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AQFP Circuit

Ø A𝑑𝑖𝑎𝑏𝑎𝑡𝑖𝑐 𝑞𝑢𝑎𝑛𝑡𝑢𝑚-𝑓𝑙𝑢𝑥 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑜𝑛 (AQFP) is a superconducting technology 

with extremely low power consumption compared to traditional CMOS technology

Ø Special constraints

1) Fanout branching: each logic gate and buffer can only drive one output, and each splitter can 

drive multiple outputs no more than the given splitting capacity sp

2) Path balancing: for each node, its input values must be released by nodes at its previous level

Ø Assumptions

1) Primary inputs (PIs) are aligned at the same level

2) Primary outputs (POs) are aligned at the same level

3) PIs should satisfy the fanout branching constraint



AQFP Circuit

Ø Example (a netlist we want to convert to an legal AQFP circuit)
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AQFP Circuit

Ø Example (solving fanout branching constraint, assume sp = 2)
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AQFP Circuit

Ø Example (solving fanout branching constraint, assume sp = 2)

o1

o2

g3

g2

g4

i3

S S

S

Sg1

i1

i2



AQFP Circuit

Ø Example (PI alignment and PO alignment)
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AQFP Circuit

Ø Example (solving path balancing constraint)
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Problem Formulation

Ø Input

1) A netlist 𝑁

2) Splitting capacity sp

Ø Output

• An AQFP circuit 𝐶 which exhibits the same functionality as 𝑁 and satisfies all the constraints 

and assumptions

Ø Target

• Minimize the cost (number of inserted buffers and splitters) of the output circuit



Optimization Methods

Ø Backward Movement Optimization

• Backward Group Movement

• Input Modifying Backward Movement

Ø Forward Movement Optimization

• Forward Group Movement

• Buffer Integrating Forward Movement

Ø Level Perturbation

• Flexibility-driven Branching Tree

• Forced Movement

• Fanout-pair Level Adjustment



Backward Group Movement

Ø A 𝑔𝑟𝑜𝑢𝑝 is a set of gate(s) and splitter(s) which form a connected subgraph in an AQFP 

circuit
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move

Backward Group Movement

Ø In backward movement optimization, we want to move logic gates backward for 

reducing the number of buffers
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Backward Group Movement

Ø However, the movement of a gate 𝑔 may be blocked by other splitters, gates or 

previously created groups
• Cluster 𝑔 and “the gates, the splitters, and the groups blocking 𝑔’s movement” into a new group, 

and perform group movement

• Only the movement which do not increase the number of buffers will be accepted

• The method for deciding the order of the movements of gates is detailed in the paper



Backward Group Movement
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Backward Group Movement
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Ø Try to move the group {𝑔1, 𝑆} backward, but the result will NOT be accepted
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Backward Group Movement
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Ø Suppose we try to move 𝑔2 backward next, with the previously created group retained in the circuit 
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Backward Group Movement
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Ø Try to move the group {𝑔1, 𝑔2, 𝑆} backward, and the result will be accepted
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Optimization Methods

Ø Backward Movement Optimization

• Backward group movement

• Input modifying backward movement

Ø Forward Movement Optimization

• Forward group movement

• Buffer integrating forward movement

Ø Level Perturbation

• Flexibility-driven branching tree

• Forced movement

• Fanout-pair level adjustment



Input Modifying Backward Movement

Ø Modify the input edge(s) of a gate so we can move it backward easier
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Input Modifying Backward Movement

Ø Modify the input edge(s) of a gate so we can move it backward easier
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Optimization Methods

Ø Backward Movement Optimization

• Backward Group Movement

• Input Modifying Backward Movement

Ø Forward Movement Optimization

• Forward Group Movement

• Buffer Integrating Forward Movement

Ø Level Perturbation

• Flexibility-driven Branching Tree

• Forced Movement

• Fanout-pair Level Adjustment



Forward Group Movement

Ø Use similar rules in “backward group movement” to construct groups and move 

them forward



Optimization Methods

Ø Backward Movement Optimization

• Backward Group Movement

• Input Modifying Backward Movement

Ø Forward Movement Optimization

• Forward Group Movement

• Buffer Integrating Forward Movement

Ø Level Perturbation

• Flexibility-driven Branching Tree

• Forced Movement

• Fanout-pair Level Adjustment



Buffer Integrating Forward Movement
Ø Move groups without splitters forward, and try to integrate buffers into less splitters if possible
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Buffer Integrating Forward Movement
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Optimization Methods

Ø Backward Movement Optimization

• Backward Group Movement

• Input Modifying Backward Movement

Ø Forward Movement Optimization

• Forward Group Movement

• Buffer Integrating Forward Movement

Ø Level Perturbation

• Flexibility-driven Branching Tree

• Forced Movement

• Fanout-pair Level Adjustment



Flexibility-driven Branching Tree

Ø A branching tree of a gate or PI 𝑔 is a set of nodes containing 

1) 𝑔

2) the gates and POs that 𝑔 passes its output signal to

3) the buffers and splitters between (1) and (2)

Ø Minimum branching tree

• Advantage: requires the least number of buffers and splitters

• Disadvantage: the movement flexibility of gates is lower



Flexibility-driven Branching Tree

Ø The minimum branching tree of 𝑖1
• The movement of g4 is blocked by a splitter
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Flexibility-driven Branching Tree

Ø Flexibility-driven branching tree 

• Advantage: the movement flexibility of gates is higher

• Disadvantage: use as many buffers as possible (higher cost)



Flexibility-driven Branching Tree

Ø The flexibility-driven branching tree of 𝑖1
• The movement of g4 is NOT blocked by any gate or splitter
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Optimization Methods

Ø Backward Movement Optimization

• Backward Group Movement

• Input Modifying Backward Movement

Ø Forward Movement Optimization

• Forward Group Movement

• Buffer Integrating Forward Movement

Ø Level Perturbation

• Flexibility-driven Branching Tree

• Forced Movement

• Fanout-pair Level Adjustment



Forced Movement

Ø Force a gate to be moved backward one level, and resolve the created violations
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Forced Movement

Ø Force a gate to be moved backward one level, and resolve the created violations
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Optimization Methods

Ø Backward Movement Optimization

• Backward Group Movement

• Input Modifying Backward Movement

Ø Forward Movement Optimization

• Forward Group Movement

• Buffer Integrating Forward Movement

Ø Level Perturbation

• Flexibility-driven Branching Tree

• Forced Movement

• Fanout-pair Level Adjustment



Fanout-pair Level Adjustment

Ø For gates 𝑠 and 𝑙 in the same branching tree (assume 𝑠 is at a smaller level than 

that of 𝑙), move 𝑠 forward one level and move 𝑙	 backward one level, then resolve 

the created violations
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Overall Flow
input 𝑵, 𝒔𝒑

construct AQFP circuit 𝐶
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Experimental Results
Ø Compare to state-of-the-art methods

• A Global Optimization Algorithm for Buffer and Splitter Insertion in Adiabatic Quantum-

Flux-Parametron Circuits [3]

1) Use integer linear programming-based method to decide logic gates levels

2) Use dynamic programming-based method to insert buffers and splitters

• Depth-Optimal Buffer and Splitter Insertion and Optimization in AQFP Circuits [2]

1) Obtained depth-optimal circuits

2) Use retiming-based method to move gates and splitters for cost reduction



Experimental Results
Ø Optimal solution



Experimental Results
Ø Compare to [3] (11 better, 4 worse)



Experimental Results
Ø Compare to [2] (8 better, 3 worse)



Conclusion

Ø For optimizing the buffer and splitter insertion problem in AQFP circuits, we 

proposed

1) Movement methods

2) Level perturbation methods

Ø Compared to state of the art [2] and [3], our method obtained better results with 

less runtime in most of the benchmarks



Experimental Results in Large Benchmarks
Ø Benchmarks with number of logic gates range from 4000 ~ 130000

Initial [2] Our Method Improvement

Benchmark #gates depth #B/S depth time (s) #B/S depth time (s) #B/S time

sin 4303 110 14783 188 2.43 14685 188 1.02 0.66% 58.02%

arbiter 7000 59 25725 63 0.75 25731 63 2 -0.02% -166.67%

voter 7860 47 15736 86 0.5 15810 86 0.67 -0.47% -34.00%

square 12180 126 63087 251 10.6 65602 251 6.8 -3.99% 35.85%

multiplier 19710 133 61714 264 43.76 65420 264 10.99 -6.01% 74.89%

log2 24456 200 84440 379 48.76 84215 379 32.83 0.27% 32.67%

mem_ctrl 42758 73 213463 114 95.78 185443 114 38.68 13.13% 59.62%

sqrt 23238 3366 1323854 6628 890.73 1317608 6628 34.03 0.47% 96.18%

div 57300 2217 1617032 4371 2190.5 1373661 4371 102.68 15.05% 95.31%

hyp 136109 8762 5596808 17246 2610 5479479 17246 402.91 2.10% 84.56%

AVG 2.12% 33.64%



Different Minimum Branching Trees
Ø Hard to predict which one is more helpful for movements
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Buffer Integration in Backward Movement
Ø Using more splitters would decrease the movability of gates
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