot introduce too much time on TDG partitioning
• Cannot introduce cyclic task dependencies
• Cannot introduce too much sequential parallelism

vs vs

10

G-PASTA: GPU-parallel TDG Partitioner1

1: Boyang Zhang, et al. "G-PASTA: GPU Accelerated Partitioning Algorithm for Static Timing Analysis,” ACM/IEEE DAC, 2024

11

Raw TDG vs Partitioned TDG
• Baseline TDG partitioner: GDCA1

1: Bérenger Bramas and Alain Ketterlin. “Improving
parallel executions by increasing task granularity in
task-based runtime systems using acyclic DAG
clustering,” Peer J Computer Science, 2020

TDG runtime after partitioning (ms/speed-up)

Partitioning runtime (ms/speed-up)

12

Why CPU-GPU Heterogeneous STA?
• CPU-based parallelism does not scale beyond 16 threads

• CPU has limited thread count and memory bandwidth
• Strong scalability is limited to the circuit structure itself

• Amdahl's law: https://en.wikipedia.org/wiki/Amdahl%27s_law

• Modern STA workloads exhibit a big volume of data parallelism
• Millions of dates to analyze (in parallel)
• Hundreds of timing quantifies to propagate through millions of date

…+ +

https://en.wikipedia.org/wiki/Amdahl%27s_law

13

Our Research on GPU-accelerated STA

GPU-based graph analysis (ICCAD’20) GPU-based CPPR (ICCAD’21)GPU-based path analysis (DAC’21)

14

GPU-accelerated Critical Path Generation
• GPU-friendly data structure for representing a critical path

15

GPU-parallel Suffix/Prefix Tree Building1

A D

E

G

H K

B E

G

H K

E

C F I

K

Startpoint EndpointDeviation Edge Suffix Edge

Path AEHK

Path BEHK

Path CFK

Level 0 Level 1

1: Guannan Guo, Tsung-Wei Huang, Yibo Lin, and Martin Wong, "GPU-accelerated Path-based Timing Analysis," IEEE/ACM Design
Automation Conference (DAC), CA, 2021

GPU-based suffix tree construction GPU-based prefix tree construction

16

GPU-accelerated Path-based Analysis
• Example speed-up on a large design, leon2 (1.6M gates)

• 611x speed-up over 1 CPU and 44x over 40 CPUs
• Evaluated on an Nvidia RTX 3090 GPU

1: Guannan Guo, Tsung-Wei Huang, Yibo Lin, and Martin Wong, "GPU-accelerated Path-based Timing Analysis," IEEE/ACM
Design Automation Conference (DAC), CA, 2021

17

Going Beyond STA – Taskflow System1

#include <taskflow/taskflow.hpp> // live: https://godbolt.org/z/j8hx3xnnx
int main(){
 tf::Taskflow taskflow;
 tf::Executor executor;
 auto [A, B, C, D] = taskflow.emplace(
 [] () { std::cout << "TaskA\n"; }
 [] () { std::cout << "TaskB\n"; },
 [] () { std::cout << "TaskC\n"; },
 [] () { std::cout << "TaskD\n"; }
);
 A.precede(B, C);
 D.succeed(B, C);
 executor.run(taskflow).wait();
 return 0;
}

1: T.-W. Huang, et. al, “Taskflow: A Lightweight Parallel and
Heterogeneous Task Graph Computing System,” IEEE TPDS,
vol. 33, no. 6, pp. 1303-1320, June 2022

https://godbolt.org/z/j8hx3xnnx

18

Control Taskflow Graph (CTFG) Model

18

// CTFG goes beyond the limitation of traditional DAG-based models
auto cond_1 = taskflow.emplace([](){ return run_B() ? 0 : 1; }); // 0: is the index of B
auto cond_2 = taskflow.emplace([](){ return run_G() ? 0 : 1; }); // 0: is the index of G
auto cond_3 = taskflow.emplace([](){ return loop() ? 0 : 1; }); // 0: is the index of cond_3
cond_1.precede(B, E); // cycle
cond_2.precede(G, H); // if-else
cond_3.precede(cond_3, L); // loop

Very difficult for existing DAG-based
systems to express an efficient overlap

between tasks and control flow …

19

t

Dynamic Task Graph in Taskflow
// Live: https://godbolt.org/z/j76ThGbWK
tf::Executor executor;
auto A = executor.silent_dependent_async([](){
 std::cout << "TaskA\n";
});
auto B = executor.silent_dependent_async([](){
 std::cout << "TaskB\n";
}, A);
auto C = executor.silent_dependent_async([](){
 std::cout << "TaskC\n";
}, A);
auto [D, Fu] = executor.dependent_async([](){
 std::cout << "TaskD\n";
}, B, C);
Fu.wait();

Task construction

Specify arbitrary task dependencies using
C++ variadic parameter pack

Task execution

Fu.wait();

https://godbolt.org/z/j76ThGbWK

20

Everything is Composable in Taskflow

20

• End-to-end parallelism in one graph
• Task, dependency, control flow all together
• Scheduling with whole-graph optimization
• Efficient overlap among heterogeneous tasks

• Largely improved productivity!
SYCL/CUDA task

(Euro-Par’21, HPEC’20)

Composition
(HPDC’22, ICPP’22, HPEC’19)

Dynamic task
(IPDPS’19, MM’19)

Control flow
(TPDS’22)

Reddit: https://www.reddit.com/r/cpp/ [under taskflow]

Industrial use-case of productivity improvement using Taskflow

https://www.reddit.com/r/cpp/

21

Taskflow is Being Used by Many Projects

22

Our NSF POSE Project1: Sustainability
• Create a sustainable Taskflow application ecosystem

22

https://beta.nsf.gov/tip/updates/nsf-invests-nearly-8-
million-inaugural-cohort-open

CAD

ML

Quantum

1: “POSE: Phase I: Toward a Task-Parallel Programming
Ecosystem for Modern Scientific Computing,” $298K,
09/15/2022—08/31/2023, NSF POSE, TI-2229304

…

Taskflow
ecosystem

https://beta.nsf.gov/tip/updates/nsf-invests-nearly-8-million-inaugural-cohort-open
https://beta.nsf.gov/tip/updates/nsf-invests-nearly-8-million-inaugural-cohort-open

