
Accelerating EDA from 1 to N
Tribute to Prof. Martin D.F. Wong

ISPD 2024

Presented by Evangeline F.Y. Young
March 14, 2024

Mar 14, 2024 1

Martin’s Students
1. Shinichiro Haruyama 1990 17. Hai Zhou 1999 33. Mustafa Ozdal 2005 49. Tsung-Wei Huang 2017

2. Khe-Sing The 1991 18. Evangeline Young 1999 34. Huaizhi Wu 2007 50. Leslie K. Hwang 2018
3. Yang Cai 1992 19. Chris Chu 1999 35. Gang Xu 2007 51. Daifeng Guo 2019

4. Mohankumar Guruswamy 1992 20. Huiqun Liu 1999 36. Lei Cheng 2007 52. Chun-Xun Lin 2020

5. Ting-Chi Wang 1993 21. Youxin Gao 2000 37. Liang Deng 2007 53. Guannan Guo 2023

6. Tsong-Wen Her 1994 22. James Lee 2000 38. Yu Zhong 2008 54. Tin-Yin Lai 2023
7. Kai Zhu 1994 23. Xiaoping Tang 2002 39. Hui Kong 2010

8. Kai-Yuan Chao 1995 24. Minghorng Lai 2002 40. Tan Yan 2010

9. Honghua Yang 1995 25. Ruiqi Tian 2002 41. Lijuan Luo 2011
10. Glenn Lai 1995 26. John Croix 2002 42. Hongbo Zhang 2012

11. Shashidha Thakur 1996 27. Hung-Ming Chen 2003 43. Qiang Ma 2012

12. Yao-Ping Chen 1996 28. Li-Da Huang 2003 44. Ting Yu 2014

13. Yung-Ming Fang 1996 29. Seokjin Lee 2003 45. Yuelin Du 2014
14. Yao-Wen Chang 1996 30. Muzhou Shao 2004 46. Pei-Ci Wu 2015

15. Chung-Ping Chen 1998 31. Hua Xiang 2004 47. Zhigang Xiao 2015

16. Arthur Mak 1998 32. Yongseok Cheon 2004 48. Haitong Tian 2016

Mar 14, 2024 2

Accelerating EDA from 1 to N

Mar 14, 2024

Martin Wong

Yao-Wen
Chang

Arthur Mak

Chris ChuTing-Chi Wang

Tsung-Wei
Huang Evangeline

Young
Hai Zhou

Hui-Ru JiangJiamin Lin

Shao-Yun Fang

Jia Wang

Tsung-Yi Ho

Mark Lin

Bruce Sham Xu He

Chung-Ping
Chen

Mustafa
Ozdal

Hung-Ming
Chen

Guang-Min
Wu

• An effective GPU implementation of breadth-first search DAC 2010 (324)

• Accelerating aerial image simulation with GPU 2011

• Efficient parallel power grid analysis via Additive Schwarz Method 2012

• Parallel implementation of R-trees on the GPU, ASP-DAC 2012

• Accelerating aerial image simulation using improved CPU/GPU collaborative computing 2015

• Accelerate Path-based Timing Analysis with MapReduce ISPD 2015

• Accelerate analytical placement with GPU: A generic approach DATE 2018

• A General-purpose Distributed Programming System using Data-parallel Streams 2018

• A Modern C++ Parallel Task Programming Library 2019

• A High-Performance Accelerator for Super-Resolution Processing on Embedded GPU 2021

• GAMER: GPU Accelerated Maze Routing 2021

• GPU-accelerated Critical Path Generation with Path Constraints 2021

• GPU-accelerated Path-based Timing Analysis 2021

• Cpp-Taskflow: A General-Purpose Parallel Task Programming System at Scale 2021

• OpenTimer v2: A Parallel Incremental Timing Analysis Engine. 2021

• NovelRewrite: node-level parallel AIG rewriting, 2022

• A2-ILT: GPU accelerated ILT with spatial attention mechanism 2022

• Fast STA Graph Partitioning Framework for Multi-GPU Acceleration 2023

• A GPU-Accelerated Framework for Path-Based Timing Analysis 2023

• GAMER: GPU-Accelerated Maze Routing 2023Mar 14, 2024 4

Martin’s Works on EDA Acceleration

Mar 14, 2024 5

Breadth First Search on Sparse Graph

Mar 14, 2024 6

Mar 14, 2024 7

Mar 14, 2024 8

Mar 14, 2024 9

Mar 14, 2024 10

Mar 14, 2024 11

Mar 14, 2024 12

Mar 14, 2024 13

Mar 14, 2024 14

Mar 14, 2024 15

Mar 14, 2024 16

Mar 14, 2024 17

Mar 14, 2024 18

Mar 14, 2024 19

Time to Go for Massively Parallel EDA Tool!

Mar 14, 2024 20

https://www.nvidia.com/en-in/data-center/a100/

https://www.nvidia.com/en-in/data-center/a100/

GPU Acceleration in Place and Route

[1] Lixin Liu, et al. "Xplace: an extremely fast and extensible global placement framework" Proceedings of the 59th ACM/IEEE Design Automation Conference (DAC). 2022.
[2] Shiju Lin and Martin DF Wong. "Superfast Full-Scale GPU-Accelerated Global Routing" Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided
 Design (ICCAD). 2022.

• Rapid development of GPU’s computational power

• GPU acceleration becomes an important direction

GPU-Accelerated Placer Xplace [1] GPU-Accelerated Global Router GGR [2]

Mar 14, 2024 21

Xplace-R: Detailed-Routability-Driven Placement

1. GPU-accelerated placement engine

2. GPU-accelerated routing engine

3. Routability-optimization techniques

• Superior detailed-routability

• Remarkable runtime speedup

Xplace-Route achieves

Components

Mar 14, 2024 22

Mar 14, 2024 23

Experimental Results (Summary)

Settings:
• Benchmarks: ISPD 2015
• Commercial Detailed Router and Metric Evaluator: Cadence Innovus

Summary: Only take 41 seconds (on average) to conduct DR-driven placement

• Compared to Xplace (Deterministic version):
Only take 27 seconds extra runtime, achieving 622% #DRVs reduction

• Compared to DREAMPlace + CUGR:
9× PL time speedup, 8% shorten WL, 3% fewer #DR Vias, 200% #DRVs reduction

• Compared to NTUplace4dr:
44 × PL time speedup, 22% shorten WL, 15% fewer #DR Vias, 300% #DRVs
reduction

Mar 14, 2024 24

GitHub Code of Xplace-R (aka Xplace 2.0)

https://github.com/cuhk-eda/Xplace

Mar 14, 2024 25

https://github.com/cuhk-eda/Xplace

GPU accelerated CUGR

• Parallelize all 3 stages in CUGR 2.0 [2]:
• Sparse Graph Maze Routing [1]
• L-shape Routing
• DAG Routing

Mar 14, 2024 26

[1] Shiju Lin, Jinwei Liu, Evangeline F.Y. Young, & Martin D.F. Wong. “GAMER: GPU accelerated maze routing” IEEE Transactions on Computer-Aided Design of Integrated Circuits
 and Systems, 2022.
[2] Jinwei Liu and Evangeline F.Y. Young. ”EDGE: Efficient DAG-based Global Routing Engine" Proceedings of the 60th ACM/IEEE Design Automation Conference (DAC). 2023.

Sparse Graph Maze Routing – GAMER [1]

Mar 14, 2024 27

[1] Shiju Lin, Jinwei Liu, Evangeline F.Y. Young, & Martin D.F. Wong. “GAMER: GPU accelerated maze routing” IEEE Transactions on Computer-Aided Design of Integrated Circuits
 and Systems, 2022.

Net-based Parallelism

Mar 14, 2024 28

RSMT-based L-shape graph
no overlap (accurate)

Previous method (BB)
overlap (pessimistic)

Augmented routing graph
(to escape the congested green area)

no overlap (accurate)

Previous method (BB)
overlap (pessimistic)

Selected routing row
unselected routing row

Sparse routing graph
no overlap (accurate)

Level-wise Parallelism in DAG Routing

Mar 14, 2024 29

Net-based parallelism:
Use one thread to handle a net.

Level-wise parallelism:
All nodes at the same level
will be handled in parallel.

thread1
thread2 level 1

level 2
level 3
level 4

8 steps 4 steps

4

4

3

3

3

3
2

2

2

2

2

2 1

1

Acceleration in Logic Synthesis

• Rewrite [1] (×32.91)

• Refactor [2] (×42.7)
• Rebalance [2] (×14.8)

• Resyn2 [2] (×45.9)

• Technology map [3] (×128.7)

• K-resub [4] (×41.9)

[1] Shiju Lin, Jinwei Liu, Tianji Liu, Martin D.F. Wong and Evangeline F.Y. Young, “NovelRewrite: Node-Level Parallel AIG Rewriting”, DAC 2022.
[2] Tianji Liu et al., Rethinking AIG Resynthesis in Parallel, DAC 2023.
[3] Tianji Liu, et al., “FineMap: A Fine-grained GPU-Parallel LUT Mapping Engine”, ASP-DAC 2024.
[4] Yang Sun, et al., “Massively Parallel AIG Resubstitution”, DAC 2024.

https://github.com/cuhk-eda/CULS

Mar 14, 2024 30

https://github.com/cuhk-eda/CULS

Background

• AIG resynthesis is equipped with many algorithms
• rewrite (rw), refactor (rf), (and-)balance (b), etc.
• Different algorithm applies different optimization strategy

• A commonly used AIG resynthesis flow
• (resyn2) b; rw; rf; b; rw; rw -z; b; rf -z; rw -z; b

• GPU has shown its effectiveness in accelerating rewriting
• S. Lin et al., "NovelRewrite: node-level parallel AIG rewriting," DAC 2022.

• To fully accelerate resyn2, parallel refactor and balance are
indispensable

Mar 14, 2024 31

AIG Refactoring

• Optimizes the area of AIG
• Resynthesize large logic cones

• By algebraic factoring from collapsed SOPs
• Using one cut per node to reduce time complexity

• Replace the original cone if the resynthesized cone has positive gain

a b c d a b c d

Mar 14, 2024 32

Parallel Refactoring

• Three Stages:
• Identify and collapse logic cones with level-wise parallelism that are

(1) Disjoint from each other (k-bounded fanout free cone), and
(2) Cover all the logic (non-PI nodes) in the AIG

• Resynthesize all local functions in parallel
• Replace the original cones by resynthesized cones in parallel

a

1

5 6

8

2 3 4

b c d e f

7 9

identification
and collapsing

5

1 2

b c d

gain=1

b c d

6

3 4

c d e

gain=1

c d e

resynthesis

a b c d e f

10

14 15

7 8 9

replacement

Mar 14, 2024 33

GPU Hash-table

• Enable logic sharing by structural
hashing
• Developed a GPU hash-table supporting

batched node insertion and retrieval
• Ensures that only one node can exist

with a particular fanin and negation
status

Key Value

c !d 10

a 5 11

5 6 12

6 8 13

c !d 14

Key Value

a 5 7

5 6 8

6 8 9

… …

Key Value

a 5 7

5 6 8

6 8 9

… …

c !d 10

insert

hash-table

a b c d e f

5 6

7 8 9

10

11 12 13

Mar 14, 2024 34

AIG Balancing

• Identify and collapse n-input AND gates with a tree structure
• Recursively balance the cut nodes, with their delays obtained
• Reconstruct the cone by AND-ing the inputs with the order of ascending

delay

3

1 23

9

2

7

4

5

9

8 6

a b

c

d e f g

h i

1

6

5

8

4 7

a b c

d

e

f g

h

i

6

1

2

3

4

balance

AND 3 delay delay of a node = 1 + max{delays of its fanins}

Mar 14, 2024 35

Experimental Results - Acceleration & QoR
• Tested on enlarged benchmarks from the EPFL and IWLS 2005 Suite
• Similar or slightly better QoR (AIG area and delay) compared with ABC

rf_resyn: b; rf; rf -z;
b; rf -z; b

Use DAC’22 GPU rewrite in
resyn2

Mar 14, 2024 36

Experimental Results - Scalability

• Speedup with different AIG sizes on the rf_resyn script
• GPU implementation is faster than ABC when #node > 30k

Mar 14, 2024 37

LUT Mapping

• Objective
• Transform a Boolean network (e.g., AIG)

into a k-input LUT network
• Minimize LUT count (area) & level (delay)

• Common approach
• Assign each node a representative cut
• Select a subset of representative cuts such that

their cones cover the entire network

Mar 14, 2024 38

3

1 2

7

4

5

9

8 6

b
c
d e f g

h i

LUT in the mapping
LUT not in the mapping

*selected nodes: 3, 4, 6, 9

a

LUT Mapping

• Flow of state-of-the-art LUT mapper
• Multiple “mapping phases”,

delay- or area-oriented
• Cut expansion phase

• Each phase incrementally improves the mapped network
• A timing analysis pass after each mapping/cut expansion phase

• Compute the required time of each node

Mar 14, 2024 39

*one timing analysis
pass after each phase

D

A

E

Delay-oriented
mapping

Area-oriented
mapping

Cut expansion

D D A E

A EA E

A E

Experimental Results
• Tested on enlarged benchmarks from the EPFL and IWLS’05 Suite
• 128.7x acceleration over the ABC if mapper, with slightly better QoR

Mar 14, 2024 40

Experimental Results

• Scaling experiments
• Even on small benchmarks,

our GPU mapper is faster than ABC

Mar 14, 2024 41

Thank You

Mar 14, 2024 42

