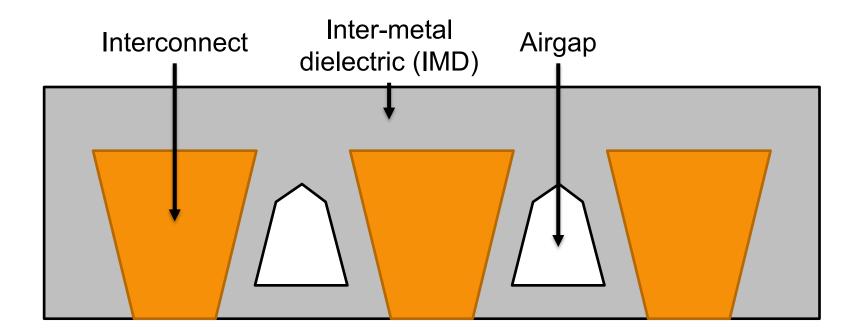


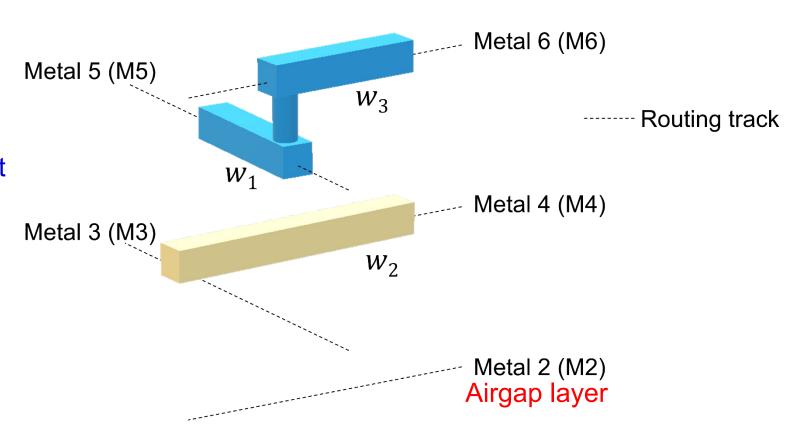
Novel Airgap Insertion and Layer Reassignment for Timing Optimization Guided by Slack Dependency

Wei-Chen Tai, Min-Hsien Chung, Iris Hui-Ru Jiang Graduate Institute of Electronics Engineering Department of Electrical Engineering National Taiwan University

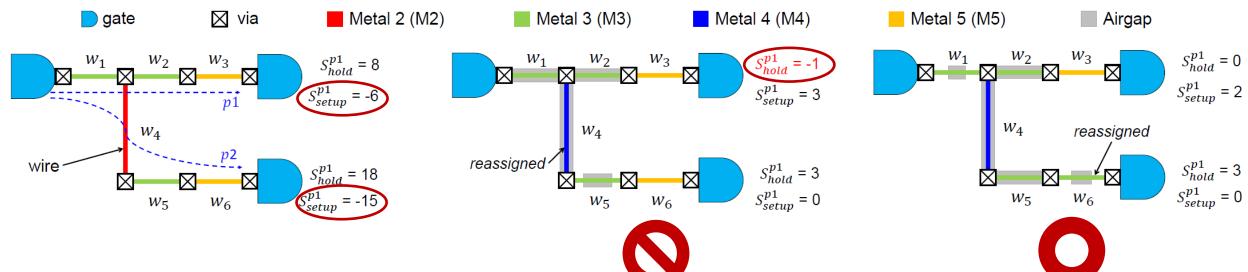


Outline

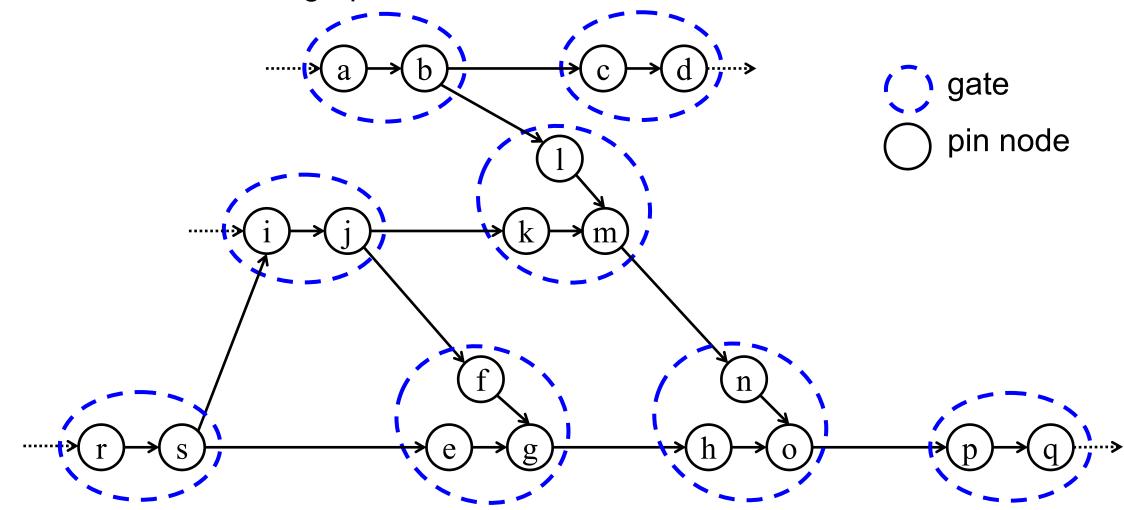
Introduction Slack Dependency Graph Airgap-Wire Optimization Experimental Results Conclusion


Introduction - Airgap

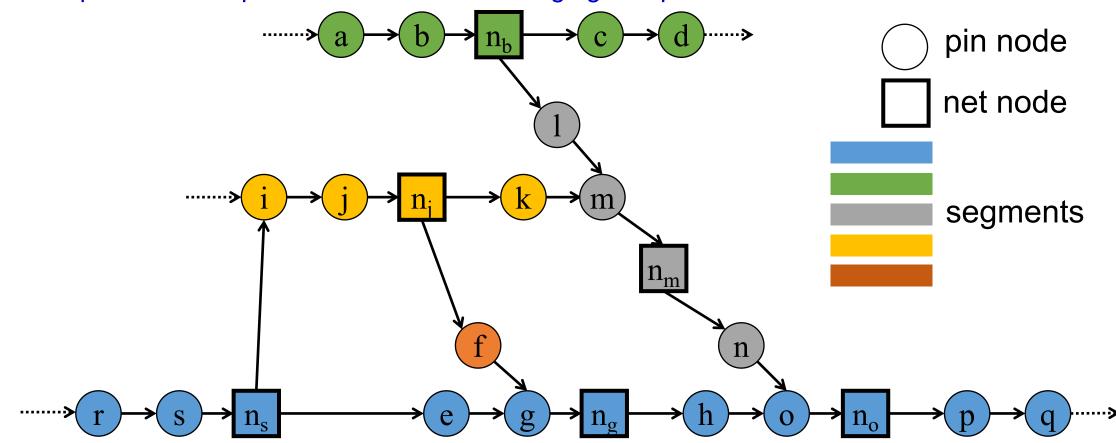
- What is Airgap?
 - Replace solid low-k dielectrics between interconnects with air-filled or vacuum pockets
 - Lower the inter-metal dielectric (IMD) permittivity \rightarrow lower line-to-line capacitance


Introduction - Airgap

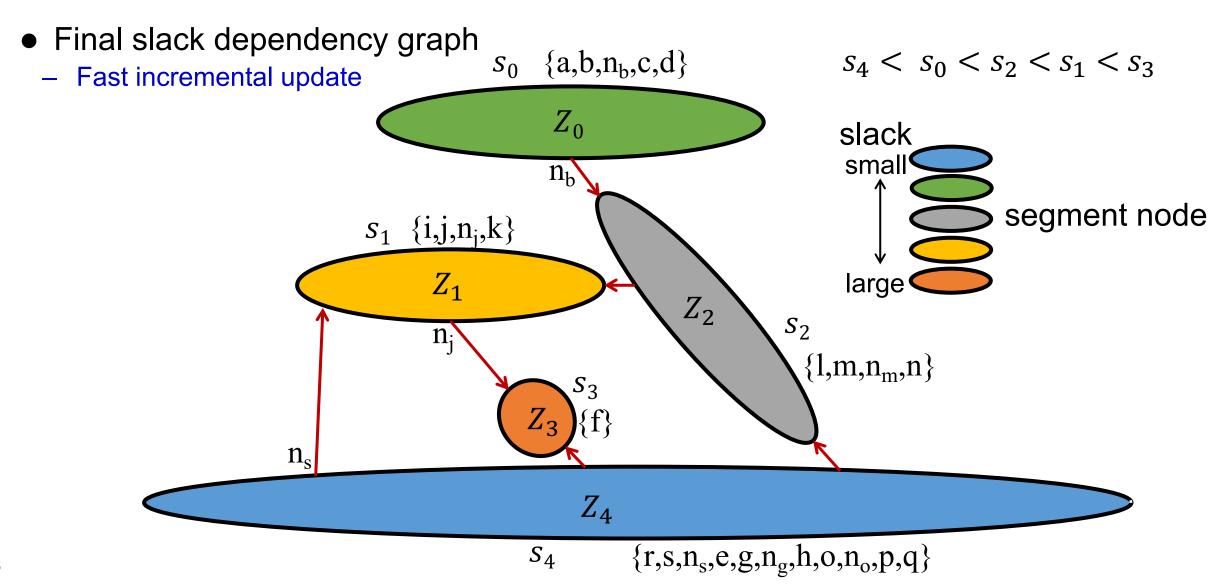
- Benefits of Airgap
 - Reduced line-to-line capacitance
 - Reduced interconnect delay, ~20% reduction
- Limitations of Airgap
 - Manufacturing cost
 - → few airgap layers
 - Requires layer reassignment


Introduction – Problem Formulation

- Objective: timing optimization
 - Given: routed design
 - Optimize: total negative slack (TNS)
 - Constraints: legal airgap assignment and no hold time violations
- The shortened interconnect delay is beneficial to setup timing but harmful to hold timing.

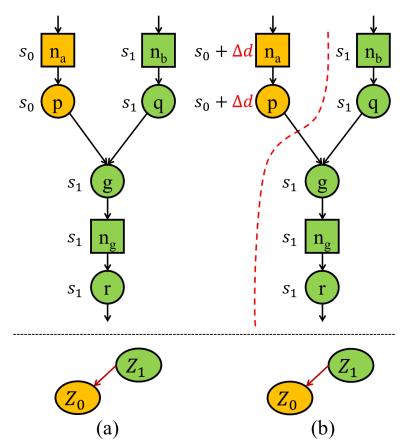

Slack Dependency Graph (SDG)

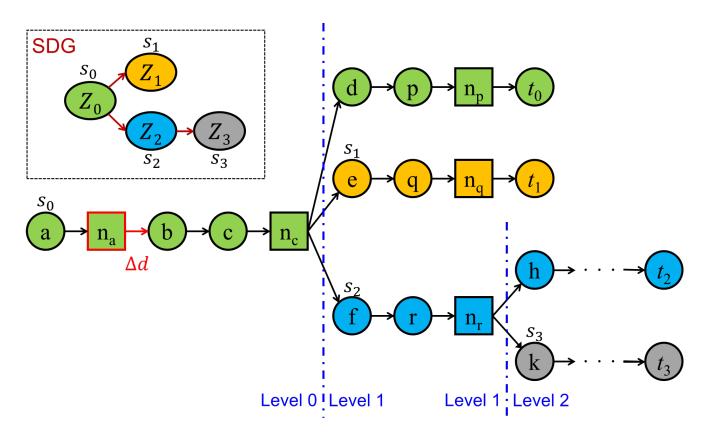
Conventional circuit graph



Slack Dependency Graph (SDG)

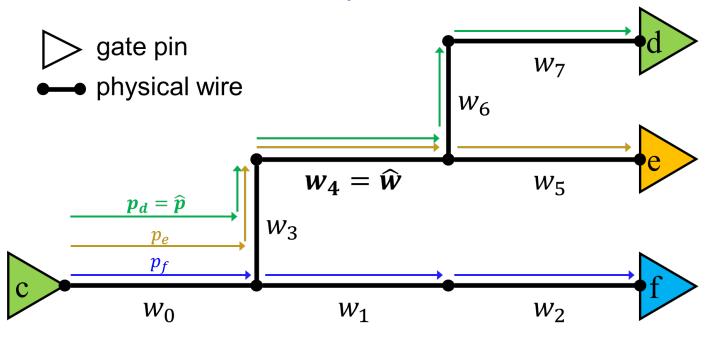
- Add a net node to represent a net
 - Our optimization is performed on a wire belonging to a particular net


Slack Dependency Graph (SDG)



Flow overview

- Global Optimization Net Selection
 - Most critical segment first (always effective)
 - Highest path usage first (contributes most to total negative slack)



- Local Optimization Airgap Insertion (on the selected net)
 - Check if the inserted airgap is legal and indeed reduces the delay
 - Formulate Elmore delay

$$d_n^p = \sum_{w \in W_n} c_w \sum_{i \in U_w} \gamma_i^p r_i$$
$$= \sum_{w \in W_n} c_w \alpha_w^p$$

$$\Delta d_{\hat{w}}^{\hat{p}} = \Delta c_{\hat{w}} \alpha_{\hat{w}}^{\hat{p}}$$

- Local Optimization Airgap Insertion (on the selected net)
 - LP formulation for each wire segment

$$\max_{\sigma_{\hat{w}}} \quad \sigma_{\hat{w}} \tag{15}$$

subject to

$$0 \leq \sigma_{\hat{w}} \leq 1 \tag{16a} \ \, \text{The amount of airgap}$$

$$\Delta d_{\hat{n}}^{\hat{p}} \geq 0 \tag{16b} \ \, \text{Delay improvement}$$

$$u_{\hat{n}}^{p} + \Delta d_{\hat{n}}^{p} \leq 0, \forall p \in P_{\hat{n}}^{s} \tag{16c} \ \, \text{Setup time}$$

$$h_{\hat{n}}^{p} - \Delta d_{\hat{n}}^{p} \geq 0, \forall p \in P_{\hat{n}}^{h} \tag{16d} \ \, \text{Hold time}$$

Benchmark Statistics

- # Component: the number of wires of interest
- # P_{setup}: the number of setup paths
- # P_{hold}: the number of hold paths

Benchmark	# Component	# Critical Net	# P _{setup}	# P _{hold}
s1196_TAU	930	100	13	359
systemcdes_TAU	7935	2859	188	2564
usb_funct_TAU	40234	7507	281	7687
vga_lcd_TAU	138383	1762	867	104960
leon3mp_TAU	884385	2678	1144	24283

Experimental Results

	Initial			The Min-Cost Network Flow Method [19]				
Benchmark	WNS	TNS	WHS	WNS	ΔWNS	TNS	ΔTNS	Runtime
	(ns)	(ns)	(ns)	(ns)	(%)	(ns)	(%)	(s)
s1196_TAU	-0.0517	-0.5077	0.0008	-0.0504	2.51	-0.4896	3.57	0.056
systemcdes_TAU	-0.7170	-62.8912	0.0023	-0.7066	1.45	-61.8041	1.73	6.144
usb_funct_TAU	-0.6036	-67.9476	0.0032	-0.5994	0.70	-67.4971	0.66	43.039
vga_lcd_TAU	-1.1806	-144.9361	0.0050	-1.0892	7.74	-34.6062	76.12	533.102
leon3mp_TAU	-1.4405	-843.1260	0.0011	-1.0105	29.85	-549.2453	34.86	1289.08
ratio	-	-	-	1.020	0.826	1.263	0.740	42.029

TNS: total negative slack WNS: worst negative slack

Slack dependency graph helps

- Identify the most critical nets
- Ensure effective optimization
- Perform very fast update

The Shortest-Path-Based Method [12]			Ours						
WNS	ΔWNS	TNS	ΔTNS	Runtime	WNS	ΔWNS	TNS	ΔTNS	Runtime
(ns)	(%)	(ns)	(%)	(s)	(ns)	(%)	(ns)	(%)	(s)
-0.0505	2.32	-0.4913	3.23	0.073	-0.0487	5.80	-0.4746	6.52	0.786
-0.7066	1.45	-61.8077	1.72	72.156	-0.6997	2.41	-61.0237	2.97	1.746
-0.5991	0.75	-67.2468	1.03	167.061	-0.6023	0.22	-59.2837	12.75	5.603
-1.0700	9.37	-34.4020	76.26	1853.03	-1.0382	12.06	-20.3185	85.98	13.226
-1.0125	29.71	-551.5734	34.58	1886.09	-0.9992	30.64	-424.1012	49.70	23.166
1.015	0.853	1.266	0.740	89.348	1.000	1.000	1.000	1.000	1.000

[12] Y. Jung, D. Hyun, and Y. Shin, Integrated airgap insertion and layer reassignment for circuit timing optimization., ASP-DAC 2024. 32–37. [19] B. Yu, D. Liu, S. Chowdhury, and D. Z. Pan, TILA: Timing-driven incremental layer assignment, ICCAD 2015, 110–117.

Conclusion

- Present a novel way of viewing slack relationship slack dependency graph
- Allow flexible amount of airgap to be generated
- Achieve significant speed up and quality improvement

