Design Automation Challenges for Automotive Systems

Chung-Wei Lin

March 2024

Connected and Autonomous Vehicles

☐ A good application may need both of "connectivity" and "autonomy"

Design Complexity

Software

- > Various functions for sensing, perception, planning, decision, control, etc.
- > Number of lines of code
 - 1 \rightarrow 10+ \rightarrow 100 million from 2000 \rightarrow 2010 \rightarrow 2020
- > Values to vehicle's total value
 - Embedded software: $2\% \rightarrow 13\%$ from 2000 to 2010
 - Electronics system: expected to be 50% in 2030

Hardware

- Number of Electronic Control Units (ECUs)
 - 20 \rightarrow 50+ \rightarrow more in the past decade
- > New computational components and communication protocols

Fundamental Challenges

- ☐ How do you know
 - > Your design is correct, i.e., satisfying its requirements?
 - > Your implementation is correct, i.e., satisfying its specification?
- ☐ The **compatibility** is also one challenge
 - ➤ Different components, systems, and vehicles are designed and implemented by different companies

Compatibility of Systems [DAC '18]

- ☐ Integration of two systems
 - Cooperative Pile-upMitigation System (CPMS)
 - > False-start Prevention System (FPS)
- Property specification language and automation tool
 - Signal Temporal Logic (STL)
 - > Breach [Donze '10]
- A violation can be detected

Compatibility of Vehicles [DATE '22]

- ☐ An **incompatible** example of lane-changing
 - > Two autonomous vehicles always accelerate or decelerate together
 - Different automotive makers develop different types of systems by their own
 - > They always keep the same longitude along a road segment
 - > They fail to exchange their lanes before the end of the road segment
- ☐ A methodology to verify if lane-changing systems (finite-state machines or hybrid systems) are compatible
 - > If not, we will need requirements engineering or runtime monitoring

More Viewpoints

- ☐ Levels of "contracts"
 - > Interfaces of components
 - Preconditions and post-conditions of components
 - Functional behavior
 - ➤ Timing to the dependency between components
 - > Performance of components
- Decomposition and composition
 - ➤ Horizonal or vertical (right figure)

System Design: V-Model

- ☐ Consider design metrics
 - Safety
 - > Reliability
 - ➤ Robustness
 - > Power
 - Performance
 - > Security
- ☐ Assist system designers for early design decisions
 - ➤ More efficient process

EDA vs. Automotive Design Automation

Q&A

Thank You!