
1

Qubit Mapping for Trapped-Ion Systems Using
Satisfiability Modulo Theories

Wei-Hsiang Tseng, Yao-Wen Chang, and Jie-Hong Roland Jiang

Graduate Institute of Electronics Engineering
National Taiwan University

2

Outline

• Introduction to Trapped-Ion Systems

• Qubit Mapping Problem

• Proposed Approach

• Experimental Results

• Conclusions

3

Outline

• Introduction to Trapped-Ion Systems

• Qubit Mapping Problem

• Proposed Approach

• Experimental Results

• Conclusions

4

Quantum Computing
● Quantum computing

¾ Substantial speedup on several classes of problems that are considered intractable in
classical computing

¾ Example: integer factorization (Shor’s algorithm), unstructured database search
(Grover’s algorithm)

● Superconducting systems
¾ Offer promising capabilities for realizing large-scale quantum processors with

improved coherence and gate fidelity
¾ Limit the connectivity bottleneck on these hardware architectures

● Trapped-ion systems
¾ Have a relatively long coherence time and the ion qubits in an ion array are fully

coupled

5

Motivation
● Not much work presents a mapping algorithm for 1D-array trapped-ion systems

¾ Many studies focus on qubit mapping algorithms for Superconducting systems [Wu et al.,
ICCAD22]

6

Outline

• Introduction to Trapped-Ion Systems

• Qubit Mapping Problem

• Proposed Approach

• Experimental Results

• Conclusions

7

Trapped-Ion Architecture
● Cirac-Zoller gate

¾ First entangles two ions
¾ Has significant limitations because it requires the ions to remain in the motional ground

state

● Geometric-phase gate
¾ Is insensitive to the initial ion motional state because the geometric-phase gate is

achieved by applying specific phase transformations
¾ Cannot be applied to all qubits

● Mølmer-Sørensen (MS) gate
¾ Can be applied to ions not cooled to the motional ground state
¾ Its motional states had to be disentangled for all values after the gate
¾ Must consider the crosstalk effect

8

Coupling Constraint Graph
● Propose a new coupling constraint graph to avoid the crosstalk effect

¾ Based on the Mølmer-Sørensen gate and its related hardware architecture
¾ Maintain fidelity and facilitate the internal and motional disentanglement

Overlap between 𝑔! and 𝑔"

Avoid two gates at overlapping positions

9

SWAP Gates
● Are unnecessary in trapped-ion systems, focusing on higher execution

costs

Add two additional
time steps

10

Problem Formulation
● Input

¾ A quantum circuit synthesized from a quantum algorithm
¾ A hardware architecture

● Output

¾ A mapping solution

● Objectives
¾ Minimize the number of total time steps

● Constraints
¾ Coupling constraint graph (to avoid the crosstalk effect)

11

Outline

• Introduction to Trapped-Ion Systems

• Qubit Mapping Problem

• Proposed Approach

• Experimental Results

• Conclusions

12

Algorithm Flow

Circuit Division

Quantum Algorithm and
Hardware Architecture

Conquering for Total Circuit

Mapping Solution

Preprocessing

Decomposition into Native Gates

Optimal Mapping for Each Subcircuit

13

Circuit Division

Quantum Algorithm and
Hardware Architecture

Conquering for Total Circuit

Mapping Solution

Preprocessing

Decomposition into Native Gates

Optimal Mapping for Each Subcircuit

Algorithm Flow

14

Preprocessing
● Much work uses the left to right of gates on the circuit as their gate

operating order

● Decompose the multiple-qubit gates into the CNOT gates instead of a
native gate circuit in this stage
¾ Consider the commutativity of CNOT gates on the control side in the following stages

Control side:
=𝑥 𝑥 ⊕ 𝑦

𝑦	 𝑦
𝑔" 𝑔# 𝑔#𝑔"

Target side:

Gate operating order

15

Circuit Division

Quantum Algorithm and
Hardware Architecture

Conquering for Total Circuit

Mapping Solution

Preprocessing

Decomposition into Native Gates

Optimal Mapping for Each Subcircuit

Algorithm Flow

16

Circuit Division
● We introduce the parameter 𝑛$ to determine the necessity of circuit division

● If the number of two-qubit gates 𝑛% in the decomposed circuit exceeds 𝑛$
¾ The circuit is divided into ⌈𝑛!/𝑛"⌉ subcircuits

● Choosing an appropriate value for 𝑛$ involves a trade-off between solution
quality and computation time

17

Gate Dependency Table Generation
● Focus on the operation location at the target side

● Consider the operation location of each single-qubit gate

Target side of 𝑔#

Control sides of 𝑔$ and 𝑔%

18

Circuit Division

Quantum Algorithm and
Hardware Architecture

Conquering for Total Circuit

Mapping Solution

Preprocessing

Decomposition into Native Gates

Optimal Mapping for Each Subcircuit

Algorithm Flow

19

Satisfiability Modulo Theories
● Can check whether the model is satisfiable

¾ Parameterize the quantum circuit and hardware architecture
¾ Use variables to give the model constraints for ultimately capturing the integral

hardware architecture

● Parameterize the quantum circuit
¾ Use an example with four two-qubit gates and a single-qubit gate

𝑞!: the 𝑖-th logical qubit in 𝑄
𝑔!: the 𝑖-th two-qubit gate

𝑔&': the 𝑘-th logical qubit, operated by 𝑔&

20

Parameterize Hardware Architecture
● Parametric quantum circuit mapping to the physical architecture

Goal: obtain the optimal mapping solution using SMT solver

Logical to physical qubit

A mapping solution

𝑔(

21

Four SMT Constraints: 𝟏𝒔𝒕 and 𝟐𝒏𝒅 Constraints

1. One-to-one mapping constraint: restricts one-to-one mapping between
logical and physical qubits

2. Operation order constraint: ensures that gates are operated in dependency
order, thus maintaining the correctness of the circuit functionality

𝑄: a set of logical qubits 𝑞&: the 𝑖-th logical qubit in 𝑄
𝐺: a set of two-qubit gates 𝑔&: the 𝑖-th two-qubit gate
𝑛): the number of physical qubits

𝑃(𝑞&): the position of the physical qubit, mapped by 𝑞&
𝑧!!: the time step executing 𝑔&
𝐷: a gate dependency table

𝑔& ↦ 𝑔*: 𝑔& has to precede 𝑔*

22

3. Crosstalk avoidance constraint: prevents the occurrence of severe
crosstalk effects during gate operations

Four SMT Constraints: 𝟑𝒓𝒅 Constraint (Non-Overlap Case)

𝑃(𝑔&#) < 𝑃 𝑔*# , 𝑃(𝑔&#) < 𝑃 𝑔*+

𝑃(𝑔&+) < 𝑃 𝑔*# , 𝑃(𝑔&+) < 𝑃 𝑔*+
𝑃(𝑔&#) > 𝑃 𝑔*# , 𝑃(𝑔&#) > 𝑃 𝑔*+

𝑃(𝑔&+) > 𝑃 𝑔*# , 𝑃(𝑔&+) > 𝑃 𝑔*+

5
',-∈[#,+]

𝑃(𝑔&') > 𝑃 𝑔*- ∥ 5
',-∈ #,+

𝑃(𝑔&') < 𝑃 𝑔*- ∥ 𝑧!! ≠ 𝑧!" , ∀𝑔&, 𝑔* ∈ 𝐺.

Both endpoints of 𝑔& must be greater (less) than both endpoints of 𝑔*

23

Four SMT Constraints: 𝟑𝒓𝒅 Constraint (Overlap Case)

● If the operation positions of 𝑔/ and 𝑔0 overlap, they must be operated in
different time steps

5
',-∈[#,+]

𝑃(𝑔&') > 𝑃 𝑔*- ∥ 5
',-∈ #,+

𝑃(𝑔&') < 𝑃 𝑔*- ∥ 𝑧!! ≠ 𝑧!" , ∀𝑔&, 𝑔* ∈ 𝐺.

𝑃(𝑔&#) < 𝑃 𝑔*# , 𝑃(𝑔&#) < 𝑃 𝑔*+

𝑃(𝑔*+) < 𝑃(𝑔&+) < 𝑃(𝑔*#)
𝑃(𝑔&#) < 𝑃 𝑔*# , 𝑃(𝑔&#) < 𝑃 𝑔*+

𝑃(𝑔&+) > 𝑃 𝑔*# , 𝑃(𝑔&+) > 𝑃 𝑔*+

One endpoint of 𝑔& is outside 𝑔*
The other endpoint is inside 𝑔*

Both endpoints of 𝑔* are inside 𝑔&

24

Four SMT Constraints: 𝟒𝒕𝒉 Constraint
4. Total time step constraint: constraints all time steps of implementing gates

smaller than the given 𝑍
¾ If the model is satisfied, it represents the desired mapping solution
¾ Gradually increase 𝑍 until a satisfying model is obtained
¾ Can obtain the optimal mapping solution for a medium-scale circuit or a subcircuit

∀𝑧%! ≤ 𝑍, ∀𝑔/ ∈ 𝐺.

𝑍 = 2𝑍 = 1

SMT solver:
Unsat

Gradually increase 𝑍

25

Algorithm Flow

Circuit Division

Quantum Algorithm and
Hardware Architecture

Conquering for Total Circuit

Mapping Solution

Preprocessing

Decomposition into Native Gates

Optimal Mapping for Each Subcircuit

26

Conquering for the Total Circuit
● After performing the SMT-based qubit mapping algorithm

¾ Must conquer all results to reconstruct the entire circuit for the large-scale circuits

Choose better one

Choose better one

27

Algorithm Flow

Circuit Division

Quantum Algorithm and
Hardware Architecture

Conquering for Total Circuit

Mapping Solution

Preprocessing

Decomposition into Native Gates

Optimal Mapping for Each Subcircuit

28

Decomposition into Native Gates
● Convert the CNOT gates into native gates (MS gates) to enable the

execution of the circuit composed of single-qubit gates and MS gates by the
trapped-ion hardware architecture

CNOT gate MS gate

29

Outline

• Introduction to Trapped-Ion Systems

• Qubit Mapping Problem

• Proposed Approach

• Experimental Results

• Conclusions

30

Experimental Settings
● Platform

¾ C++/Linux workstation with 64-core 2.9 GHz AMD Ryzen
CPU with 125 GB memory

● Benchmarks [Wu et al., ICCAD22]

Benchmark #Qubits #𝑮𝒂𝒕𝒆𝒔 #𝑮𝒂𝒕𝒆𝒇
or 3 17 41
adder 4 23 63
qaoa5 5 22 54
Mod5mils_65 5 36 99
queko_05_0 16 37 97
queko_10_3 16 73 189
tof_4 7 55 143

Benchmark #Qubits #𝑮𝒂𝒕𝒆𝒔 #𝑮𝒂𝒕𝒆𝒇
queko_15_1 16 109 285
barenco_tof_4 7 72 208
tof_5 9 75 195
barenco_tof_5 9 104 304
mod_mult_55 9 91 251
vbe_adder_3 10 89 289
4gt13_92 5 66 186
rc_adder_6 14 140 424
16QBT_queko_100_0 16 1136 2416
16QBT_queko_100_1 16 1136 2416
16QBT_queko_900_0 16 10224 21744
16QBT_queko_900_1 16 10224 21744
20QBT_queko_100_0 20 1420 3020
20QBT_queko_100_1 20 1420 3020
20QBT_queko_500_0 20 7100 15100
20QBT_queko_500_1 20 7100 15100
54QBT_queko_05_0 54 192 408
54QBT_queko_05_1 54 192 408
54QBT_queko_900_0 54 34506 73386
54QBT_queko_900_1 54 34506 73386

Medium-scale benchmarks

Large-scale benchmarks

31

Comparison: Medium-Scale Benchmarks
● Compare ours with SMT-based method [Wu et al., ICCAD22]

¾ 1.73X total time steps overhead than ours

Benchmark ICCAD22 Ours
𝒁 Ratio Runtime (s) 𝒁 Ratio Runtime (s)

or 24 1.14 0.17 21 1.00 0.07
adder 28 1.08 0.30 26 1.00 0.14
qaoa5 35 2.19 0.37 16 1.00 0.11
Mod5mils_65 53 1.33 0.99 40 1.00 6.17
queko_05_0 32 1.78 0.25 18 1.00 0.20
queko_10_3 68 2.83 1.60 24 1.00 4.09
tof_4 104 1.79 5.01 58 1.00 1.52
Avg. Ratio 1.73 1.00

32

Comparison: Large-Scale Benchmarks
● Compare ours with SMT-based method [Wu et al., ICCAD22]

¾ 1.82X total time steps overhead than ours

Benchmark
ICCAD22 Ours

𝒁 Ratio Runtime
(s) 𝒁 Ratio Runtime (s)

16QBT_queko_100_0 712 2.24 11.79 318 1.00 18.54
16QBT_queko_100_1 708 2.07 11.90 342 1.00 16.39
16QBT_queko_900_0 6156 2.10 107.35 2926 1.00 166.76
16QBT_queko_900_1 5305 1.81 106.53 2953 1.00 150.46
20QBT_queko_100_0 769 1.68 12.51 457 1.00 27.89
20QBT_queko_100_1 856 1.72 12.88 499 1.00 27.30
20QBT_queko_500_0 3681 1.53 62.83 2403 1.00 225.30
20QBT_queko_500_1 3833 1.63 62.50 2377 1.00 259.04
54QBT_queko_05_0 99 1.98 1.03 50 1.00 9.81
54QBT_queko_05_1 116 1.93 1.02 60 1.00 9.19
54QBT_queko_900_0 18195 1.47 227.92 12375 1.00 1966.96
54QBT_queko_900_1 18035 1.56 227.01 11582 1.00 1931.58
Avg. Ratio 1.82 1.00

Benchmark
ICCAD22 Ours

𝒁 Ratio Runtime
(s) 𝒁 Ratio Runtime

(s)
queko_15_1 99 2.11 1.50 47 1.00 1.68
barenco_tof_4 157 1.80 3.61 87 1.00 0.55
tof_5 141 2.35 3.15 60 1.00 0.33
barenco_tof_5 221 2.33 9.43 95 1.00 2.20
mod_mult_55 132 1.63 3.36 81 1.00 2.35
vbe_adder_3 143 1.59 4.28 90 1.00 2.08
4gt13_92 88 1.22 1.65 72 1.00 47.97
rc_adder_6 184 1.67 6.30 110 1.00 4.65

33

Comparison: w/o and w/ Divide-and-Conquer Approach
● The results can only be generated by including the divide-and-conquer

method (runtime limit of 3600 seconds)

● Our divide-and-conquer method achieves a 30.56x speedup with only a 3%
average loss in solution quality
¾ Achieves a 245.41x speedup on twenty large-scale benchmarks by the Penalized

Average Runtime PAR-2 score

Benchmark w/o divide-and-conquer approach w/ divide-and-conquer approach
𝒁 Ratio Runtime (s) Ratio 𝒁 Ratio Runtime (s) Ratio

queko_15_1 45 0.96 48.95 29.14 47 1.00 1.68 1.00
barenco_tof_4 87 1.00 13.24 23.99 87 1.00 0.55 1.00
tof_5 58 0.97 3.87 11.72 60 1.00 0.33 1.00
barenco_tof_5 95 1.00 165.17 75.18 95 1.00 2.20 1.00
mod_mult_55 74 0.91 87.69 37.28 81 1.00 2.35 1.00
vbe_adder_3 90 1.00 12.61 6.08 90 1.00 2.08 1.00
Avg. Ratio 0.97 30.56 1.00 1.00

34

Outline

• Introduction to Trapped-Ion Systems

• Qubit Mapping Problem

• Proposed Approach

• Experimental Results

• Conclusions

35

Conclusions
● We propose a new coupling constraint graph with a multiple-qubit net based on

the Mølmer-Sørensen gate and its related hardware architecture
¾ Maintain the fidelity of the quantum circuit
¾ Mitigate the occurrence of crosstalk effects

● We present an SMT-based qubit mapping algorithm to find an optimal qubit-
mapping solution for medium-scale problems on the trapped-ion systems

● We present an effective divide-and-conquer method to scale our algorithm and
maintain the quality of the SMT solutions for large-scale problems

● Experimental results have shown the effectiveness of our algorithm compared with
the state-of-the-art work
¾ Achieve an average 44% total time steps reduction for all benchmarks

36

Thank You!

