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STANDARD CELL LAYOUT AUTOMATION

- Standard Cells (STD) are building blocks of digital design layout: AND, NOR, Flip-Flop, Adder, etc
- Months manual design turn around time per library to deliver competitive Power, Performance, and Area (PPA)

- Standard cell layout automation benefits - NVCell (DAC2021, ISPD2023)
» Productivity: Fast turn around time
- Performance: Explore more design space
- Performance: More custom cell design
- Optimization: Design Technology Co-Optimization

: A R
Schematic Simplified Grid-based layout diagram (Sticks) SfEm:=memR e e R e
Standard Cell GA100 - 1.7B standard cells
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CHALLENGES: STANDARD CELL LAYOUT AUTOMATION

- Standard cell layout automation challenges as advancing beyond 5nm
- Limited in-cell routing resource: less routing tracks (i.e., 5 routing tracks)
- Design rule complexity: Increasing number and complexity of design rules + strict patterning rules
- Scalability: > hundreds of transistors cell designs

- Better and Efficient standard cell layout automation framework
- Routability
- Scalability
- High-quality PPA
- How?
- Contacts over active,
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ta ndara ceII architecture evolution

IRDS Roadmap 2022 Routability Challenges of a Latch Design in 5nm in stick format
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LAYOUT-AWARE DEVICE CLUSTRING

High quality device clustering should consider transistor layout characteristics
Diffusion break/sharing
Transistor pin access
Routing metal DRCs

Novel transformer model-based clustering methodology
Reduce complexity
Narrow down searching space
Assist finding routable + optimal layouts faster

Cluster boundaries

- Diffusion Transistor Pin Routing Metal
Break/Sharing Access DRCs
Diffusion
E Sharing Q\
o Diffusion Break High pin density window
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o
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NOVEL TRANSFORMER MODEL BASED CLUSTERING METHOD

Framework Overview

Schematic of Cell Logics (.sp) Layout Specification
(Netlist Information) (Cell Architecture)
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Novel Transformer Model Based Clustering
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Netlist and Layout Graph Aware Attention

NVCell Standard Cell Layout Automation Framework (DAC 2021 + ISPD 2023)
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TRANSFORMER ENCODER STRUCTURE

(a) Transformer Encoder Architecture (b) Training Flow: Similarity loss (L ;,,,) from layout graph
N ] .PFET node
HrL{ELE D @ NFET node =3[y -y » Goal: Learn the relationship between device pairs in the
o - | sim = - Og }’v Yu Og Yvy
A | ONet node v UEN(V) k ~ rand k IayOUt graph
. - Netlist logic graph: Topol is from spice netlist
Netlist logic graph a(ys ¥, ): Preferred clustering probability of two devices. ctiist1ogic grap _ OPO Ogy =TT =PICE NETS
{ - Nodes: Nets, devices, and pins
N;(v): The neighbor of device v in the layouts _
GINE Network: - Edges: Connections

Extract graph embeddlngs of devices (tokens)
- Layout graph: Neighbor grids are all connected

Transformer Encoder
00 00O

Src Ke Padding Mask

- Column: gate terminal
- Row: PFET, NFET

- Unsupervised learning from LVS/DRC layouts

Layout graph (Neighbor columns all connected)

Encoder Layers with « Global receptive field + Netlist Structure + Device

Netlist and Layout Graph Aware Attention PFET Rowm placement relation
NFET Row <> > «»

D : i-th gate terminal columns of PFET/NFET

Representative embedding of each device, y,,. «» :Edgesin layout graph
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NETLIST & LAYOUT GRAPH MULTI-HEAD ATTENTION

Spatial Relation

P, P, N, N,

Device Placement
Relation

h., W h, Wi )L
Ay,u = ( Q)\(/E E) T b‘i’(“:“) T bm[u,u]
Spati_al Device
Relation Placement

Attn bias Attn bias

Spatial Relation bias: shortest path distance between
devices in the netlist logic graph

Device Placement bias: device layout characteristics,
such as diffusion sharing, vertical gate/diffusion
connect.
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For each device, calculate personalized page rank vector
k+1
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= ¢Bp} + (1 — ¢)a(y!Y); c: jumping probability

NETLIST & LAYOUT AWARE PERSONALIZED PAGE RANK VECTOR
CLUSTERING

DBScan Clustering from p;
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PCA projected cluster result
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GENERATED LVS/DRC LAYOUT AFTER CLUSTERING

Manual Cell Width = 58 / Generated Cell Width=56 TWL=671
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Experimental Setup

Training 250 training circuits set in 5nm library
Apply to larger and more complex circuits
Apply to different technology nodes

Experiment |: Clustering Quality Study

Experiment |l: Results of 5nm industrial library
94 complex cell benchmark + Entire cell library

Experiment |ll: Results of 3nm (without retraining the model)
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Clustering Quality Study

Quality of DBScan clustering method with Different Models and Representative Node Vectors (Rep. Node Vectors)

Silhouette score (Larger is better): clustering result and the actual LVS/DRC clean layout placement

(b —a)
Silhouette score = a = mean intraclass distance ; b = mean nearest cluster distance
max(a, b)
Rep. Node Vectors Model Avg. Silhouette Impr. (%)

Pred. Preference GINE 0.21 200%
Transformer based 0.42 50%
PPR with Pred. N/A 0.22 186%
Preference GINE 0.37 70%
0.63 -

(b) PPR with Pred. Preference + GINE

Loss evalution Loss evalution
135000 - : —— Taining | 130000 - —— Trainin g loss
;E 115000 ;E e
Epochs Epochs
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RESULTS of 5nm

700000 NVCell2 _Prppnsecl #Deyices 120 Cell Area Comparison
600000
Avg. 12.7X speedup 100 500 i
500000 . Smaller: 14.5%
@ 80 o 400 . :
E 400000 S 2 300 Same: 83.3%
= 60 Q . 2. 0
= 300000 C S 200 Larger: 2.2%
- 40
200000 100
— [ [ — .
100000 20 0 =
- - 12 22 32 42 52 76
Latch3 Flop23 Flop51 Flopl2 Latchl Latch7 Latch4 Cell Complexity

B Smaller Same

Achieved 12.7X speedup on average Larger

Success Cell Width Comparison Success Cell Width Comparison
Rate (%) Smaller Same Larger Rate (%) Smaller Same Larger
NVCell 0% N/A N/A N/A NVCell 91.2% 11.8% [/ 7.6% 1.8%
(DAC 2021) (DAC 2021)
NVCell2 87.2% 22.3% 37.2% 2/(.1% NVCell2 98.8% 13.7% 80.1% 4.3%
(ISPD 2023) (ISPD 2023)
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5 Routing Tracks Cell Architecture (938 Cells)

Cell Area Comparison
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Larger: 4.4%
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Cell Complexity

Same Larger

Cell Width Comparison
Smaller

RESULTS of 3nm

4 Routing Tracks Cell Architecture (458 Cells)

Cell Area Comparison

200
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2 150 Same: 92.4%
§ 100 Larger: 0.4%

50

0

12 22 32 42 52 /16 103
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CONCLUSIONS

Proposed Novel Transformer Model Based Clustering Method successfully improves the success rate, performance,
and area

100% success rate for 5nm
14.5% smaller cell width + 83.3% same cell width
Avg. 12.7X speedup on cells with > 80 devices than previous work

Transferable to different technology nodes

Competitive PPA result: Power impr. up to 12%, Delay impr. up to 8%, and Area impr. up to 14.29%

Future works:
PPA-driven standard cell layout automation
Cluster constraint debugging and optimization for PPA
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