AMD ¢t

Calibration-Based Differentiable Timing Optimization
in Non-linear Global Placement

Wauxi Li, Yuji Kukimoto, Gregory Servel, Ismail Bustany, Mehrdad E. Dehkordi
AMD Inc.
San Jose, CA, USA

wuxi.li@amd.com

[AMD Official Use Only - General]

Introduction & Motivation

Timing-driven placement (TDP) is crucial for design closure.

Net weighting [Martin+,DAC’19] [Liao+, DATE’22][Liang+, arXiv’22]

Net-length constraining [Sarrafzadeh+, DAC’97][Halpin+, DAC’01][Hur+, DAC’03]
Mathematical programming [Hamada+, DAC’93][Swartz+, DAC’95][Chowdhary, DAC’05]
Differentiable timing optimization (DTO) [Naylor+, US Patent][Guo+, DAC’22]

DTO is considered the state-of-the-art, demonstrating excellent effectiveness with reasonable efficiency.

Limited discussion on supporting timing exceptions and advanced timing analysis features in DTO.

This hinders its applicability to real industry designs.

AMDZ1

2 together we advance_

[AMD Official Use Only - General]

Timing Exceptions & Common Path Pessimism Removal (CPPR)

Clock Domain Crossing D—D ll> ll>
CLK1
¢ ¢
2
Multi-Cycle Path G
[>—D QmF D oF—]
INT G1 OUTH
False Path FF1 FF3
FF2 | FF4
IN2 OouT2
Path Segmentation [>—D @ Q—]
set_max_delay -from G1/0 -to G2/I 4
Common Path Pessimism Removal (CPPR) i
FF2/C to FF4/D
-

Common Path

AMDZ1

3 together we advance_

[AMD Official Use Only - General]

Tag-Based Static Timing Analysis (STA)

= Standard method to support timing exceptions and CPPR in STA.
* Each timing node maintains multiple (AAT, RAT, slack) tuples with different tags.
= Different tags represent different timing exceptions, CPPR, transition types, process corners, etc.

= Timing from different tags are propagated separately.

Tag Statistics of an Industry Design

Timing Exceptions X v v v v
CPPR X X v v v
Multi-Transition X X X v v
Multi-Corner X X X X v
#Tags / #]iming Nodes | 1.00 2.22 251 4.24 7.86

One can potentially apply the same tagging mechanism to DTO.
Intractable development and maintenance efforts.

Unacceptable runtime and memory overhead.

AMDZ1

together we advance_

[AMD Official Use Only - General]

Our Contributions

We propose a timing calibration technique that can correlate a simple timer to a reference timer. The
calibrated simple timer is ultrafast and timing exception/CPPR-aware.

= We implement a non-linear differentiable timing-driven global placement framework by extending the
calibrated simple timer to a differentiable timing engine.

= We propose an angle-based cost-weighting scheme that dynamically balances various optimization
objectives, leading to substantial improvement in solution quality and numeric convergence.

= We propose several techniques that notably reduce runtime with only minor or no compromise in solution
quality.

» The proposed framework outperforms the latest Vivado in vital metrics, including maximum clock
frequency, wirelength, routability, and back-end runtime, on a set of industry designs.

AMDZ1

5 together we advance_

[AMD Official Use Only - General]

Proposed Overall Flow

Simple Timer (ST)
= Ultrafast

C e .) Initial Placement
= Only support basic timing propagation

. A

. A/ : Every N lterations | Otherwise ‘,
Reference Timer (RT) WL + Density |1 | | '
= Accurate but slow (e.g., sign-off timer) Gradient : (Query RT) (Update Wire) :
= Support advanced STA features like timing ' | Calibrate ST [| Delays :
exceptions and CPPR :) ah I .

4 N - ™
vesate " il[™ Timng . [Pmeriase).
Kev Idea : ' Gradient 9 |
Rey laea Locations)! | J |_Propagation '

= QOptimize timing using ST for runtime
= (Calibrate ST using RT occasionally for accuracy

AMDZ1

6 together we advance_

[AMD Official Use Only - General]

Timing Calibration Problem

Inputs:
A timing graph, a ST, and a RT.

DLY; (delay) of all timing arcs in ST.

SLK;* (worst slack) of all timing nodes in RT.

Outputs:
RAT; (required arrival time) of all endpoints in ST.

ADLY; (delay correction) of all timing arcs in ST.

Goal:
Exactly matching SLK; (slack in ST) to SLK;* for all timing nodes when using DLY; + ADLY; instead of DLY;in ST.

AMDZ1

7 together we advance_

[AMD Official Use Only - General]

Timing Calibration Algorithm

0-2-2

RAT,= AAT + SLK *

ADLY, ,= RAT,— DLY, ,— AAT, — max(SLK,*, SLK,*)

1+1

20
C

-2

1+0

@ 2-1

0-1-1

Forw AATs of startpoints

Al

Backward

Only Keep

RATs of endpoints
ADLYs of all arcs

N ST
T

DLYs in ST

AMDZ1

together we advance_

[AMD Official Use Only - General]

Properties of the Calibrated ST

Property 1 Property 3

The calibrated ST can exactly match the slacks from RT Many placement-invariant/insensitive timing factors
at the placement where the calibration is conducted. can be captured through the calibration.

Property 2

The slack discrepancy between the calibrated ST and RT

at placement x (vector of instance locations) is bounded Properties 3 is the key of the lightweightness of
by O([|x - x*||P), where x* denotes the placement where the calibrated ST. Numerous sources of inaccuracy
the calibration is conducted, and p is a constant in ST are placement-invariant/insensitive, e.g.,
dependent on the wire delay model. intra-instance delays, multi-cycle path, CPPR etc.

By virtue of Property 3, these placement-
invariant/insensitive timing factors do not
necessitate modeling in ST, as they call can be
captured by the calibration.

AMDZ1

9 together we advance_

[AMD Official Use Only - General]

Experimental Setup

Implementation

C++
elfPlace [Li+, ICCAD’19]
Cpp-Taskflow [Huang+, IPDPS’19]

Machine
AMD EPYC 7F52 16-Core 3.5 GHz CPUs

512 GB memory

Evaluation

AMD Vivado 2023.2
7nm Versal architecture

155 industry designs

Benchmark Statistics

Percentile Min 25th 50th 75th Max
#Instances (K) 8 181 314 635 1415
#Nets (K) 10 228 415 738 1589
#Pins (M) 0.05 1.14 199 3.71 7.61
#Timing Nodes (M) | 0.06 144 271 411 9.29
#Timing Arcs (M) 0.08 2.26 5.14 835 238.69
#Clocks 1 2 6 31 173
#set_multicycle_path 0 0 0 16 2016
#set_false path 0 0 13 261 6986
#set_max_delay 0 0 0 52 3998
#Tags per Timing Node | 2.38 2.80 3.03 5.13 10.09

AMDZ1

together we advance_

[AMD Official Use Only - General]

Main Results

Vivado 2023.2
Default timing-driven mode of the latest Vivado.

Ours Net-Wt

Our implementation of net weighting-based
timing optimization, similar to

[Martin+,DAC’19], DREAMPlace 4.0 [Liao+, DATE’22],
AMF-Placer 2.0 [Liang+, arXiv’22]

Ours

Proposed calibration-based differentiable timing
optimization,

Vivado Ours Ours
Designs 2023.2 Net-Wt

All Large| All Large| All Large
GP-Fmax | 0.931 0.928 10.919 0.911 |1.000 1.000
Place-Fmax | 0.971 0.955 [0.982 0.980 | 1.000 1.000
Route-Fmax | 0.981 0.972 {0.991 0.993 | 1.000 1.000
GP-WL 1.311 1.332|1.326 1.263 |1.000 1.000
Place-WL | 1.137 1.151 |1.139 1.159|1.000 1.000
Route-WL | 1.085 1.091 |1.074 1.095|1.000 1.000
GP-RT 0.946 1.078 |{1.109 1.078 | 1.000 1.000
Place-RT |0.976 1.065 | 1.030 1.065 | 1.000 1.000
Route-RT | 1.078 1.097 | 1.040 1.059 |1.000 1.000
Total-RT 1.063 1.090 | 1.049 1.063|1.000 1.000

#Unroutes 10 9 8 7 6 5

AMDZ

together we advance_

[AMD Official Use Only - General]

Effectiveness of Timing Calibration

m WNS-RT == WNS-ST == WNS-Err

== TNS-RT === TNS-ST TNS-Err

a1 10%
£ R
= 038 8%
o)
< 0.6 6%
)
§ 0.4 - 4%
g 02| 2%
= 74
@)
'z 0 \/\/'\/‘ T ‘ 0%

0 10 20 30 40 50

Global Placement Iteration

Relative Error

Calibrate every 10 GP iterations
ZERO slack error after calibration
Max WNS error < 8%

Max TNS error < 2%

AMDZ1

together we advance_

[AMD Official Use Only - General]

Conclusion

= We propose a timing calibration technique that correlates a simple timer (ST) to a reference
timer (RT).

The ST can efficiently handle timing exceptions and CPPR by periodic calibration.

We extend the calibrated ST to a differentiable timing optimization engine in global placement.

= The proposed framework outperforms the latest Vivado in vital metrics, including Fmax,
wirelength, routability, and back-end runtime, on a set of industry designs.

AMDZ1

13 together we advance_

