Ve
. t‘ VLSI architecture, U L
laboratory synthesis & technology

Scheduling and Physical Design

Jason Cong
Volgenau Chair for Engineering Excellence, UCLA Computer Science
Director, Center for Domain-Specific Computing (CDSC)
https://vast.cs.ucla.edu/people/faculty/jason-cong

https://vast.cs.ucla.edu/people/faculty/jason-cong

Why This Title/Topic?

- Scheduling:

- Determine when each operation
takes place

- Part of high-level synthesis -- the
first stage of the design flow

- Physical design:

- Determine where each operation
takes place and the best way to
interconnect them

- The last stage of the design flow

A typical EDA Flow for integrated circuits

@stem SpecificatioD

High Level Synthesis (scheduling + binding)

I

Logic Synthesis

!

Technology Mapping

I

Physical Design

It Goes Back to My First Paper with Martin [ICCAD'1987]1

A New Approach to Three- or Four-Layer Channel
Routing

JINGSHENG CONG, D. F. WONG, anp C. L. LIU, FELLOW, IEEE

Abstract—We present in this paper a new approach to the three- or
four-layer channel routing problem. Since two-layer channel routing
has been well studied, there are several two-layer routers which can
produce optimal or near optimal solutions for almost all the practical
problems. We develop a general technique which transforms a two-
layer routing solution systematically into a three-layer routing solu-
tion. This solution transformation approach is different from previous
approaches for three-layer and multilayer channel routing. Our router
performs well in comparison with other three-layer channel routers
proposed thus far. In particular, it provides a ten-track optimal solu-
tion for the famous Deutsch’s difficult example, whereas other well
known three-layer channel routers required 11 or more tracks. We
extend our approach to four-layer channel routing. Given any two-
layer channel routing solution without an unrestricted dogleg that uses
w tracks, our router can provably obtain a four-layer routing solution
using no more than [w/2 tracks. We also give a new theoretical
upper bound [d/27 + 2 for arbitrary four-layer channel routing
problems.

I. INTRODUCTION

KEY PROBLEM in VLSI layout design and imple-
mentation is the channel routing problem. The two-
layer channel routing problem has been studied exten-

3/19/24

megabit DRAM designed by Taguchi et al. uses four
routing layers, three layers of polysilicon and one layer
of metal. Thus, the design and implementation of channel
routing algorithms using a small number of layers (usu-
ally three or four layers) are not only practical, but also
are becoming more and more important.

The multilayer channel routing problem has been stud-
ied in the literature. Chen and Liu [5] presented a three-
layer channel router based on the net merging method used
by Yoshimura and Kuh [22] for two-layer channel rout-
ing. Bruell and Sun [3] designed a ‘‘greedy’” router for
three-layer channel routing and obtained the first 11-track
solution for Deutsch’s difficult example. Braun et al. [2]
implemented a multilayer channel router which divides
layers into several groups. Each group contains two or
three layers and routing for each group is done by the
extended two-layer router YACR2 [20]. Enbody and Du
[11] developed a multilayer router using leading column
heuristics and limited backtracking. As for theoretical re-
sults, Hambrusch [15] obtained some near-optimal upper
bounds for the case of two terminal nets allowing mixed
wiring on the same laver. Bradv and Brown [11 nronosed

Three-Layer Channel Routing from Two-Layer
Solutions

 Goal: Minimize the number of tracks in a 3L solution
Model: HVH model - the 1st and 3™ layers route horizontal wires and the 29 layer routes vertical wires

2156 3 4 4 3 25

2 156 3 4 4 3 25
2 156 3 4 4 3 25

i3, §2
2
¢ ty ¢ * —e L4 ¢ ° *
1 t3 L _ . & & R _ B B B _ B B &8 & B | B B B B B B B]
()
' ts
le

1 2 3 4 2 6 6 4 2

1 2 3 4 2 6 6 4 2
1 2 3 4 2 6 6 4 2

Two-layer channel routing Track pairing Perfect track pairing

How to Compute an Optimal Track Ordering?

2 156 3 4 4 3 25

o— t Track ordering graph (ToG) \ G t1, ts
for 3L channel routing l
[tz t2!t4

1 2 3 4 2 6 6 4 2

1 2 3 4 2 6 6 4 2
Perfect track pairing

Two-layer channel routing

Theorem: An optimal track ordering < an optimal two-processor scheduling solution with ToG as the task dependency
graph [ICCAD’87]

Together with a few other optimization, we were the first to obtain an optimal solution to the Deutsch’s Difficult Example
Three-layer metal technology was indeed introduced two years later in Intel 486 (with over 1M transistors)

Fast Forward 35 Years: IC Technology Today

Example: Intel 4 technology with 17 metal layers to be fabricated in EUV

= — ~

Intel 4 Metal Stack

“

Fin - 30 nm

Gate Tungsten 50 nm

Metal 0 Copper w/Cobalt Cladding 30 nm

' - - . Metal 1 Copper w/Cobalt Cladding 50 nm
Metal 2 Copper w/Cobalt Cladding 45 nm

_ w Metal 3 Copper w/Cobalt Cladding 50 nm

' ' ' ' ' ' ' I ' ' ' ' ' ' ' ' Metal 4 Copper w/Cobalt Cladding 45 nm

S due bk b i eonm
SNEDSEEDED A A A AAAAIiLL Metal 7, 8 Copper 84 nm
—— - Metal 9, 10 Copper 98 nm
[@ o U O S
AR A AR ARERARLRLA L . yew
A MDA LU LU LA DR LT L e Metal 11, 12 Copper 130 nm
NN e .. L
W Aeoeo -ow bamyg g —~ v
Tl I MmMM I T T « it AAALA AL A LD AL Metal 13, 14 Copper 160 nm
TR R W - e . S e S R
T Il I I I I s I I T ™ (AR RARRAR AR A0) fsatninntanbantinstonianiony Meta|15 Copper 280 nm
— .
dd Giant Metal 0 Copper 1080 nm
" llYIILII
1o Giant Metal 1 Copper 4000 nm

© intel Corporation

https://www.anandtech.com/show/17448/intel-4-process-node-in-detail-2x-density-scaling-20-improved-performance 6

A New Life of the Transformation-Based Approach

- Although the transformation-based approach was not used in
many-layer routing

. |t was used in 3D-IC placement 20 years later

Transformation-Based Approach for 3D-IC Placement

[T [T L/

/4 /
[T > [T -
/ / b / / / Stacking Legalization ; : ;

Local stacking transformation

Y el ——4

.o

Folding-2 transformation Folding-4 transformation

!
I

J. Cong, G. Luo, J. Wei, and Y. Zhang. Thermal-Aware 3D IC Placement via Transformation. ASP-DAC 2007, Yokohama, Japan,
(The ASP-DAC 2017 Ten-Year Retrospective Most Influential Paper Award).

3/19/24

http://dl.acm.org/citation.cfm?id=1323351.1323523&coll=DL&dl=ACM&CFID=414416762&CFTOKEN=32164126

The Most Significant Collaboration with Martin

The Best man at Martin’s wedding

Decade of 1990s: Working Side-by-Side with
Martin on Interconnect Optimization

Optimal Wire-Sizing Formula Under the Elmore Delay Model *

Optimal Wiresizing Under the Distributed Elmore Delay Model

Jason Cong and Kwok-Shing Leung
Department of Computer Science
University of California, Los Angeles, CA 90024

Abstract

In this paper, we study the optimal wiresizing problem under
the distributed Elmore delay model. We show that the opti-
mal wiresizing solutions satisfy a number of interesting proper-
ties, including the separability, the monotone property, and the
dominance property. Based on these properties, we develop a
polynomial-time optimal wiresizing algorithm for arbitrary in-
terconnect structures under the distributed Elmore delay model.
Extensive experimental results show that our wiresizing solution
reduces interconnection delay by up to 51% when compared to
the uniform-width solution of the same routing topology. Fur-
thermore, compared to the wiresizing solution based on a sim-
pler RC delay model in [7], our wiresizing solution red: the
total wiring area by up to 28% while further reducing the inter-

tion delays to the timing-critical sinks by up to 12%.

1 Introduction

As the VLSI fabrication technology reaches submicron device
dimension and gigahertz frequency, interconnection delay has
become the dominant factor in determining circuit speed [9, 14].
The analysis in [15] and [7] showed that in the conventional
VLSI technology, interconnection delay is determined by the
product of the driver resistance and the total wire capacitance.
As a result, the minimum interconnection delay is achieved
when the routing tree is an optimal Steiner tree with the min-
imum wire width for each segment (since it has the minimum
total wire capacitance). Therefore, conventional global and
detailed routers aimed at generating minimum-width Steiner
routing trees using the least total wirelength. However, as
we reduce the device dimension, the driver resistance becomes
smaller and the wire resistance becomes larger, which results
in a much larger resistance ratio (defined to be the ratio of
the driver resistance versus the unit wire resistance). In this
case, the distributed nature of the interconnect structure must

3/19/24

Experimental results showed that the algorithm in [7] can con-
struct A-trees which are at most 4% within the optimal, and
achieve interconnection delay reduction by as much as 66%
when compared to the best-known Steiner routing topology.
When the critical-path information is available, the critical sink
routing approaches in [2] reduce the delays to specified sinks
substantially.

Although steady progress has been made in optimizing in-
terconnect topology design for delay minimization, there were
very few works on wiresizing optimization for high-performance
interconnect designs. Wiresizing was used by Fisher and Kung
[11] in H-tree clock routing. Recently, Cong, Leung, and Zhou
[7] developed an optimal wiresizing algorithm based on mini-
mizing an upper bound of the delay in a distributed RC tree
proposed by Rubinstein, Penfield and Horowitz [13], which is

given by:
t = E Ry - cx (1)

all nodes k

where Ry is the path resistance between the source and the
node k and cx is capacitance at the node k. This upper-bound
delay model was chosen in [7] because it simplifies the wiresiz-
ing optimization. However, the simplicity of this delay model
also results in several drawbacks. First, it provides only an up-
per bound of the worst-case RC delay in the routing tree and
does not distinguish the delays at different sinks. Therefore, it
is impossible to optimize the wiresizing solution to reduce the
delays to the specific timing-critical sinks. Moreover, since this
model tends to over-estimate the delays at many sinks in the
routing tree, it often results in unnecessary over-sizing of many
wire segments. Oversized wires not only occupy more routing
spaces, but also increase the mutual capacitance and induc-
tance between different signal nets. Thus, there is a strong
need to develop optimal wiresizing algorithms under more ac-

rurata intarcannactian dalav madale

ICCAD 1993

Chung-Ping Chen, Yao-Ping Chen, and D. F. Wong

Department of Computer Sciences, Unwversity of Texas, Austin, Texas 78712

Abstract

In this paper, we consider non-uniform wire-sizing. Given a
wire segment of length L, let f(x) be the width of the wire
at position x, 0 < x < L. We show that the optimal wire-
sizing function that minimizes the Elmore delay through the
wire is f(x) = ae™"*, where a > 0 and b > 0 are constants
that can be computed in O(1) time. In the case where lower
bound (L > 0) and upper bound (U > 0) on the wire widths
are given, we show that the optimal wire-sizing function f(x)
is a truncaled version of ae~ " that can also be determined in
O(1) time. Our wire-sizing formula can be iteratively applied
to optimally size the wire segments in a routing tree.

1 Introduction

As VLSI technology continues to scale down, intercon-
nect delay has become the dominant factor in deep submi-
cron designs. As a result, wire-sizing plays an important role
in achieving desirable circuit performance. Recently, many
wire-sizing algorithms have been reported in the literature
[1,2,4,5,7]. All these algorithms size each wire segment uni-
formly, i.e., identical width at every position on the wire. In
order to achieve non-uniform wire-sizing, existing algorithms
have to chop wire segments into large number of small seg-
ments. Consequently, the number of variables in the opti-
mization problem is increased substantially and thus results
in long runtime and large storage.

In this paper, we consider non-uniform wire-sizing. Given
a wire segment W of length £, a source with driver resistance
R4, and a sink with load capacitance C';. For each x € [0, L],
let f(x) be the wire width of W at position x. Figure 1 shows
an example. Let ro and c¢o be the respective wire resistance
and wire capacitance per unit square. Let D be the Elmore
delay from the source to the sink of W. We show that the
optimal wire-sizing function f(z) that minimizes D satisfies
an ordinary differential equation which can be analytically
solved. We have f(zr) = ae™, where a > 0 and b > 0
are constants that can be computed in O(1) time. These

driver wire foaid
[,
R, 0 X L I L

Figure 1: Non-uniform wire-sizing.

= :—, Let ; be tAxz, 1 < 1 < n. The capacitance and resis-
tance of wire segment i can be approximated by coAxf(x;)
and ro Az / f(x:), respectively. Thus the Elmore delay through
W can be approximated by

D, = Ra(CyL + Zco_m»‘)Az) + Z ;“A'f.z cof(z;)A7 + CL)
=)

i=1 i=1 =i

I'he first term is the delay in the driver, which is given by the
driver resistance R, multiplied by the total capacitance of W
and C',. The second term is the sum of the delay in each wire
segment 1, which is given by its own resistance roAx/f(x;)
multiplied by its downstream capacitance Z:_, cof(z;)Azx+

CrL. As n = o0, D,, = D where

c c c
D = Rq(CyL + / cof(z)dr) + / /',0\ (/ cof(t) dt + CL) dr
(@)
Jo Jo i Jx

is the Elmore delay through W.

In this section, we derive closed-form formula for the opti-
mal wire-sizing function f(z). We consider two cases: un-
constrained and constrained wire-sizing. In unconstrained
wire-sizing, there is no bound on the value of f(z); i.e. we
determine f : [0,£] — (0,00) that minimizes D. In con-
strained wire-sizing, we are given L > 0 and U < oo, and
require that L < f(z) < U, 0 < x < £; i.e., we determine
f:[0,£] = [L,U] that minimizes D.

DAC 1996 0

Decade of 2000s: Multi-Cycle On-Chip
Communication and High-Level Synthesis

¢ Interconnect delays dominate the timing in deep submicron technology

¢ Single-cycle full chip synchronization is no longer possible

4 clock
3 clock
2 clock
0 114 22.8

3/19/24

ITRS’01 70nm Tech

5.63 G Hz across-chip clock
800 mm?2(28.3mm x 28.3mm)

IPEM BIWS estimations
Buffer size: 100x
Driver/receiver size: 100x
From corner to corner:
at semi-global layer (Tier 3)
can travel up to 11.4mm in one cycle
need 5 clock cycles

J. Cong, et al, T-CAD 2004

11

Our Proposal: Regular Distributed Register
(RDR) Architecture [T-CAD’2004]

Reg. file Island
| Reaister File ‘
N -~
(2] (2]
Hi

re(. fil

Cluster with area constrai

WS4
319fo |

EE

lahal Interconnect c'}",

}eg. fil -

Wi

EE

EE

" Use register banks:
" Registers in each island are partitioned to k banks for 1 cycle, 2 cycle, ... k cycle
interconnect communication in each island
" Highly regular

3/19/24 " Goal: high-frequency designs .

MCAS: Placement-Driven Architectural
Synthesis Using RDR Architecture

C/VHDL
CDFG generation

Resource allocation

Multi-Cycle Communication Architectural

+ Resource constraints !

Functional unit binding Synthesis (MCAS) System
i Interconnected Componenii ino-dri
| | Gragh 10G) = Scheduling-driven placement
= = Scheduling-driven placement = Placement-driven rescheduling & rebinding
0& e i Location information .. .
o 2 Placeme;;t driven * Limitations
Q o B | . . .
& 5 rebinding & scheduling i = Tl.me high Ievc?l sy|:1the5|s (HLS) e|.1g|n.e .was not robust
e 4L | = Did not consider interconnect pipelining
— | y | . .
g & Register and port binding | = Regularity imposes some overhead

A 4
Datapath & FSM generation

This idea has to wait for another 17 years to mature

RTL VHDL Floorplan Multi-cycle path
files constraints constraints

Development of Robust and Scalable HLS Tool

« xPilot (UCLA 2006) -> AutoPilot (AutoESL) ->
Vivado HLS (Xilinx 2011-)

Design Specification * LLVM based compilation
lj ; CICMISystemCJ User ConstraintsJ * Platform-based C to RTL synthesis
e ‘\/I « Synthesize pure ANSI-C and C++, GCC-compatible
E / Compilation & AutoPilot™ compilation flow leveraging LLVM framework
!El ﬂf‘m—‘ . « Full support of IEEE-754 floating point data types &
E . 0 operations
5 IEEC—— %j » Efficiently handle bit-accurate fixed-point arithmetic
— I&io ot 2 « SDC-based scheduling
viora mmunication | ¢ Platform . e .
Synthesis and Optimizations Chara:(eﬁzaﬁon * Automatic memory partitioning
q Library
RTC H S ﬂmnxglPowerlLayout .
RTL SystemC Constraints QoR matches or exceeds manual RTL for many designs
N ——
Ne— TCAD April 2011 (keynote paper) “High-Level Synthesis
[Agll:SGt:ock] for FPGAs: From Prototyping to Deployment”
-/ or S

HLS with Automated Interconnect Pipelining

» User specify how the HLS modules or IP blocks are connected in dataflow

» Co-optimizes interconnect pipelining and design partitioning => 2X Fmax
» Parallel placement & routing => 5-7X productivity

—

IPs
(Verilog, HLS, IP, ...)

Logical Interconnects
(LiteX, Vivado IPI, etc.)

3/19/24

Interconnect
Synthesis &
Physical
— Optimization
(FPGA’21 Best
Paper, 2X
Frequency)

—

—l —

Layout-Guided
Re-synthesis & Composition

Parallel
Placement &
Routing
(FPGA’22 Best —
Paper, 5-7X
Compilation
Speed Up)

Final Bitstream
15

Dataflow Design using TAPA [FCCM’21, TRETS’23]

 TAPA is a task-Parallel HLS framework
 Integrated AutoBridge and RapidStream
* Extends Vitis HLS with additional APIs

T1
Stream
12) Task
T4

Vitis HL
T3) Extraction @ %

Vitis HLS { —

Task

T1

D Vitis HLS
@ |:>
Vitis HLS
|:> 3

Compute Logic Generation
(with Vitis HLS)

|

Synth/Place/Route >
1
Design T _
Pl Pipelining Integration Synth/Place/Route >
p =P ==
Synth/Place/Route
| %
Synth/Place/Route >
1

Parallel Implementation

Case Study

 Systolic array Gaussian elimination, 8 configurations

AutoBridge: 334 MHz (1.4X) AutoBridge: 335 MHz (1.5X)
__400

N300 | oo X

= 200 S e e e e e =

2 100 s

T .
12x12 16x16 20x20 24x24 12x12 16x16 20x20 24x24
U250 --@® - Original - AutoBridge U280

Vivado: avg. 245 MHz Vivado : avg. 223 MHz

» Difference in Resource Utilization
e LUT: +0.14%
 FF: +0.04%
« BRAM: +0.03%
 DSP: +0.00%

3/19/24

DDR-2

Vivado AutoBridge
Comparison of the 24x24 Design on U250

17

Decade of 2020s: Compilation for Quantum Computing

512
256
128
64
32
1

log

N &~ 00 O

1
2014

3/19/24

UCSB
[Barends et
al.,...

2015

Harvard [Ebadi et al., arxiv2] OSPerY

Pascal [Scholl et al., N®ure'21]

Eagle
Aspen-M-1
Bristlecone
| Sycamore
[| Hummingbird
Aspen-7Spen-8 Aspen-9 Aspen-11
Johannesburg
Acorn Aspen-1 Falcon
Melbourne Quantinuum System H1-2
IBM
[Gambetta... Agave lonQ Aspen-4 Honeywell System H1
Yorktown Ourense

2016 2017 2018 2019 2020 2021 2022 2023
Physical Qubits 18

Quantum Layout Synthesis (QLS)

o (LXHTo ® CX on a pair of adjacent qubits, OK.
o X }—AT-& CX on a pair of non-adjacent qubits!

Insert SWAP gate to change the mapping

92 —— 1T
93 < H ijj—o— ST H |— SWAP

g2 g3 97 99 Y10 g13 917 919 g20 921 9g22

Input-Circuit of Adder q> do
Input quantum program
x q[@];
x q[1]; 11
h q[3];
cx q[2], q[3];
T q[@].’ q3

1 means Hermitian conjugate, which is straightforward once we have the original
gate implementation.

3/19/24 Coupling Graph of I BM QX 2

Leading Solution to Optimal Layout Synthesis (OLSQ):
SMT-Based Approach

 [nitial OLSQ design
« Suboptimal variable encoding

* Inefficient methods for SWAP and depth optimization

Clid 5, 88959 T 15 &

3/19/24 20

OLSQ 2

* Improve upon OLSQ:

* Succinct formulation: Remove space variables

« Better SMT encoding: Exploit bit vector
« Efficient optimization methods: Apply incremental solving

)

min

100 °

23}
S

52
Z3 Solving Time @

On average,
achieve 387x

speedup

[()
e S

v

T
1id 5, 899 15 &

OLSQ

* OLSQ2 is from [Lin et al., DAC’23]
3/19/24

21

Current Focus: Support Diverse QC Platforms

Superconducting devices * Neutral Atom devices
« With different topologies * Qubit movement

0 us
0,

O O O
I I I
b) Rigetti’s device graph (/ I I
O
\J \J \J
(
(

¢) IBM’s Tokyo device graph

e 0 © e

(@) (@) (aD) (@D
[Bluvstein et al., arXiv'21]

Both types can be supported using the SMT formulation (OLSQ2 and OLSQ-DRAA)

3/19/24 22

(d) IBM’s Rochester device graph

Concluding Remarks

Most physical design researchers focus on the spatial domain,

There is much value in considering the freedom in the time domain
via scheduling to achieve better/simpler spatial solutions

Ultimately, the EDA solution needs to decide the space and time
coordinates of every computation

“Time and space are modes in which we think, not in which we exist”

-- Albert Einstein

Acknowledgement

Prof. C. L. Liu, for countless valuable advice over the years
The 3D IC physical design team at UCLA including Guojie Luo, Jie Wei, and Yang Zhang

The HLS team at UCLA, including Yuze Chi, Yiping Fan, Licheng Guo, Guolin Han, Jerry
Jiang, Jason Lau, Weikang Qiao, Linghao Song, Jie Wang, and their close collaborators at

® Cornell: Ecenur Ustun, Xingyu Tian, and Zhiru Zhang
®* SFU: Zhenman Fang and Moazin Khatti
* AMD/Xilinx: Alireza Kaviani, Chris Lavin, Pongstorn Maidee, and Yun Zhou

The quantum layout synthesis team at UCLA, including Jason Kimko, Wan-Hsuan Lin, and
Bochen Tan

Taiwan NSC Travel Grant

Last but certainly at least: Multi-decade friendship and collaboration with Martin Wong
®* Martin: Thank you and congratulations again!

Thank You!

Leading Solution to Optimal Layout Synthesis:
SMT-Based Approach

* Best Known Example: OLSQ

Spacetime Coordinate (t;, x;), for every gate g;:
t; =t and xl k iff. g; is executed at time t and qubit/edge k

* Mapping nq. at time t, logical qubit q is mapped to the physical qubit nfl
* Use of SWAP g}: ot = 1 iff. there is a SWAP on edge e and its last time step is ¢

. . 7
. 0 _ SWAP insertion o =1
* Example constraints: my =3 (P2,P3) n8 =2
* Mapping injectivity: m§ # mt N
* Gate dependency: gy < g4 % - T Co—B—y 120 Tt P
* Consistency between mapping go 94 | | 914
and' space-tlr.ne varlables q P2 T NN A P N
* Valid SWAP insertion 91 95 98 - 912 915 918
g Po @ C) Po TT
ge g1 gdie
e PHHE-O 110 PeOT 0S| H]-
g2 93 g7 99 gio 913 gir gi19 G20 921 9g22
t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

* OLSQ is from [Tan and Cong, ICCAD’20] Result of OLSQ
3/19/24 26

Case Study 2: FlexCNN Using TAPA

* FlexCNN: an end-to-end automated DNN synthesis framework

* From ONNX to bitstream on FPGAs

Lines of Code
Reader 1 1,046 FlexCNN without TAPA FlexCNN with TAPA

Template-based

Reader 2 446 S —, Fails Placement & Route Achieves up to 266 MHz
Systolic Array 4,801 Automatic p N
Pool 254 Template-based | V V V o » weight FIFO lane
Upsample 221 Template-based 1 > g > feature map FIFO lane
Concat 350 Template-based é | ’ =] U z i
Add 314 Template-based S e B e DO : B |5 w [£
Act & BN 320 Template-based : | S | < 2 =
Writer 824 Template-based % \ersatile SA g 0_8_ V input-feed module
Top 6,292 Automatic & - weight-feed module
out-collect module

Total ,, 14,868 Large dataflow design composed uSing TAPA 27

