My Journey in EDA

Martin D．F．Wong

Hong Kong Baptist University

History of ISPD

Predecessors

- ACM SIGDA Physical Design Workshop: 1987, 1989, 1991, 1993, 1996
- MCNC Layout Synthesis Workshop: 1988, 1990, 1992

1990

1992

1993

History of ISPD

Annual Symposium 1997-Present

Procesedings of
ISPD'03
2003 International Symposium
2003 International
on Physical Design

Proceseding of
ISPD'06
2006 International Symposium

$$
\begin{aligned}
& \text { International Sypor } \\
& \text { on Physical Design }
\end{aligned}
$$ 6 International Sympos

Proceedings of
ISPD'07

2007 Internationa Symposium

Souvenirs

1998

1999

2000

2001

ISPD 1999

TPC Chair: Martin Wong
General Chair: Majid Sarrafzadeh

IBM Thinkpad 310

Thickness: 2 Inches!
2X of Surface Pro + McBook Air

My Background

Prof. C. L. Liu was my PhD Supervisor

Several chapters in my PhD thesis were on "Simulated Annealing for VLSI Design"

1988

Did my Math background influence my research?

- Yes, it indirectly influenced my research style and approach
- Will present some unpublished observations/results in EDA influenced by 3 concepts in mathematics
- Rational numbers vs Real numbers
- Geometry
- Elementary Proof

Example 1

Rational Numbers vs Real Numbers

- Infinity: Countable and Uncountable
- 1,2,3,4, (Countable)
- $0,-1,1,-2,2, \ldots$. (Countable)
- Rational numbers (p / q) is countable!
- Real numbers are uncountable!
- Rational numbers are dense in \mathbf{R}

Floorplan Design

Pack modules on a rectangular chip to optimize total area, interconnect cost and other performance measure.

Module:

- Hard modules
- Soft modules

Connectivity:

Algorithm

Slicing Floorplan

2
3
4
Slicing Tree

$$
\begin{array}{r}
23 * 1+45+67^{*}+{ }^{*} \\
\quad \text { Polish Expression }
\end{array}
$$

Algorithm

Results for Soft Blocks

Experimental results => slicing is good for soft modules

Circuit	No. of Modules	runtime(s)	deadspace(\%)
apte	9	0.31	0.74
xerox	10	0.38	0
hp	11	0.45	0
ami33	33	3.22	0.01
ami49	49	6.93	0.13

*all modules have aspect ratio between 0.5 and
2

Results for Hard Blocks

MCNC benchmark	Problem Size	Fast-SP Area	ECBL Area	Enhanced Q-seq Area	TBS Area	Enhanced O-tree Area	Slicing Area
apte	9	46.92	45.93	46.92	47.44	46.92	46.92
xerox	10	19.80	19.91	19.93	19.78	20.21	20.20
hp	11	8.947	8.918	9.03	8.48	9.16	9.03
ami33	33	1.205	1.192	1.194	1.196	1.242	1.183
ami49	49	36.5	36.70	36.75	36.89	37.73	36.24

- Excellent results by slicing for the largest MCNC benchmarks (Cheng, Deng, Wong, ASPDAC 2005)

Can we mathematically explain these excellent empirical results?

Theoretical Analysis

Theorem [Young and Wong ISPD-97]

Given a set of soft blocks of total area $A_{\text {total }}$, maximum area $A_{\text {max }}$ and shape flexibility $r \geq 2$, there exists a slicing floorplan F of these blocks such that:

$$
\operatorname{area}(F) \leq \min \left\{\left(1+\frac{1}{\sqrt{r}}\right), \frac{5}{4},(1+\boldsymbol{\alpha})\right\} A_{\text {total }}
$$

where $\quad \boldsymbol{\alpha}=\sqrt{\frac{2 A_{\max }}{r A_{\text {total }}}}$

Can we do better?

Conjecture: For each non-slicing floorplan, there exists a slicing floorplan with "similar" area and topology.

slicing floorplan

Wheel Floorplans with Squared Blocks

Lemma Given any wheel floorplan with 5 squared blocks, there is a "neighboring" slicing floorplan with equal/smaller area.

- It is not possible that $x 1>x 2$ and $x 2>x 3$ and $x 3>x 4$ and $x 4>x 1$.

Otherwise, x1 > x1!

- We may assume $x 1 \leq x 2$. It is easy to see that there is a "neighboring" slicing floorplan which is smaller!

Tightly Packed Wheel Floorplans

- Tightly packed wheel floorplans
- 5 blocks: A, B, C, and D are identical; E is a square
- $0 \leq x \leq 1$; block aspect ratio is in [1/2,2]
- When $0 \leq x<0.783$
- There is a neighboring slicing floorplan with area at most 1.77\% larger

Tightly Packed Wheel Floorplans

- When $0.783 \leq x \leq 1$
- The neighboring slicing floorplan can be packed with zero deadspace

Conjecture is still open

Conjecture: For each non-slicing floorplan, there exists a slicing floorplan with "similar" area and topology.

Example 2

Geometry Helps

- Pythagoras Theorem

$a^{2}+b^{2}=c^{2}$
- Geometric Proof!

Interconnect Optimization

Buffer Model

$$
\begin{aligned}
T_{d} & =R_{d}\left(C_{1}+C_{2}+C_{L}\right) \\
& +R_{l}\left(C_{1}+C_{2}+C_{L}\right) \\
& +R_{2}\left(C_{2}+C_{L}\right)
\end{aligned}
$$

Elmore Delay Model

Wire Sizing

- Fixed set of allowable wire widths: h1, h2, h3, ..., hn
- For continuous wire width, see closed form solution in PDW-96 (last PDW) and ISPD-97 (first ISPD)

Wire Sizing

$$
d=\frac{1}{2} \mathbf{x}^{\mathbf{T}} \mathbf{A} \mathbf{x}+\mathbf{b}^{T} \mathbf{x}+R_{D} C_{L}
$$

Ellipsoid!

Wire Sizing and Buffer Insertion

$$
d=\frac{1}{2} \mathbf{x}^{T} \mathcal{A} \mathbf{x}+\boldsymbol{\rho}^{T} \mathbf{x}+\sum_{k=0}^{m} r_{B_{k}} c_{B_{k+1}}+\sum_{k=1}^{m} d_{B_{k}}
$$

Ellipsoid!

Mathematical Formulation

Wire Sizing

$$
d=\frac{1}{2} \mathbf{x}^{\mathbf{T}} \mathbf{A} \mathbf{x}+\mathbf{b}^{T} \mathbf{x}+R_{D} C_{L}
$$

minimize
subject to

$$
\begin{array}{r}
\frac{1}{2} \mathbf{x}^{\mathbf{T}} \mathbf{A} \mathbf{x}+\mathbf{b}^{\mathbf{T}} \mathbf{x} \\
x_{1}+\cdots+x_{n}=L \\
x_{i} \geq 0 \text { for } 1 \leq i \leq n
\end{array}
$$

Wire Sizing and Buffer Insertion

$$
d=\frac{1}{2} \mathbf{x}^{T} \mathcal{A} \mathbf{x}+\boldsymbol{\rho}^{T} \mathbf{x}+\sum_{k=0}^{m} r_{B_{k}} c_{B_{k+1}}+\sum_{k=1}^{m} d_{B_{k}}
$$

minimize
subject to

$$
\begin{array}{r}
\frac{1}{2} \mathbf{x}^{T} \mathcal{A} \mathbf{x}+\boldsymbol{\rho}^{T} \mathbf{x} \\
x_{1}+\cdots+x_{(m+1) n}=L \\
x_{i} \geq 0 \text { for } 1 \leq i \leq(m+1) n
\end{array}
$$

Tangent point is the solution

Tangent points and ellipsoid center all lie on the same line for all line length L

Tangent point may not be a physical solution when L is too small

- For all $\mathrm{L} \geq \mathrm{L} 0$, all tangent points are physical solutions
- Solutions for various L are linearly scaled for $L \geq$ L0
- Closed form solution can be derived!

Example 3

Elementary Proof

- A mathematical proof that only uses "basic" techniques
- Prime Number Theorem:

$$
\pi(x) \sim \frac{x}{\log x} \quad \text { where } \pi(x) \text { is the } \# \text { of primes } \leq x
$$

- First proof in 1896 by Hadamard and de la Vallee Poussin using sophisticated complex analysis (e.g., Rieman Zeta function)
- First elementary proof without using complex analysis was done in 1949 by Selberg and Erdos.

Wire-Sizing for Delay Minimization

1996 ACM SIGDA Physical Design Workshop

Elmore Delay

Theorem. Let f be an optimal wire-sizing function.
We have

$$
f^{2}(x)=\frac{r_{0}\left(C_{L}+c_{0} \int_{x}^{\mathcal{L}} f(t) d t\right)}{c_{0}\left(R_{d}+r_{0} \int_{0}^{x} \frac{1}{f(t)} d t\right)}=\frac{r_{0} \mathcal{C}(x)}{c_{0} \mathcal{R}(x)}
$$

$$
\begin{aligned}
& \mathcal{C}(x)=\text { Downstream Capacitance } \\
& \mathcal{R}(x)=\text { Upstream Resistance }
\end{aligned}
$$

Theorem. Let $f(x)$ be an optimal wire-sizing function.
We have

$$
f^{\prime \prime}(x) f(x)=f^{\prime}(x)^{2}
$$

- This differential equation has closed-form solution!

Optimal Wire-Sizing Function

Any elementary proof that exponential wire shape is optimal?

- Calculus of Variation (Fishburn and Schevon 1995)
- Ordinary Differential Equation (Chen and Wong 1996)
- Can we do it without using Calculus?

Elementary Proof

Proof Sketch

1. $\mathbf{W} 1 \geq \mathbf{W} 2 \geq \ldots \geq \mathbf{W n}$
2. Uniform delay at each segment ($\mathrm{d} 1=\mathrm{d} 2=\mathrm{d} 3=\ldots . .=\mathrm{dn}=\mathrm{d}$)
3. $\mathrm{W} 2 / \mathrm{W} 1=\mathrm{W} 3 / \mathrm{W} 2=\ldots=\mathrm{Wn}-1 / \mathrm{Wn}=\mathrm{d} /(\mathrm{d}+\mathrm{h})$ where $\mathrm{h}=\mathrm{L} / \mathrm{n}$
4. $d /(d+h)=D / n(D / n+L / n)=D /(D+L)=r<1$
5. $\mathrm{Wi}=r^{n-i} \mathrm{Wn}=\mathrm{K} r^{n-i}$
6. As $\mathbf{n} \rightarrow \infty, \mathrm{W}(\mathrm{x})=\mathrm{K} r^{L-X}=\mathrm{A} e^{-B X}$

Step 3

$\mathrm{D}=\quad \mathrm{R}(\mathrm{w} 1+\mathrm{w} 2+\ldots+\mathrm{wn}+\mathrm{C})$

(1)	$+1 / x 1(x 2+x 3+x 4+C)$	$(=d)$
(2)	$+1 / x 2(x 3+x 4+C)$	$(=d)$
(3)	$+1 / X 3(x 4+C)$	$(=d)$
(4)	$+C / x 4$	$(=d)$

Rewrite (2):

$$
\begin{aligned}
& d=x 1 / x 2(x 3 / x 1+x 4 / x 1+C / x 1) \\
& d=(1+d) \times 2 / x 1 \rightarrow x 2 / \times 1=d /(1+d) \\
& d=(x 4 / \times 2+C / x 2) \times 2 / \times 3 \\
& d=(1+d) \times 3 / \times 2 \rightarrow x 3 / x 2=d /(1+d) \\
& d=C / x 4=x 3 / x 4(C / x 3) \\
& d=x 4 / x 3(1+d) \rightarrow x 4 / x 3=d /(1+d)
\end{aligned}
$$

Sub into (2):
Rewrite (4):
Sub into (1):

Sub into (1):
Rewrite (3):

Conclusion

- My math background had indirectly influenced my research style and approach
- Presented some unpublished observations/results
- Three 3 examples
- Rational numbers vs Real numbers \rightarrow Slicing floorplans vs All floorplans
- Geometry helps \rightarrow Geometric approach to interconnect optimization
- Elementary proof \rightarrow Exponential wire shape is optimal
 hong kong baptist university

The End

