Qubit Mapping for Trapped-Ion Systems Using Satisfiability Modulo Theories

Wei-Hsiang Tseng, Yao-Wen Chang, and Jie-Hong Roland Jiang

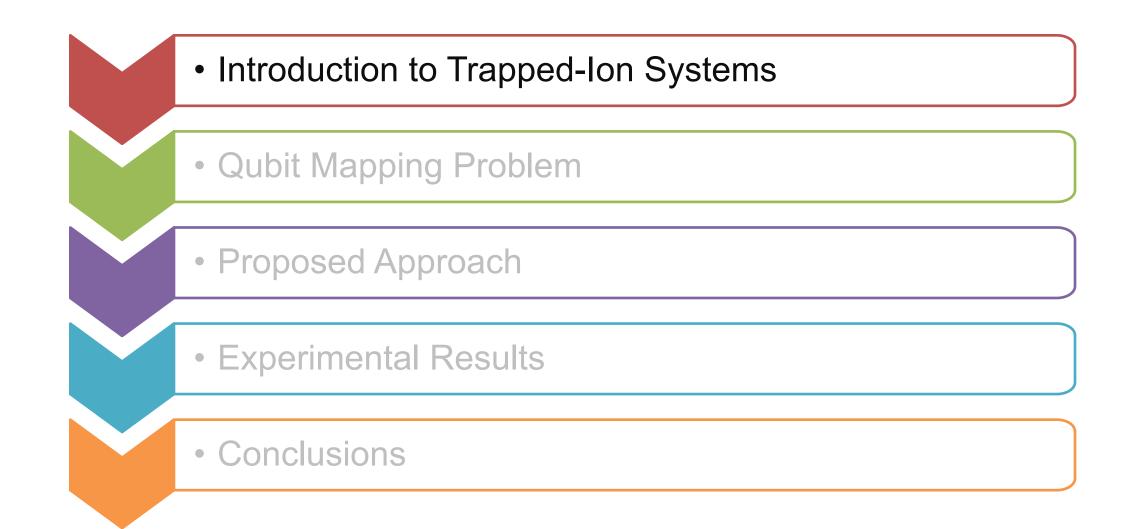
Graduate Institute of Electronics Engineering

National Taiwan University

Outline

 Introduction to Trapped-Ion Systems Qubit Mapping Problem Proposed Approach • Experimental Results Conclusions

Outline



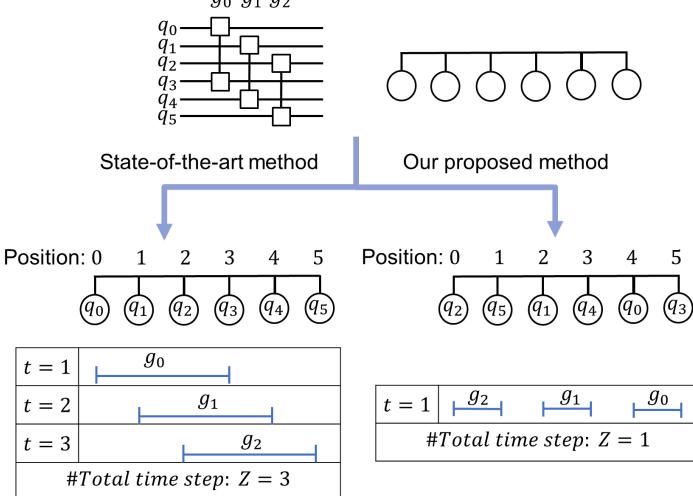
Quantum Computing

• Quantum computing

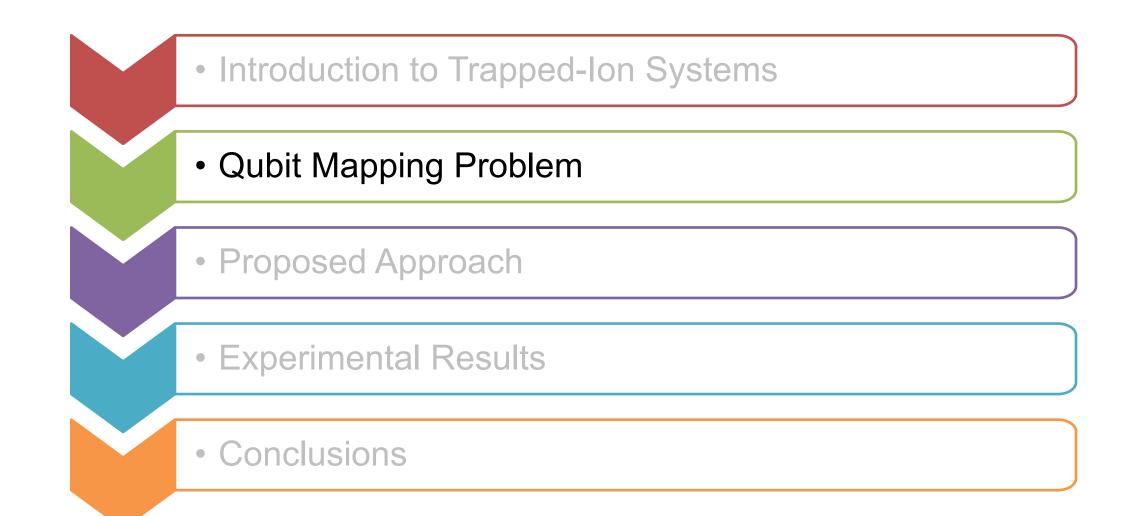
- Substantial speedup on several classes of problems that are considered intractable in classical computing
- Example: integer factorization (Shor's algorithm), unstructured database search (Grover's algorithm)
- Superconducting systems
 - Offer promising capabilities for realizing large-scale quantum processors with improved coherence and gate fidelity
 - Limit the connectivity bottleneck on these hardware architectures
- Trapped-ion systems
 - Have a relatively long coherence time and the ion qubits in an ion array are fully coupled

Motivation

- Not much work presents a mapping algorithm for 1D-array trapped-ion systems
 - Many studies focus on qubit mapping algorithms for Superconducting systems [Wu *et al.*, ICCAD22] $g_0 g_1 g_2$



Outline

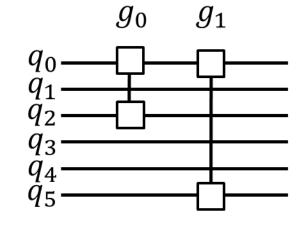


Trapped-Ion Architecture

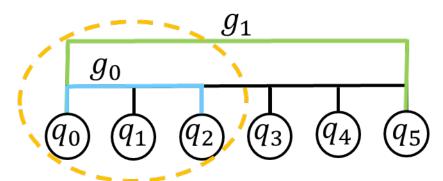
- Cirac-Zoller gate
 - First entangles two ions
 - Has significant limitations because it requires the ions to remain in the motional ground state
- Geometric-phase gate
 - Is insensitive to the initial ion motional state because the geometric-phase gate is achieved by applying specific phase transformations
 - Cannot be applied to all qubits
- Mølmer-Sørensen (MS) gate
 - Can be applied to ions not cooled to the motional ground state
 - Its motional states had to be disentangled for all values after the gate
 - Must consider the crosstalk effect

Coupling Constraint Graph

- Propose a new coupling constraint graph to avoid the crosstalk effect
 - Based on the Mølmer-Sørensen gate and its related hardware architecture
 - Maintain fidelity and facilitate the internal and motional disentanglement

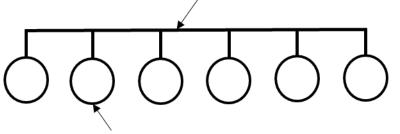


Crosstalk

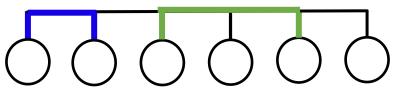


Overlap between g_0 and g_1

Channel (multiple-qubit net)

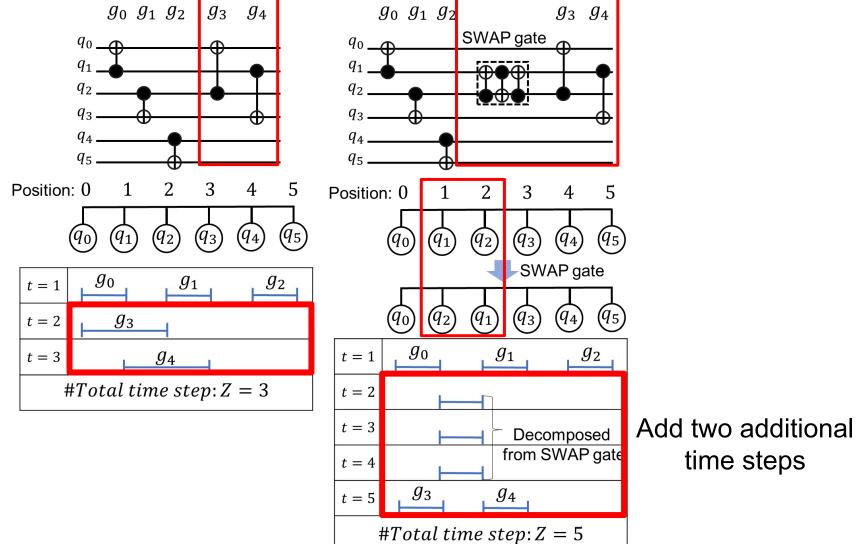


Physical qubit



Avoid two gates at overlapping positions

• Are unnecessary in trapped-ion systems, focusing on higher execution costs



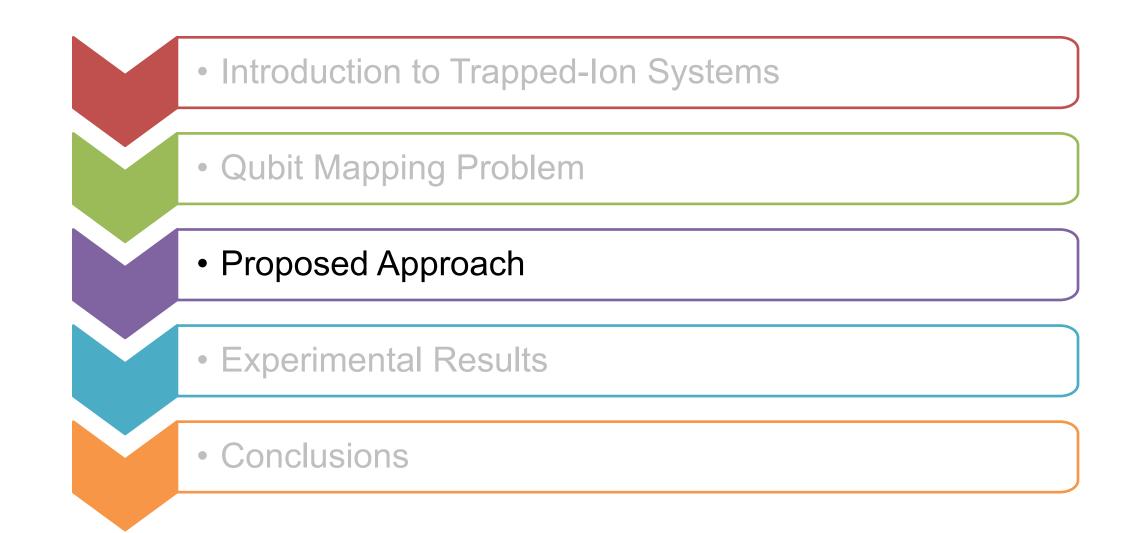
9

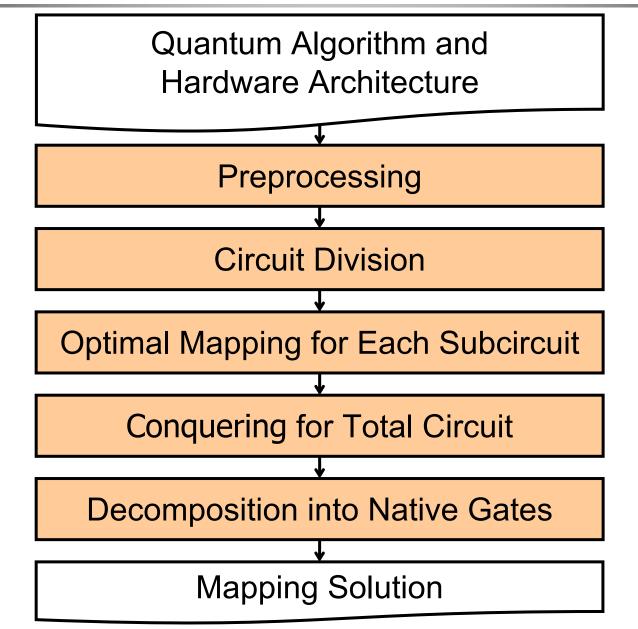
Problem Formulation

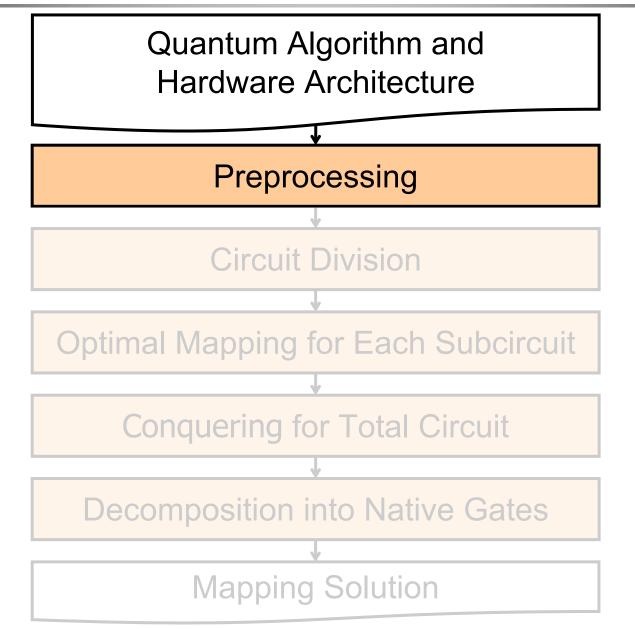
• Input

- A quantum circuit synthesized from a quantum algorithm
- A hardware architecture
- Output
 - A mapping solution
- Objectives
 - Minimize the number of total time steps
- Constraints
 - Coupling constraint graph (to avoid the crosstalk effect)

Outline



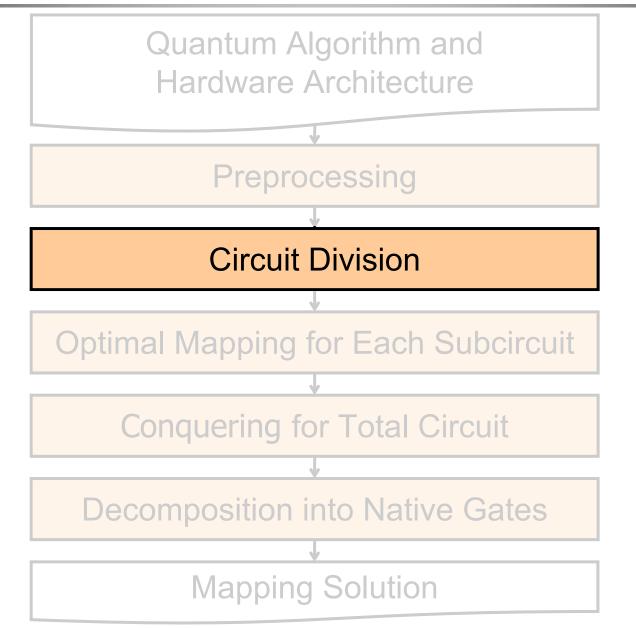




- Much work uses the left to right of gates on the circuit as their gate operating order $q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 \rightarrow q_4 \rightarrow q_5 \rightarrow q_6$ Gate operating order
- Decompose the multiple-qubit gates into the CNOT gates instead of a native gate circuit in this stage
 - Consider the commutativity of CNOT gates on the control side in the following stages

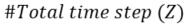
Control side:
$$y \rightarrow y$$

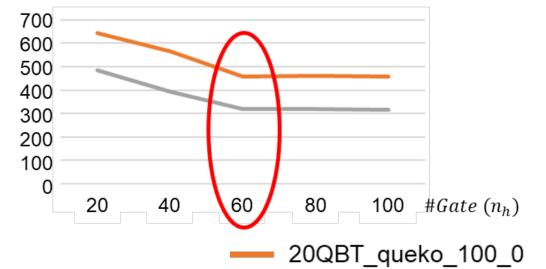
Target side: $x \rightarrow y \rightarrow y$

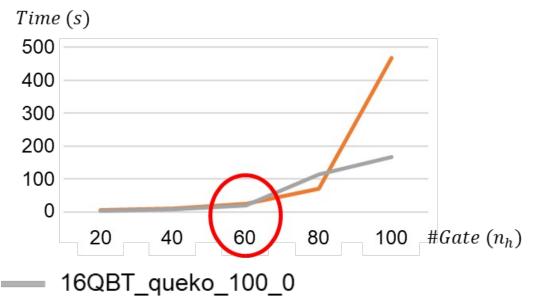


Circuit Division

- We introduce the parameter n_h to determine the necessity of circuit division
- If the number of two-qubit gates n_g in the decomposed circuit exceeds n_h — The circuit is divided into $[n_g/n_h]$ subcircuits
- Choosing an appropriate value for n_h involves a trade-off between solution quality and computation time

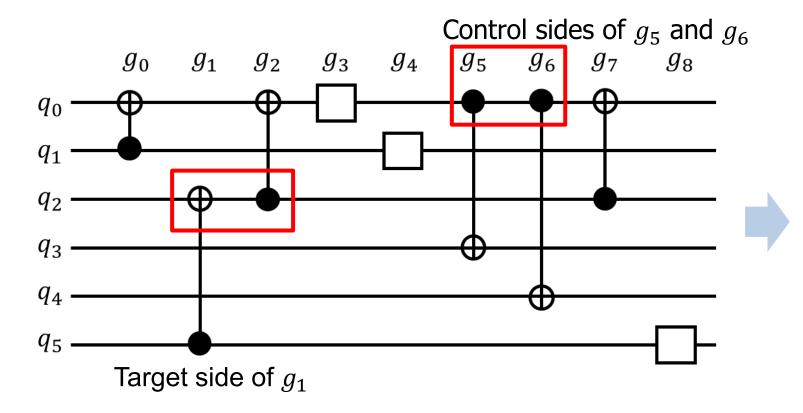




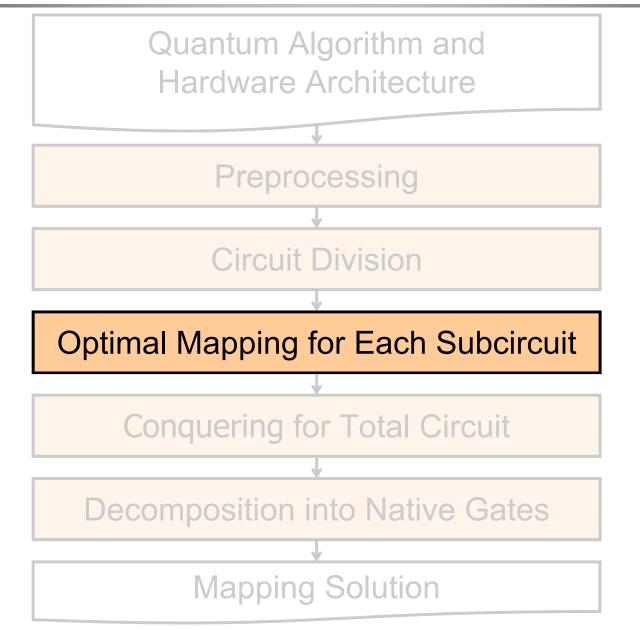


Gate Dependency Table Generation

- Focus on the operation location at the target side
- Consider the operation location of each single-qubit gate

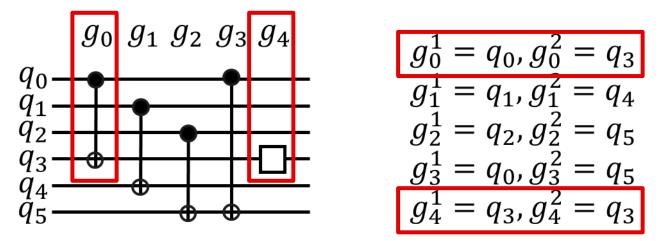


q_0	g_0	g_2	g_3	g_{5},g_{6}	g_7
q_1	g_0	g_4			
q_2	g_1	g_{2},g_{7}			
q_3	g_5				
q_4	g_6				
q_5	g_1	${g_8}$			



Satisfiability Modulo Theories

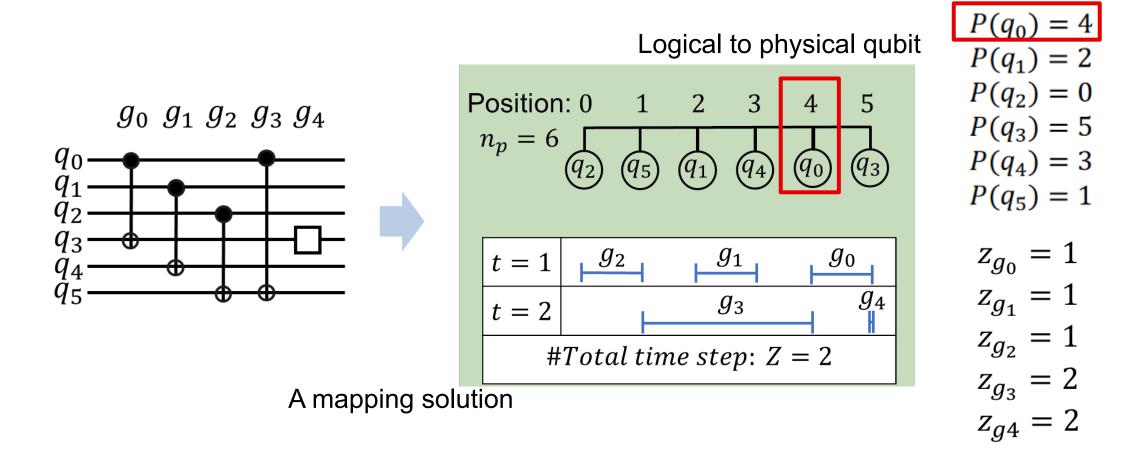
- Can check whether the model is satisfiable
 - Parameterize the quantum circuit and hardware architecture
 - Use variables to give the model constraints for ultimately capturing the integral hardware architecture
- Parameterize the quantum circuit
 - Use an example with four two-qubit gates and a single-qubit gate



- q_i : the *i*-th logical qubit in Q
- g_i : the *i*-th two-qubit gate
- g_i^k : the k-th logical qubit, operated by g_i

Parameterize Hardware Architecture

• Parametric quantum circuit mapping to the physical architecture



Goal: obtain the optimal mapping solution using SMT solver

Four SMT Constraints: 1st and 2nd Constraints

1. One-to-one mapping constraint: restricts one-to-one mapping between logical and physical qubits

 $P(q_i) \neq P(q_j), \forall q_i, q_j \in Q, i \neq j, \forall P(q_i) < n_p$

2. Operation order constraint: ensures that gates are operated in dependency order, thus maintaining the correctness of the circuit functionality

$$z_{g_i} < z_{g_j}, \forall g_i \mapsto g_j, \forall g_i, g_j \in D$$

- *Q*: a set of logical qubits q_i : the *i*-th logical qubit in *Q*
- G: a set of two-qubit gates g_i :
- g_i : the *i*-th two-qubit gate
- n_p : the number of physical qubits
- $P(q_i)$: the position of the physical qubit, mapped by q_i
 - z_{g_i} : the time step executing g_i
 - *D*: a gate dependency table
- $g_i \mapsto g_j$: g_i has to precede g_j

Four SMT Constraints: 3rd Constraint (Non-Overlap Case)

3. Crosstalk avoidance constraint: prevents the occurrence of severe crosstalk effects during gate operations

$$\begin{split} & \bigwedge_{k,l \in [1,2]} P(g_{i}^{k}) > P(g_{j}^{l}) \parallel \bigwedge_{k,l \in [1,2]} P(g_{i}^{k}) < P(g_{j}^{l}) \parallel z_{g_{i}} \neq z_{g_{j}}, \forall g_{i}, g_{j} \in G. \end{split}$$
Position: 0
$$\begin{array}{c} 1 & 2 & 3 & 4 & 5 \\ \hline g_{j} & g_{j}^{*} & g_{i}^{*} & g_{j}^{*} \\ \hline f = 1 & g_{j}^{*} & g_{i}^{*} \\ \hline \# Total time step: Z = 1 \\ \end{array}$$
P(g_{i}^{1}) > P(g_{j}^{1}), P(g_{i}^{1}) > P(g_{j}^{2}) \\ P(g_{i}^{2}) > P(g_{j}^{1}), P(g_{i}^{2}) > P(g_{j}^{2}) \\ \end{array}
P(g_{i}^{1}) < P(g_{j}^{1}), P(g_{i}^{2}) > P(g_{j}^{2}) \\ P(g_{i}^{2}) < P(g_{j}^{1}), P(g_{i}^{2}) < P(g_{j}^{2}) \\ \end{array}
P(g_{i}^{1}) < P(g_{j}^{1}), P(g_{i}^{2}) < P(g_{j}^{2}) \\ P(g_{i}^{2}) < P(g_{j}^{1}), P(g_{i}^{2}) < P(g_{j}^{2}) \\ \end{array}
P(g_{i}^{1}) < P(g_{j}^{1}), P(g_{i}^{2}) < P(g_{j}^{2}) \\ P(g_{i}^{2}) < P(g_{j}^{1}), P(g_{i}^{2}) < P(g_{j}^{2}) \\ \end{array}
P(g_{i}^{1}) < P(g_{j}^{1}), P(g_{i}^{2}) < P(g_{j}^{2}) \\ \end{array}

Both endpoints of g_i must be greater (less) than both endpoints of g_j

Four SMT Constraints: 3rd Constraint (Overlap Case)

• If the operation positions of g_i and g_j overlap, they must be operated in different time steps

$$\sum_{k,l \in [1,2]} P(g_i^k) > P(g_j^l) \parallel \sum_{k,l \in [1,2]} P(g_i^k) < P(g_j^l) \parallel z_{g_i} \neq z_{g_j}, \forall g_i, g_j \in G.$$

$$Position: 0 \ 1 \ 2 \ 3 \ 4 \ 5 \\ g_i^j \ g_j^j \ g_i^j \ g_j^j \ g_j^j$$

One endpoint of g_i is outside g_j The other endpoint is inside g_j

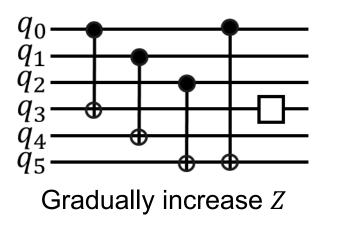
Both endpoints of g_j are inside g_i

Four SMT Constraints: 4th Constraint

- 4. Total time step constraint: constraints all time steps of implementing gates smaller than the given *Z*
 - If the model is satisfied, it represents the desired mapping solution
 - Gradually increase Z until a satisfying model is obtained
 - Can obtain the optimal mapping solution for a medium-scale circuit or a subcircuit

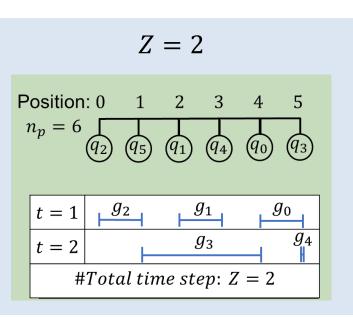
$$\forall z_{g_i} \leq Z, \forall g_i \in G$$

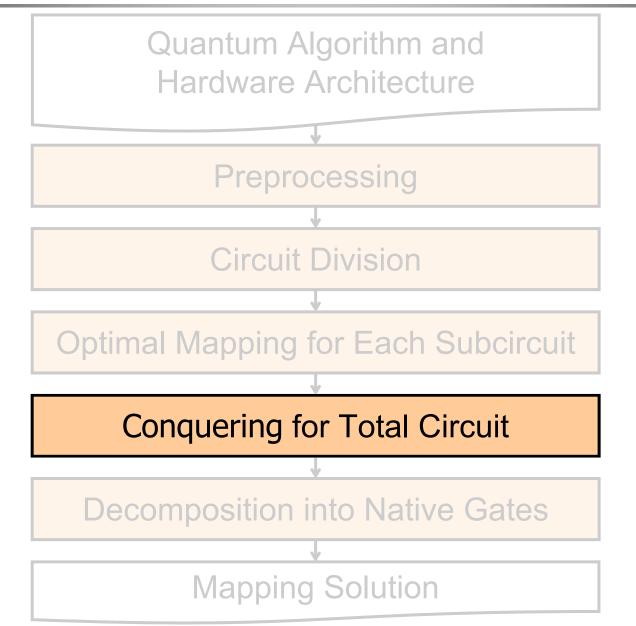
 $g_0 \ g_1 \ g_2 \ g_3 \ g_4$



Z = 1

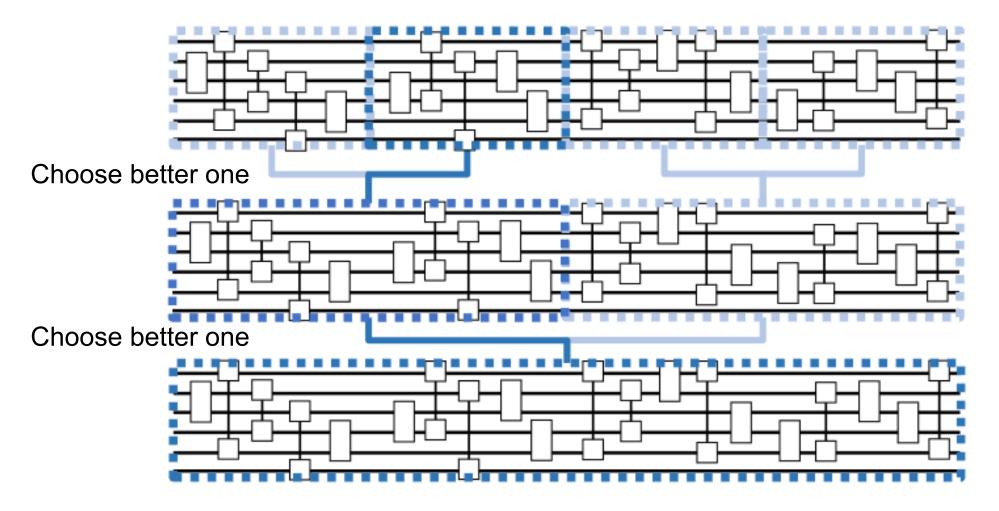
SMT solver: Unsat

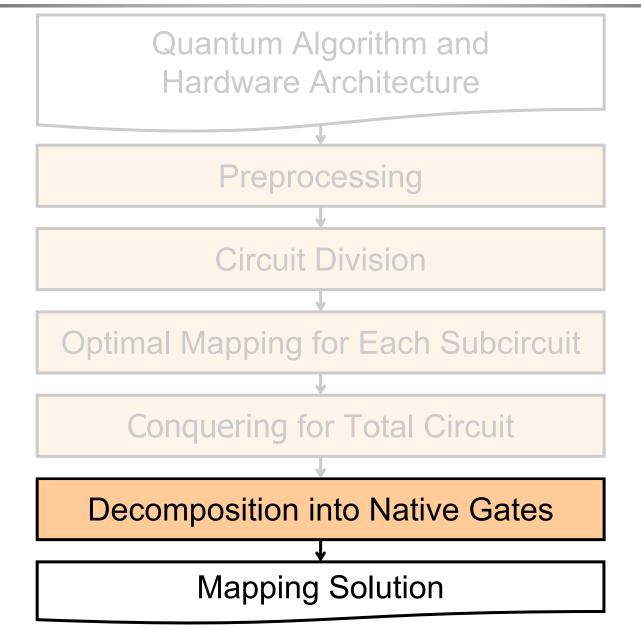




Conquering for the Total Circuit

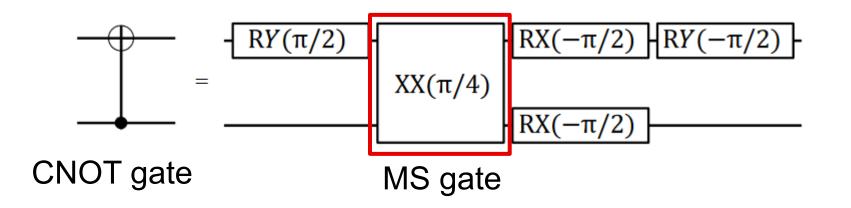
- After performing the SMT-based qubit mapping algorithm
 - Must conquer all results to reconstruct the entire circuit for the large-scale circuits



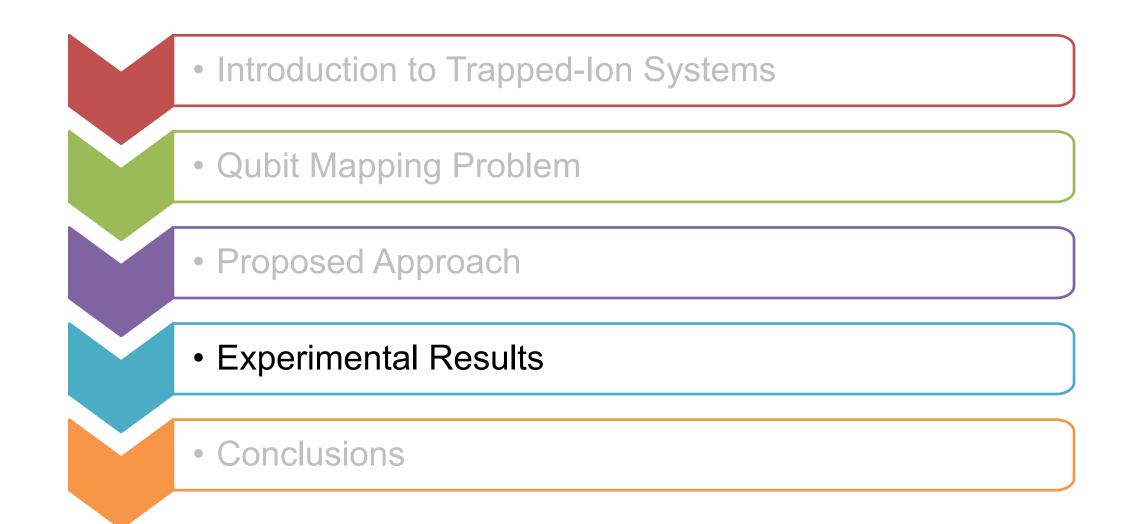


Decomposition into Native Gates

 Convert the CNOT gates into native gates (MS gates) to enable the execution of the circuit composed of single-qubit gates and MS gates by the trapped-ion hardware architecture



Outline



Experimental Settings

Large-scale benchmarks

• Platform

- C++/Linux workstation with 64-core 2.9 GHz AMD Ryzen CPU with 125 GB memory
- Benchmarks [Wu et al., ICCAD22]

Benchmark	#Qubits	#Gate _s	#Gate _f	
or	3	17	41	
adder	4	23	63	
qaoa5	5	22	54	
Mod5mils_65	5	36	99	
queko_05_0	16	37	97	
queko_10_3	16	73	189	
tof_4	7	55	143	

Medium-scale benchmarks

Benchmark	#Qubits	#Gate _s	#Gate _f
queko_15_1	16	109	285
barenco_tof_4	7	72	208
tof_5	9	75	195
barenco_tof_5	9	104	304
mod_mult_55	9	91	251
vbe_adder_3	10	89	289
4gt13_92	5	66	186
rc_adder_6	14	140	424
16QBT_queko_100_0	16	1136	2416
16QBT_queko_100_1	16	1136	2416
16QBT_queko_900_0	16	10224	21744
16QBT_queko_900_1	16	10224	21744
20QBT_queko_100_0	20	1420	3020
20QBT_queko_100_1	20	1420	3020
20QBT_queko_500_0	20	7100	15100
20QBT_queko_500_1	20	7100	15100
54QBT_queko_05_0	54	192	408
54QBT queko 05 1	54	192	408
54QBT_queko_900_0	54	34506	73386
54QBT queko 900 1	54	34506	73386

Comparison: Medium-Scale Benchmarks

- Compare ours with SMT-based method [Wu et al., ICCAD22]
 - 1.73X total time steps overhead than ours

Benchmark		ICCAD22	2	Ours			
Denchmark	Z	Ratio	Runtime (s)	Ζ	Ratio	Runtime (s)	
or	24	1.14	0.17	21	1.00	0.07	
adder	28	1.08	0.30	26	1.00	0.14	
qaoa5	35	2.19	0.37	16	1.00	0.11	
Mod5mils_65	53	1.33	0.99	40	1.00	6.17	
queko_05_0	32	1.78	0.25	18	1.00	0.20	
queko_10_3	68	2.83	1.60	24	1.00	4.09	
tof_4	104	1.79	5.01	58	1.00	1.52	
Avg. Ratio		1.73			1.00		

Comparison: Large-Scale Benchmarks

- Compare ours with SMT-based method [Wu et al., ICCAD22]
 - **1.82X** total time steps overhead than ours

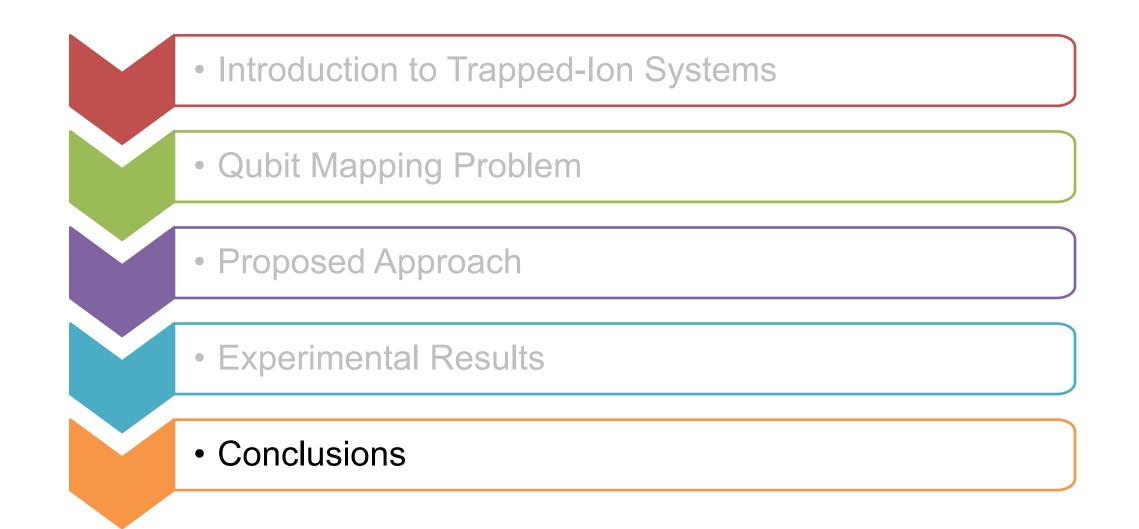
			ICCAD22			Ours							
							Benchmark	Z	Ratio	Runtime (s)	Z	Ratio	Runtime (s)
		CCAD2	2		Ours 1		16QBT_queko_100_0	712	2.24	11.79	318	1.00	18.54
Benchmark	Z	Ratio	Runtime	Z	Ratio	Runtime	16QBT_queko_100_1	708	2.07	11.90	342	1.00	16.39
			(s)			(s)	16QBT_queko_900_0	6156	2.10	107.35	2926	1.00	166.76
queko_15_1	99	2.11	1.50	47	1.00	1.68	16QBT queko 900 1	5305	1.81	106.53	2953	1.00	150.46
barenco_tof_4	157	1.80	3.61	87	1.00	0.55	20QBT queko 100 0	769	1.68	12.51	457	1.00	27.89
tof_5	141	2.35	3.15	60	1.00	0.33	20QBT_queko_100_0	856	1.72	12.88	499	1.00	27.30
barenco tof 5	221	2.33	9.43	95	1.00	2.20							
mod mult 55	132	1.63	3.36	81	1.00	2.35	20QBT_queko_500_0	3681	1.53	62.83	2403	1.00	225.30
vbe adder 3	143	1.59	4.28	90	1.00	2.08	20QBT_queko_500_1	3833	1.63	62.50	2377	1.00	259.04
	88	1.22	1.65	72	1.00	47.97	54QBT_queko_05_0	99	1.98	1.03	50	1.00	9.81
4gt13_92							54QBT queko 05 1	116	1.93	1.02	60	1.00	9.19
rc_adder_6	184	1.67	6.30	110	1.00	4.65	54QBT queko 900 0	18195	1.47	227.92	12375	1.00	1966.96
							54QBT queko 900 1	18035	1.56	227.01		1.00	1931.58
							Avg. Ratio		1.82			1.00	

Comparison: w/o and w/ Divide-and-Conquer Approach

- The results can only be generated by including the divide-and-conquer method (runtime limit of 3600 seconds)
- Our divide-and-conquer method achieves a 30.56x speedup with only a 3% average loss in solution quality
 - Achieves a 245.41x speedup on twenty large-scale benchmarks by the Penalized Average Runtime PAR-2 score

Banahmark	w/o divi	de-and-o	conquer ap	oproach	w/ divide-and-conquer approach				
Benchmark	Z	Ratio	Runtime (s)	Ratio	Ζ	Ratio	Runtime (s)	Ratio	
queko_15_1	45	0.96	48.95	29.14	47	1.00	1.68	1.00	
barenco_tof_4	87	1.00	13.24	23.99	87	1.00	0.55	1.00	
tof_5	58	0.97	3.87	11.72	60	1.00	0.33	1.00	
barenco_tof_5	95	1.00	165.17	75.18	95	1.00	2.20	1.00	
mod_mult_55	74	0.91	87.69	37.28	81	1.00	2.35	1.00	
vbe adder 3	90	1.00	12.61	6.08	90	1.00	2.08	1.00	
Avg. Ratio		0.97		30.56		1.00		1.00	

Outline



Conclusions

- We propose a new coupling constraint graph with a multiple-qubit net based on the Mølmer-Sørensen gate and its related hardware architecture
 - Maintain the fidelity of the quantum circuit
 - Mitigate the occurrence of crosstalk effects
- We present an SMT-based qubit mapping algorithm to find an optimal qubitmapping solution for medium-scale problems on the trapped-ion systems
- We present an effective divide-and-conquer method to scale our algorithm and maintain the quality of the SMT solutions for large-scale problems
- Experimental results have shown the effectiveness of our algorithm compared with the state-of-the-art work
 - Achieve an average 44% total time steps reduction for all benchmarks

Thank You! National Taiwan University