# Optimization for Buffer and Splitter Insertion in AQFP Circuits with Local and Group Movement

Bing-Huan Wu, Wai-Kei Mak National Tsing Hua University

# Outline

- > AQFP Circuit
- Problem Formulation
- Optimization Methods
- Overall Flow
- Experimental Results
- Conclusion

- Adiabatic quantum-flux parametron (AQFP) is a superconducting technology with extremely low power consumption compared to traditional CMOS technology
- Special constraints
  - Fanout branching: each logic gate and buffer can only drive one output, and each splitter can drive multiple outputs no more than the given splitting capacity *sp*
  - 2) Path balancing: for each node, its input values must be released by nodes at its previous level
- > Assumptions
  - 1) Primary inputs (PIs) are aligned at the same level
  - 2) Primary outputs (POs) are aligned at the same level
  - 3) PIs should satisfy the fanout branching constraint

Example (a netlist we want to convert to an legal AQFP circuit)



> Example (solving fanout branching constraint, assume sp = 2)



> Example (solving fanout branching constraint, assume sp = 2)



Example (PI alignment and PO alignment)



Example (solving path balancing constraint)

![](_page_7_Figure_2.jpeg)

#### **Problem Formulation**

#### > Input

- 1) A netlist *N*
- 2) Splitting capacity *sp*
- > Output
  - An AQFP circuit *C* which exhibits the same functionality as *N* and satisfies all the constraints and assumptions
- > Target
  - Minimize the cost (number of inserted buffers and splitters) of the output circuit

# **Optimization Methods**

- Backward Movement Optimization
  - Backward Group Movement
  - Input Modifying Backward Movement
- Forward Movement Optimization
  - Forward Group Movement
  - Buffer Integrating Forward Movement
- Level Perturbation
  - Flexibility-driven Branching Tree
  - Forced Movement
  - Fanout-pair Level Adjustment

A group is a set of gate(s) and splitter(s) which form a connected subgraph in an AQFP circuit

the set of the red nodes is a group

![](_page_10_Picture_3.jpeg)

In backward movement optimization, we want to move logic gates backward for reducing the number of buffers

![](_page_11_Figure_2.jpeg)

- However, the movement of a gate g may be blocked by other splitters, gates or previously created groups
  - Cluster *g* and "the gates, the splitters, and the groups blocking *g*'s movement" into a new group, and perform group movement
  - Only the movement which do not increase the number of buffers will be accepted
  - The method for deciding the order of the movements of gates is detailed in the paper

> If we first try to move  $g_1$  backward

![](_page_13_Figure_2.jpeg)

> Try to move the group  $\{g_1, S\}$  backward, but the result will NOT be accepted

![](_page_14_Figure_2.jpeg)

Suppose we try to move  $g_2$  backward next, with the previously created group retained in the circuit

![](_page_15_Figure_2.jpeg)

> Try to move the group  $\{g_1, g_2, S\}$  backward, and the result will be accepted

![](_page_16_Figure_2.jpeg)

# **Optimization Methods**

- Backward Movement Optimization
  - Backward group movement
  - Input modifying backward movement
- Forward Movement Optimization
  - Forward group movement
  - Buffer integrating forward movement
- Level Perturbation
  - Flexibility-driven branching tree
  - Forced movement
  - Fanout-pair level adjustment

# Input Modifying Backward Movement

➢ Modify the input edge(s) of a gate so we can move it backward easier

![](_page_18_Figure_2.jpeg)

# Input Modifying Backward Movement

Modify the input edge(s) of a gate so we can move it backward easier

![](_page_19_Figure_2.jpeg)

# **Optimization Methods**

- Backward Movement Optimization
  - Backward Group Movement
  - Input Modifying Backward Movement
- Forward Movement Optimization
  - Forward Group Movement
  - Buffer Integrating Forward Movement
- Level Perturbation
  - Flexibility-driven Branching Tree
  - Forced Movement
  - Fanout-pair Level Adjustment

# Forward Group Movement

Use similar rules in "backward group movement" to construct groups and move them forward

# **Optimization Methods**

- Backward Movement Optimization
  - Backward Group Movement
  - Input Modifying Backward Movement
- Forward Movement Optimization
  - Forward Group Movement
  - Buffer Integrating Forward Movement
- Level Perturbation
  - Flexibility-driven Branching Tree
  - Forced Movement
  - Fanout-pair Level Adjustment

# Buffer Integrating Forward Movement

Move groups without splitters forward, and try to integrate buffers into less splitters if possible

![](_page_23_Figure_2.jpeg)

# Buffer Integrating Forward Movement

Move groups without splitters forward, and try to integrate buffers into less splitters if possible

![](_page_24_Figure_2.jpeg)

# **Optimization Methods**

- Backward Movement Optimization
  - Backward Group Movement
  - Input Modifying Backward Movement
- Forward Movement Optimization
  - Forward Group Movement
  - Buffer Integrating Forward Movement
- Level Perturbation
  - Flexibility-driven Branching Tree
  - Forced Movement
  - Fanout-pair Level Adjustment

- $\blacktriangleright$  A branching tree of a gate or PI g is a set of nodes containing
  - 1) g
  - 2) the gates and POs that g passes its output signal to
  - 3) the buffers and splitters between (1) and (2)
- Minimum branching tree
  - Advantage: requires the least number of buffers and splitters
  - Disadvantage: the movement flexibility of gates is lower

- $\succ$  The minimum branching tree of  $i_1$ 
  - The movement of  $g_4$  is blocked by a splitter

![](_page_27_Figure_3.jpeg)

- Flexibility-driven branching tree
  - Advantage: the movement flexibility of gates is higher
  - Disadvantage: use as many buffers as possible (higher cost)

- > The flexibility-driven branching tree of  $i_1$ 
  - The movement of  $g_4$  is **NOT** blocked by any gate or splitter

![](_page_29_Figure_3.jpeg)

# **Optimization Methods**

- Backward Movement Optimization
  - Backward Group Movement
  - Input Modifying Backward Movement
- Forward Movement Optimization
  - Forward Group Movement
  - Buffer Integrating Forward Movement
- Level Perturbation
  - Flexibility-driven Branching Tree
  - Forced Movement
  - Fanout-pair Level Adjustment

#### Forced Movement

> Force a gate to be moved backward one level, and resolve the created violations

![](_page_31_Figure_2.jpeg)

#### Forced Movement

> Force a gate to be moved backward one level, and resolve the created violations

![](_page_32_Figure_2.jpeg)

# **Optimization Methods**

- Backward Movement Optimization
  - Backward Group Movement
  - Input Modifying Backward Movement
- Forward Movement Optimization
  - Forward Group Movement
  - Buffer Integrating Forward Movement
- Level Perturbation
  - Flexibility-driven Branching Tree
  - Forced Movement
  - Fanout-pair Level Adjustment

#### Fanout-pair Level Adjustment

For gates *s* and *l* in the same branching tree (assume *s* is at a smaller level than that of *l*), move *s* forward one level and move *l* backward one level, then resolve the created violations

![](_page_34_Figure_2.jpeg)

![](_page_35_Figure_0.jpeg)

- Compare to state-of-the-art methods
  - A Global Optimization Algorithm for Buffer and Splitter Insertion in Adiabatic Quantum-Flux-Parametron Circuits [3]
    - 1) Use integer linear programming-based method to decide logic gates levels
    - 2) Use dynamic programming-based method to insert buffers and splitters
  - Depth-Optimal Buffer and Splitter Insertion and Optimization in AQFP Circuits [2]
    - 1) Obtained depth-optimal circuits
    - 2) Use retiming-based method to move gates and splitters for cost reduction

#### > Optimal solution

| Ponchmark  | Ori   | Original Circuit |     |      | Opt from [1] |       | [3] |       | [2] |         |       | Our method |         |  |
|------------|-------|------------------|-----|------|--------------|-------|-----|-------|-----|---------|-------|------------|---------|--|
| Denchinark | Gates | maxLO            | D   | #B/S | D'           | #B/S  | D'  | #B/S  | D'  | Time(s) | #B/S  | D'         | Time(s) |  |
| adder1     | 7     | 2                | 4   | 16*  | 8            | -     | -   | 16*   | 8   | < 0.01  | 16*   | 8          | < 0.01  |  |
| adder8     | 77    | 3                | 17  | 371* | 33           | -     | -   | 371*  | 33  | < 0.01  | 371*  | 33         | < 0.01  |  |
| counter16  | 29    | 4                | 9   | 65*  | 17           | 66    | 17  | 65*   | 17  | < 0.01  | 65*   | 17         | < 0.01  |  |
| counter32  | 82    | 4                | 13  | 154* | 23           | 156   | 23  | 154*  | 23  | < 0.01  | 154*  | 23         | < 0.01  |  |
| counter64  | 195   | 4                | 17  | 347* | 30           | 351   | 30  | 347*  | 30  | < 0.01  | 347*  | 30         | < 0.01  |  |
| counter128 | 428   | 4                | 22  | 747* | 38           | 755   | 38  | 747*  | 38  | 0.01    | 747*  | 38         | 0.01    |  |
| sorter32   | 480   | 2                | 15  | 480* | 30           | -     | -   | 480*  | 30  | < 0.01  | 480*  | 30         | < 0.01  |  |
| sorter48   | 880   | 3                | 20  | 880* | 35           | -     | -   | 880*  | 35  | 0.01    | 880*  | 35         | 0.01    |  |
| mult8      | 439   | 9                | 35  | -    | -            | 1681  | 70  | 1709  | 70  | 0.05    | 1680  | 70         | 0.04    |  |
| c17        | 6     | 2                | 3   | 12*  | 5            | -     | -   | 12*   | 5   | < 0.01  | 12*   | 5          | < 0.01  |  |
| c432       | 121   | 10               | 26  | -    | -            | 829   | 37  | 839   | 37  | 0.01    | 829   | 37         | < 0.01  |  |
| c499       | 387   | 8                | 18  | -    | -            | 1173  | 29  | 1173  | 29  | 0.03    | 1177  | 29         | 0.01    |  |
| c880       | 306   | 9                | 27  | -    | -            | 1536  | 40  | 1511  | 40  | 0.07    | 1517  | 40         | 0.03    |  |
| c1355      | 389   | 9                | 18  | -    | -            | 1186  | 29  | 1184  | 29  | 0.03    | 1182  | 29         | 0.02    |  |
| c1908      | 289   | 14               | 21  | -    | -            | 1253  | 34  | 1236  | 34  | 0.04    | 1236  | 34         | 0.01    |  |
| c2670      | 368   | 32               | 21  |      | -            | 1869  | 28  | 1940  | 28  | 0.07    | 1914  | 28         | 0.03    |  |
| c3540      | 794   | 38               | 32  | -    | -            | 1963  | 52  | 1966  | 52  | 0.11    | 1993  | 52         | 0.11    |  |
| c5315      | 1302  | 41               | 26  | -    | -            | 5505  | 40  | 5635  | 40  | 0.32    | 5584  | 40         | 0.16    |  |
| c6288      | 1870  | 17               | 89  | -    | -            | 8832  | 179 | 9009  | 179 | 0.2     | 8632  | 179        | 0.18    |  |
| c7552      | 1394  | 170              | 33  | -    | -            | 6768  | 58  | 7832  | 56  | 0.66    | 6614  | 56         | 0.42    |  |
| alu32      | 1513  | 128              | 100 | -    | -            | 13976 | 169 | 13842 | 169 | 0.59    | 13804 | 169        | 0.65    |  |

Compare to [3] (11 better, 4 worse)

| Panahmark  | Original Circuit |       |     | Opt from [1] |    | [3]   |     | [2]   |     |         | Our method |     |         |
|------------|------------------|-------|-----|--------------|----|-------|-----|-------|-----|---------|------------|-----|---------|
| Dencimark  | Gates            | maxLO | D   | #B/S         | D' | #B/S  | D'  | #B/S  | D'  | Time(s) | #B/S       | D'  | Time(s) |
| adder1     | 7                | 2     | 4   | 16*          | 8  |       |     | 16*   | 8   | < 0.01  | 16*        | 8   | < 0.01  |
| adder8     | 77               | 3     | 17  | 371*         | 33 | -     | -   | 371*  | 33  | < 0.01  | 371*       | 33  | < 0.01  |
| counter16  | 29               | 4     | 9   | 65*          | 17 | 66    | 17  | 65*   | 17  | < 0.01  | 65*        | 17  | < 0.01  |
| counter32  | 82               | 4     | 13  | 154*         | 23 | 156   | 23  | 154*  | 23  | < 0.01  | 154*       | 23  | < 0.01  |
| counter64  | 195              | 4     | 17  | 347*         | 30 | 351   | 30  | 347*  | 30  | < 0.01  | 347*       | 30  | < 0.01  |
| counter128 | 428              | 4     | 22  | 747*         | 38 | 755   | 38  | 747*  | 38  | 0.01    | 747*       | 38  | 0.01    |
| sorter32   | 480              | 2     | 15  | 480*         | 30 | -     | -   | 480*  | 30  | < 0.01  | 480*       | 30  | < 0.01  |
| sorter48   | 880              | 3     | 20  | 880*         | 35 | -     | -   | 880*  | 35  | 0.01    | 880*       | 35  | 0.01    |
| mult8      | 439              | 9     | 35  | -            | _  | 1681  | 70  | 1709  | 70  | 0.05    | 1680       | 70  | 0.04    |
| c17        | 6                | 2     | 3   | 12*          | 5  | -     | -   | 12*   | 5   | < 0.01  | 12*        | 5   | < 0.01  |
| c432       | 121              | 10    | 26  |              | -  | 829   | 37  | 839   | 37  | 0.01    | 829        | 37  | < 0.01  |
| c499       | 387              | 8     | 18  | -            | -  | 1173  | 29  | 1173  | 29  | 0.03    | 1177       | 29  | 0.01    |
| c880       | 306              | 9     | 27  | -            | -  | 1536  | 40  | 1511  | 40  | 0.07    | 1517       | 40  | 0.03    |
| c1355      | 389              | 9     | 18  | -            | -  | 1186  | 29  | 1184  | 29  | 0.03    | 1182       | 29  | 0.02    |
| c1908      | 289              | 14    | 21  | -            | -  | 1253  | 34  | 1236  | 34  | 0.04    | 1236       | 34  | 0.01    |
| c2670      | 368              | 32    | 21  | -            | -  | 1869  | 28  | 1940  | 28  | 0.07    | 1914       | 28  | 0.03    |
| c3540      | 794              | 38    | 32  | -            | -  | 1963  | 52  | 1966  | 52  | 0.11    | 1993       | 52  | 0.11    |
| c5315      | 1302             | 41    | 26  | -            | -  | 5505  | 40  | 5635  | 40  | 0.32    | 5584       | 40  | 0.16    |
| c6288      | 1870             | 17    | 89  | -            | -  | 8832  | 179 | 9009  | 179 | 0.2     | 8632       | 179 | 0.18    |
| c7552      | 1394             | 170   | 33  | -            | -  | 6768  | 58  | 7832  | 56  | 0.66    | 6614       | 56  | 0.42    |
| alu32      | 1513             | 128   | 100 | -            | -  | 13976 | 169 | 13842 | 169 | 0.59    | 13804      | 169 | 0.65    |

Compare to [2] (8 better, 3 worse)

| Panahmark  | Original Circuit |        |     | Opt from [1] |    | [3]   |     |       | [2] |         | Our method |     |         |
|------------|------------------|--------|-----|--------------|----|-------|-----|-------|-----|---------|------------|-----|---------|
| Deneminark | Gates            | max LO | D   | #B/S         | D' | #B/S  | D'  | #B/S  | D'  | Time(s) | #B/S       | D'  | Time(s) |
| adder1     | 7                | 2      | 4   | 16*          | 8  | -     |     | 16*   | 8   | < 0.01  | 16*        | 8   | < 0.01  |
| adder8     | 77               | 3      | 17  | 371*         | 33 | -     | -   | 371*  | 33  | < 0.01  | 371*       | 33  | < 0.01  |
| counter16  | 29               | 4      | 9   | 65*          | 17 | 66    | 17  | 65*   | 17  | < 0.01  | 65*        | 17  | < 0.01  |
| counter32  | 82               | 4      | 13  | 154*         | 23 | 156   | 23  | 154*  | 23  | < 0.01  | 154*       | 23  | < 0.01  |
| counter64  | 195              | 4      | 17  | 347*         | 30 | 351   | 30  | 347*  | 30  | < 0.01  | 347*       | 30  | < 0.01  |
| counter128 | 428              | 4      | 22  | 747*         | 38 | 755   | 38  | 747*  | 38  | 0.01    | 747*       | 38  | 0.01    |
| sorter32   | 480              | 2      | 15  | 480*         | 30 | -     | -   | 480*  | 30  | < 0.01  | 480*       | 30  | < 0.01  |
| sorter48   | 880              | 3      | 20  | 880*         | 35 | -     | -   | 880*  | 35  | 0.01    | 880*       | 35  | 0.01    |
| mult8      | 439              | 9      | 35  | -            | _  | 1681  | 70  | 1709  | 70  | 0.05    | 1680       | 70  | 0.04    |
| c17        | 6                | 2      | 3   | 12*          | 5  | -     | -   | 12*   | 5   | < 0.01  | 12*        | 5   | < 0.01  |
| c432       | 121              | 10     | 26  | -            | -  | 829   | 37  | 839   | 37  | 0.01    | 829        | 37  | < 0.01  |
| c499       | 387              | 8      | 18  | -            | -  | 1173  | 29  | 1173  | 29  | 0.03    | 1177       | 29  | 0.01    |
| c880       | 306              | 9      | 27  | -            | -  | 1536  | 40  | 1511  | 40  | 0.07    | 1517       | 40  | 0.03    |
| c1355      | 389              | 9      | 18  | -            | -  | 1186  | 29  | 1184  | 29  | 0.03    | 1182       | 29  | 0.02    |
| c1908      | 289              | 14     | 21  | -            | -  | 1253  | 34  | 1236  | 34  | 0.04    | 1236       | 34  | 0.01    |
| c2670      | 368              | 32     | 21  |              | -  | 1869  | 28  | 1940  | 28  | 0.07    | 1914       | 28  | 0.03    |
| c3540      | 794              | 38     | 32  | -            | -  | 1963  | 52  | 1966  | 52  | 0.11    | 1993       | 52  | 0.11    |
| c5315      | 1302             | 41     | 26  | -            | -  | 5505  | 40  | 5635  | 40  | 0.32    | 5584       | 40  | 0.16    |
| c6288      | 1870             | 17     | 89  | -            | -  | 8832  | 179 | 9009  | 179 | 0.2     | 8632       | 179 | 0.18    |
| c7552      | 1394             | 170    | 33  | -            | -  | 6768  | 58  | 7832  | 56  | 0.66    | 6614       | 56  | 0.42    |
| alu32      | 1513             | 128    | 100 | -            | -  | 13976 | 169 | 13842 | 169 | 0.59    | 13804      | 169 | 0.65    |

# Conclusion

- For optimizing the buffer and splitter insertion problem in AQFP circuits, we proposed
  - 1) Movement methods
  - 2) Level perturbation methods
- Compared to state of the art [2] and [3], our method obtained better results with less runtime in most of the benchmarks

# Experimental Results in Large Benchmarks

➢ Benchmarks with number of logic gates range from 4000 ∼ 130000

|            | Initial |       |            | [2]     |       |          | Ou      | r Method | Improvement |        |               |
|------------|---------|-------|------------|---------|-------|----------|---------|----------|-------------|--------|---------------|
| Benchmark  | #gates  | depth |            | #B/S    | depth | time (s) | #B/S    | depth    | time (s)    | #B/S   | time          |
| sin        | 4303    | 110   |            | 14783   | 188   | 2.43     | 14685   | 188      | 1.02        | 0.66%  | 58.02%        |
| arbiter    | 7000    | 59    |            | 25725   | 63    | 0.75     | 25731   | 63       | 2           | -0.02% | -166.67%      |
| voter      | 7860    | 47    |            | 15736   | 86    | 0.5      | 15810   | 86       | 0.67        | -0.47% | -34.00%       |
| square     | 12180   | 126   |            | 63087   | 251   | 10.6     | 65602   | 251      | 6.8         | -3.99% | 35.85%        |
| multiplier | 19710   | 133   |            | 61714   | 264   | 43.76    | 65420   | 264      | 10.99       | -6.01% | 74.89%        |
| log2       | 24456   | 200   |            | 84440   | 379   | 48.76    | 84215   | 379      | 32.83       | 0.27%  | 32.67%        |
| mem_ctrl   | 42758   | 73    |            | 213463  | 114   | 95.78    | 185443  | 114      | 38.68       | 13.13% | 59.62%        |
| sqrt       | 23238   | 3366  |            | 1323854 | 6628  | 890.73   | 1317608 | 6628     | 34.03       | 0.47%  | 96.18%        |
| div        | 57300   | 2217  |            | 1617032 | 4371  | 2190.5   | 1373661 | 4371     | 102.68      | 15.05% | 95.31%        |
| hyp        | 136109  | 8762  |            | 5596808 | 17246 | 2610     | 5479479 | 17246    | 402.91      | 2.10%  | 84.56%        |
|            |         |       | <u>AVG</u> |         |       |          |         |          |             | 2.12%  | <u>33.64%</u> |

#### **Different Minimum Branching Trees**

Hard to predict which one is more helpful for movements

![](_page_42_Picture_2.jpeg)

minimum branching tree B

minimum branching tree A

# Buffer Integration in Backward Movement

Using more splitters would decrease the movability of gates

![](_page_43_Figure_2.jpeg)