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• An effective GPU implementation of breadth-first search DAC 2010 (324)

• Accelerating aerial image simulation with GPU 2011

• Efficient parallel power grid analysis via Additive Schwarz Method 2012

• Parallel implementation of R-trees on the GPU, ASP-DAC 2012

• Accelerating aerial image simulation using improved CPU/GPU collaborative computing 2015

• Accelerate Path-based Timing Analysis with MapReduce ISPD 2015

• Accelerate analytical placement with GPU: A generic approach DATE 2018

• A General-purpose Distributed Programming System using Data-parallel Streams 2018

• A Modern C++ Parallel Task Programming Library 2019

• A High-Performance Accelerator for Super-Resolution Processing on Embedded GPU 2021

• GAMER: GPU Accelerated Maze Routing 2021

• GPU-accelerated Critical Path Generation with Path Constraints 2021

• GPU-accelerated Path-based Timing Analysis 2021

• Cpp-Taskflow: A General-Purpose Parallel Task Programming System at Scale 2021

• OpenTimer v2: A Parallel Incremental Timing Analysis Engine. 2021

• NovelRewrite: node-level parallel AIG rewriting, 2022

• A2-ILT: GPU accelerated ILT with spatial attention mechanism 2022

• Fast STA Graph Partitioning Framework for Multi-GPU Acceleration 2023

• A GPU-Accelerated Framework for Path-Based Timing Analysis 2023

• GAMER: GPU-Accelerated Maze Routing 2023Mar 14, 2024 4

Martin’s Works on EDA Acceleration
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Breadth First Search on Sparse Graph
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Time to Go for Massively Parallel EDA Tool!
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https://www.nvidia.com/en-in/data-center/a100/

https://www.nvidia.com/en-in/data-center/a100/


GPU Acceleration in Place and Route

[1] Lixin Liu, et al. "Xplace: an extremely fast and extensible global placement framework" Proceedings of the 59th ACM/IEEE Design Automation Conference (DAC). 2022.
[2] Shiju Lin and Martin DF Wong. "Superfast Full-Scale GPU-Accelerated Global Routing" Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided
      Design (ICCAD). 2022.

• Rapid development of GPU’s computational power

• GPU acceleration becomes an important direction

GPU-Accelerated Placer Xplace [1] GPU-Accelerated Global Router GGR [2]
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Xplace-R: Detailed-Routability-Driven Placement

1. GPU-accelerated placement engine

2. GPU-accelerated routing engine

3. Routability-optimization techniques

• Superior detailed-routability

• Remarkable runtime speedup

Xplace-Route achieves

Components
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Experimental Results (Summary)

Settings:
• Benchmarks: ISPD 2015
• Commercial Detailed Router and Metric Evaluator: Cadence Innovus  

Summary: Only take 41 seconds (on average) to conduct DR-driven placement

• Compared to Xplace (Deterministic version):
Only take 27 seconds extra runtime, achieving 622% #DRVs reduction

• Compared to DREAMPlace + CUGR:
9× PL time speedup, 8% shorten WL, 3% fewer #DR Vias, 200% #DRVs reduction 

• Compared to NTUplace4dr:
44 × PL time speedup, 22% shorten WL, 15% fewer #DR Vias, 300% #DRVs 
reduction
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GitHub Code of Xplace-R (aka Xplace 2.0) 

https://github.com/cuhk-eda/Xplace
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GPU accelerated CUGR

• Parallelize all 3 stages in CUGR 2.0 [2]:
• Sparse Graph Maze Routing [1]
• L-shape Routing
• DAG Routing
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[1] Shiju Lin, Jinwei Liu, Evangeline F.Y. Young, & Martin D.F. Wong. “GAMER: GPU accelerated maze routing” IEEE Transactions on Computer-Aided Design of Integrated Circuits
      and Systems, 2022.
[2] Jinwei Liu and Evangeline F.Y. Young. ”EDGE: Efficient DAG-based Global Routing Engine" Proceedings of the 60th ACM/IEEE Design Automation Conference (DAC). 2023.



Sparse Graph Maze Routing – GAMER [1]
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[1] Shiju Lin, Jinwei Liu, Evangeline F.Y. Young, & Martin D.F. Wong. “GAMER: GPU accelerated maze routing” IEEE Transactions on Computer-Aided Design of Integrated Circuits
      and Systems, 2022.



Net-based Parallelism
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RSMT-based L-shape graph
no overlap (accurate)

Previous method (BB)
overlap (pessimistic)

Augmented routing graph
(to escape the congested green area)

no overlap (accurate)

Previous method (BB)
overlap (pessimistic)

Selected routing row
unselected routing row

Sparse routing graph
no overlap (accurate)



Level-wise Parallelism in DAG Routing
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Net-based parallelism: 
Use one thread to handle a net.

Level-wise parallelism: 
All nodes at the same level 
will be handled in parallel.   
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Acceleration in Logic Synthesis

• Rewrite [1] (×32.91)

• Refactor [2] (×42.7)
• Rebalance [2] (×14.8)

• Resyn2 [2] (×45.9)

• Technology map [3] (×128.7)

• K-resub [4] (×41.9)

[1]   Shiju Lin, Jinwei Liu, Tianji Liu, Martin D.F. Wong and Evangeline F.Y. Young, “NovelRewrite: Node-Level Parallel AIG Rewriting”, DAC 2022.
[2]   Tianji Liu et al., Rethinking AIG Resynthesis in Parallel, DAC 2023.
[3]   Tianji Liu, et al., “FineMap: A Fine-grained GPU-Parallel LUT Mapping Engine”, ASP-DAC 2024.
[4]   Yang Sun, et al., “Massively Parallel AIG Resubstitution”, DAC 2024.

https://github.com/cuhk-eda/CULS
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Background

• AIG resynthesis is equipped with many algorithms
• rewrite (rw), refactor (rf), (and-)balance (b), etc.
• Different algorithm applies different optimization strategy

• A commonly used AIG resynthesis flow
• (resyn2) b; rw; rf; b; rw; rw -z; b; rf -z; rw -z; b

• GPU has shown its effectiveness in accelerating rewriting
• S. Lin et al., "NovelRewrite: node-level parallel AIG rewriting," DAC 2022.

• To fully accelerate resyn2, parallel refactor and balance are 
indispensable 
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AIG Refactoring

• Optimizes the area of AIG
• Resynthesize large logic cones 

• By algebraic factoring from collapsed SOPs
• Using one cut per node to reduce time complexity

• Replace the original cone if the resynthesized cone has positive gain

a b c d a b c d
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Parallel Refactoring

• Three Stages:
• Identify and collapse logic cones with level-wise parallelism that are 

(1) Disjoint from each other (k-bounded fanout free cone), and 
(2) Cover all the logic (non-PI nodes) in the AIG

• Resynthesize all local functions in parallel
• Replace the original cones by resynthesized cones in parallel
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GPU Hash-table

• Enable logic sharing by structural 
hashing
• Developed a GPU hash-table supporting 

batched node insertion and retrieval
• Ensures that only one node can exist 

with a particular fanin and negation 
status
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AIG Balancing

• Identify and collapse n-input AND gates with a tree structure
• Recursively balance the cut nodes, with their delays obtained
• Reconstruct the cone by AND-ing the inputs with the order of ascending 
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Experimental Results - Acceleration & QoR
• Tested on enlarged benchmarks from the EPFL and IWLS 2005 Suite
• Similar or slightly better QoR (AIG area and delay) compared with ABC

rf_resyn: b; rf; rf -z; 
b; rf -z; b

Use DAC’22 GPU rewrite in 
resyn2
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Experimental Results - Scalability

• Speedup with different AIG sizes on the rf_resyn script
• GPU implementation is faster than ABC when #node > 30k

Mar 14, 2024 37



LUT Mapping

• Objective
• Transform a Boolean network (e.g., AIG) 

into a k-input LUT network
• Minimize LUT count (area) & level (delay)

• Common approach
• Assign each node a representative cut
• Select a subset of representative cuts such that 

their cones cover the entire network
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LUT Mapping

• Flow of state-of-the-art LUT mapper
• Multiple “mapping phases”, 

delay- or area-oriented
• Cut expansion phase

• Each phase incrementally improves the mapped network
• A timing analysis pass after each mapping/cut expansion phase

• Compute the required time of each node
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Experimental Results
• Tested on enlarged benchmarks from the EPFL and IWLS’05 Suite
• 128.7x acceleration over the ABC if mapper, with slightly better QoR
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Experimental Results

• Scaling experiments
• Even on small benchmarks,

our GPU mapper is faster than ABC
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Thank You
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