
Optimization for Buffer and Splitter Insertion in
AQFP Circuits with Local and Group Movement

Bing-Huan Wu, Wai-Kei Mak
National Tsing Hua University

Outline

Ø AQFP Circuit

Ø Problem Formulation

Ø Optimization Methods

Ø Overall Flow

Ø Experimental Results

Ø Conclusion

AQFP Circuit

Ø A𝑑𝑖𝑎𝑏𝑎𝑡𝑖𝑐 𝑞𝑢𝑎𝑛𝑡𝑢𝑚-𝑓𝑙𝑢𝑥 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑜𝑛 (AQFP) is a superconducting technology

with extremely low power consumption compared to traditional CMOS technology

Ø Special constraints

1) Fanout branching: each logic gate and buffer can only drive one output, and each splitter can

drive multiple outputs no more than the given splitting capacity sp

2) Path balancing: for each node, its input values must be released by nodes at its previous level

Ø Assumptions

1) Primary inputs (PIs) are aligned at the same level

2) Primary outputs (POs) are aligned at the same level

3) PIs should satisfy the fanout branching constraint

AQFP Circuit

Ø Example (a netlist we want to convert to an legal AQFP circuit)

o1

o2
g1

g3
i1

i2 g2

g4

i3

AQFP Circuit

Ø Example (solving fanout branching constraint, assume sp = 2)

o1

o2

g3

g2

g4

i3

i1
g1 g1

i1

i2i2

AQFP Circuit

Ø Example (solving fanout branching constraint, assume sp = 2)

o1

o2

g3

g2

g4

i3

S S

S

Sg1

i1

i2

AQFP Circuit

Ø Example (PI alignment and PO alignment)

g3

g2

g4

S S

S

S

i1

i2

g1
o1

o2

i3

i2

i3

1 4 650 2 3

AQFP Circuit

Ø Example (solving path balancing constraint)

g3

g2

g4

S S

S

Sg1

1 4 650 2 3

i1 o1

o2
i2

i3

B B

B
B

B
B

B B B

Problem Formulation

Ø Input

1) A netlist 𝑁

2) Splitting capacity sp

Ø Output

• An AQFP circuit 𝐶 which exhibits the same functionality as 𝑁 and satisfies all the constraints

and assumptions

Ø Target

• Minimize the cost (number of inserted buffers and splitters) of the output circuit

Optimization Methods

Ø Backward Movement Optimization

• Backward Group Movement

• Input Modifying Backward Movement

Ø Forward Movement Optimization

• Forward Group Movement

• Buffer Integrating Forward Movement

Ø Level Perturbation

• Flexibility-driven Branching Tree

• Forced Movement

• Fanout-pair Level Adjustment

Backward Group Movement

Ø A 𝑔𝑟𝑜𝑢𝑝 is a set of gate(s) and splitter(s) which form a connected subgraph in an AQFP

circuit

S S

S

S

B B

B
B

B

B B

B

B

the set of the red nodes is a group

the set of the brown nodes is NOT a group

move

Backward Group Movement

Ø In backward movement optimization, we want to move logic gates backward for

reducing the number of buffers

4 52 3

B

B

B

4 52 3

B

Backward Group Movement

Ø However, the movement of a gate 𝑔 may be blocked by other splitters, gates or

previously created groups
• Cluster 𝑔 and “the gates, the splitters, and the groups blocking 𝑔’s movement” into a new group,

and perform group movement

• Only the movement which do not increase the number of buffers will be accepted

• The method for deciding the order of the movements of gates is detailed in the paper

Backward Group Movement

S
B

B
B

B

B

B

B

8 96 75

Ø If we first try to move 𝑔1 backward

S
B

B
B

B

B

B

B

8 96 75

construct a new group

a group {𝑔1, 𝑆}𝑆 blocks the movement of 𝑔1

𝑔1

𝑔2

𝑔1

𝑔2

Backward Group Movement

S
B

B
B

B

B

B

8 96 75

Ø Try to move the group {𝑔1, 𝑆} backward, but the result will NOT be accepted

S
B

B

B

B

8 96 75

B

B

B

B

7 buffers

move the group backward, but
 results in cost increasing

𝑔1

𝑔2

𝑔1

𝑔2

B 8 buffers

Backward Group Movement

S
B

B
B

B

B

B

B

8 96 75

Ø Suppose we try to move 𝑔2 backward next, with the previously created group retained in the circuit

S
B

B
B

B

B

B

B

8 96 75

group merging

the group {𝑔1, S} blocks
 the movement of 𝑔2

a new group
{𝑔1,𝑔2, 𝑆}

𝑔1

𝑔2

𝑔1

𝑔2

a previously created
group {𝑔1, 𝑆}

Backward Group Movement

S
B

B
B

B

B

B

8 96 75

Ø Try to move the group {𝑔1, 𝑔2, 𝑆} backward, and the result will be accepted

S
B

B

8 96 75

B

B

B

B

B

move the group backward, and
 results in cost decreasing

𝑔1

𝑔2

𝑔1

𝑔2

7 buffers 6 buffers

Optimization Methods

Ø Backward Movement Optimization

• Backward group movement

• Input modifying backward movement

Ø Forward Movement Optimization

• Forward group movement

• Buffer integrating forward movement

Ø Level Perturbation

• Flexibility-driven branching tree

• Forced movement

• Fanout-pair level adjustment

Input Modifying Backward Movement

Ø Modify the input edge(s) of a gate so we can move it backward easier

modify the red
input edge of 𝑔B

B

𝑔

S1

8 96 75

S2

B

B

S2

𝑔B

S1

8 96 75

Input Modifying Backward Movement

Ø Modify the input edge(s) of a gate so we can move it backward easier

S1

move 𝑔 backward,
and the number of
buffers is reduced

B

B

S2

𝑔B

S1

B𝑔

8 96 75 8 96 75

S2

Optimization Methods

Ø Backward Movement Optimization

• Backward Group Movement

• Input Modifying Backward Movement

Ø Forward Movement Optimization

• Forward Group Movement

• Buffer Integrating Forward Movement

Ø Level Perturbation

• Flexibility-driven Branching Tree

• Forced Movement

• Fanout-pair Level Adjustment

Forward Group Movement

Ø Use similar rules in “backward group movement” to construct groups and move

them forward

Optimization Methods

Ø Backward Movement Optimization

• Backward Group Movement

• Input Modifying Backward Movement

Ø Forward Movement Optimization

• Forward Group Movement

• Buffer Integrating Forward Movement

Ø Level Perturbation

• Flexibility-driven Branching Tree

• Forced Movement

• Fanout-pair Level Adjustment

Buffer Integrating Forward Movement
Ø Move groups without splitters forward, and try to integrate buffers into less splitters if possible

B

B B
S1

S2

g1

g2

B B

B B
S1

S2

B

B
g2

B B

B

g3

move group
{𝑔1, 𝑔2, 𝑔3} forward

g3g1

7 buffers and splitters 10 buffers and splitters
B

Buffer Integrating Forward Movement

B

B
S1

S2

S

S

integrate buffers
 into splitters

B

B B
S1

S2

B

B

B

B

B g2

g3g1

g2

g3g1

Ø Move groups without splitters forward, and try to integrate buffers into less splitters if possible

10 buffers and splitters 6 buffers and splitters

Optimization Methods

Ø Backward Movement Optimization

• Backward Group Movement

• Input Modifying Backward Movement

Ø Forward Movement Optimization

• Forward Group Movement

• Buffer Integrating Forward Movement

Ø Level Perturbation

• Flexibility-driven Branching Tree

• Forced Movement

• Fanout-pair Level Adjustment

Flexibility-driven Branching Tree

Ø A branching tree of a gate or PI 𝑔 is a set of nodes containing

1) 𝑔

2) the gates and POs that 𝑔 passes its output signal to

3) the buffers and splitters between (1) and (2)

Ø Minimum branching tree

• Advantage: requires the least number of buffers and splitters

• Disadvantage: the movement flexibility of gates is lower

Flexibility-driven Branching Tree

Ø The minimum branching tree of 𝑖1
• The movement of g4 is blocked by a splitter

S

S

S

g1

g2

g3

g4

𝑖1‘s minimum branching tree

B

S

g1

B

g3

g4

g2
i1

BBi2

Flexibility-driven Branching Tree

Ø Flexibility-driven branching tree

• Advantage: the movement flexibility of gates is higher

• Disadvantage: use as many buffers as possible (higher cost)

Flexibility-driven Branching Tree

Ø The flexibility-driven branching tree of 𝑖1
• The movement of g4 is NOT blocked by any gate or splitter

S

g1

g2

g3

g4

B

S

g1

B

B

B

B

B

B

g3

g4

g2
i1

𝑖1‘s flexibility-driven branching tree

BBi2

Optimization Methods

Ø Backward Movement Optimization

• Backward Group Movement

• Input Modifying Backward Movement

Ø Forward Movement Optimization

• Forward Group Movement

• Buffer Integrating Forward Movement

Ø Level Perturbation

• Flexibility-driven Branching Tree

• Forced Movement

• Fanout-pair Level Adjustment

Forced Movement

Ø Force a gate to be moved backward one level, and resolve the created violations

B

S
S

B

i1

g1
g2

g3

g4

g6

g7

S

B

B

g5B

B

S g5

S

Forced Movement

Ø Force a gate to be moved backward one level, and resolve the created violations

B

S
S

B

i1

g1

g3

g4

g6

g7

B

B

B

S g5

g2

S

g2

Optimization Methods

Ø Backward Movement Optimization

• Backward Group Movement

• Input Modifying Backward Movement

Ø Forward Movement Optimization

• Forward Group Movement

• Buffer Integrating Forward Movement

Ø Level Perturbation

• Flexibility-driven Branching Tree

• Forced Movement

• Fanout-pair Level Adjustment

Fanout-pair Level Adjustment

Ø For gates 𝑠 and 𝑙 in the same branching tree (assume 𝑠 is at a smaller level than

that of 𝑙), move 𝑠 forward one level and move 𝑙	 backward one level, then resolve

the created violations

Bg1i1 S

S

B

B

𝑠

𝑙

S S

B𝑙

B 𝑠

g2

the movement of g2 is
blocked before adjustment
the movement of g2 is NOT
blocked after adjustment

Overall Flow
input 𝑵, 𝒔𝒑

construct AQFP circuit 𝐶

backward group movement

input modifying backward movement

Y

minimum branching tree reconstruction

improving?

forward group movement

buffer integrating forward movement

Y

minimum branching tree reconstruction

improving?

improving?

level perturbation output 𝑪Y N

N

N

Backward Movement Optimization

Forward Movement Optimization

Experimental Results
Ø Compare to state-of-the-art methods

• A Global Optimization Algorithm for Buffer and Splitter Insertion in Adiabatic Quantum-

Flux-Parametron Circuits [3]

1) Use integer linear programming-based method to decide logic gates levels

2) Use dynamic programming-based method to insert buffers and splitters

• Depth-Optimal Buffer and Splitter Insertion and Optimization in AQFP Circuits [2]

1) Obtained depth-optimal circuits

2) Use retiming-based method to move gates and splitters for cost reduction

Experimental Results
Ø Optimal solution

Experimental Results
Ø Compare to [3] (11 better, 4 worse)

Experimental Results
Ø Compare to [2] (8 better, 3 worse)

Conclusion

Ø For optimizing the buffer and splitter insertion problem in AQFP circuits, we

proposed

1) Movement methods

2) Level perturbation methods

Ø Compared to state of the art [2] and [3], our method obtained better results with

less runtime in most of the benchmarks

Experimental Results in Large Benchmarks
Ø Benchmarks with number of logic gates range from 4000 ~ 130000

Initial [2] Our Method Improvement

Benchmark #gates depth #B/S depth time (s) #B/S depth time (s) #B/S time

sin 4303 110 14783 188 2.43 14685 188 1.02 0.66% 58.02%

arbiter 7000 59 25725 63 0.75 25731 63 2 -0.02% -166.67%

voter 7860 47 15736 86 0.5 15810 86 0.67 -0.47% -34.00%

square 12180 126 63087 251 10.6 65602 251 6.8 -3.99% 35.85%

multiplier 19710 133 61714 264 43.76 65420 264 10.99 -6.01% 74.89%

log2 24456 200 84440 379 48.76 84215 379 32.83 0.27% 32.67%

mem_ctrl 42758 73 213463 114 95.78 185443 114 38.68 13.13% 59.62%

sqrt 23238 3366 1323854 6628 890.73 1317608 6628 34.03 0.47% 96.18%

div 57300 2217 1617032 4371 2190.5 1373661 4371 102.68 15.05% 95.31%

hyp 136109 8762 5596808 17246 2610 5479479 17246 402.91 2.10% 84.56%

AVG 2.12% 33.64%

Different Minimum Branching Trees
Ø Hard to predict which one is more helpful for movements

S
S

g2

g3

g4

Sg1

B
S

S

g2

g3
Sg1

B

g4

minimum branching tree A minimum branching tree B

Buffer Integration in Backward Movement
Ø Using more splitters would decrease the movability of gates

S
B

B
B

B

B

B

4 52 31

S
B

B

B

B

4 52 31

B

B

B

B

7 buffers

move the group backward

𝑔1

𝑔2

𝑔1

𝑔2

B 8 buffers
a group {𝑔1, 𝑆}

S

6 buffers

𝑖1
𝑖1

