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Introduction

• In advanced technology nodes, routing resources significantly 
determine routability in physical design stage.
• In this work, we propose a method to synthesize a standard cell 

library that has two key features to increase routability in P&R stage.
• Offer more routing resources for the following P&R stage. 
• Increase pin accessibility when synthesizing the cells.
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Spare Track

• To offer more routing resources, we define spare tracks before 
synthesizing cell libraries.  
• A spare track is an M1-layer routing track that is a specific track and 

kept empty during cell routing as an available M1 routing track for the 
upper-level routing.
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Pin Accessibility

• For evaluating the pin accessibility of a synthesized cell, we calculate 
its on-grid access points of each pin metal.
• Vertical access points: access points that can be accessed by using a V1 via.
• Planar access points: access points that can be accessed by using the spare 

track.
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Example of P&R Results

Y B AY B A2 A1 Y B A2 A1

Instance1 Instance2 Instance3

Cell boundarySpare track
M1V0 LISD gategrid line LIG dummy gate at boundary
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Problem Formulation

• Input: Cell netlist and design rule
• Output: Physical Cell Layout that is DRC-clean and passes LVS 

verification with 
1. Designated spare track unused. 
2. Maximize the pin accessibility 
3. Minimize the cell area, wirelength and M2 metal usage.
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Algorithm Flow
SPICE Netlist Design Rules

Routability-Aware Transistor 
Placement (RATP)

Optimal Cell Routing Territory 
(OCRT)

OCRT Constrained Pin Accessbility Driven 
MILP Routing Planning and IO Pin Allocation

Routing 
Succeeds?

Reach 
Iteration 

Limit?

Next Placement Result, 
Dummy Poly Insertion

Yes

No
No

Disable Spare Track, Reset 
Placement Candidates

Post Optimization
Yes

Output Layout
11



Track Assignment Based Routing Estimation

• For each sub-chain, we use track assignment to get a fast routing 
estimation without using the spare track.
• Generate segments by the current chain pin allocation.
• Use greedy algorithm to place segments onto a minimum cost track in non-

descending order of segment length.
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Optimal Cell Routing Territory (OCRT)

• After the transistor placement is done.
• For each net, we enhance the track assignment results to find a 

possibly best topology quickly.
1. Track assignment results
2. Extend to 3D contour graph
3. Find a Steiner Minimum Tree (SMT) on the 3D contour graph

• The found SMT is an important implication for the following MILP 
routing.

13



Track Assignment Results
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3D Contour Graph Example
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Steiner Minimum Tree (SMT)

• On a 3D contour graph, we use a mixed algorithm of Dijkstra’s 
algorithm and Prim’s algorithm to find a Steiner Minimum tree.
• For a pin or a confirmed Steiner point  => propagate using Prim’s 

algorithm
• For a potential Steiner point => propagate using Dijkstra’s algorithm
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SMT Result and OCRT Example
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MILP Cell Routing and IOPA

• MILP: Mixed Integer Linear Programming
• IOPA: IO Pin Metal Allocation
• In our MILP formulation, spacing and short violations are allowed, 

while the open violations are not allowed. To plan IO Pin metals more 
accurately
• All nets are given starting solution based on the SMT results.
• All nets are constrained to only find solutions in the OCRT.
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MILP Constraints

• On our routing graph, each net routing is expelled to use the spare track 
initially.
• Forbidden Region Constraints

• Prevent nets from routing outside OCRT.
• Connectivity Constraints

• Make sure the nets are not open.

• Pin Accessibility Constraints
• Make sure the length of each pin metal can be maximized legally.
• Single-Terminal Input Nets Constraints
• Cyclic Avoiding Constraints
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Single Terminal Input Nets Constraints

• BFS propagation
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Single Terminal Input Nets Constraints

• ∀edge e connects g1(x1,y1,z1) and g2(x2,y2,z2) in the routing region 
(𝑙𝑒𝑣𝑒𝑙	of	𝑔! < 𝑙𝑒𝑣𝑒𝑙	of	𝑔")
• 𝜇!"# 𝑒, 𝑛" ⇒ ⋁!!∈%"#	'(	)$ 𝜇!"# 𝑒

*, 𝑛" . Ebt => backtrack edges
• If edge BC is used, edge AB must be used as well.
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Cyclic Avoiding Constraints
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• For multi-pin I/O nets



Cyclic Avoiding Constraints

• ∀𝑛# ∈ multi-terminal I/O pin net, ∀𝑔 𝑥, 𝑦, 𝑧 ∈ ℛ$(𝑛#)

• 𝑙𝑒𝑛 𝑥, 𝑦, 𝑧, 𝑛! =
1, 𝑖𝑓	𝑑𝑒𝑔 𝑥, 𝑦, 𝑧, 𝑛! = 1

𝐿"#$, 𝑖𝑓	𝑑𝑒𝑔 𝑥, 𝑦, 𝑧, 𝑛! = 0
min

∀('!,)!,*!)∈-"#$(',),*)
𝑙𝑒𝑛 𝑥., 𝑦., 𝑧., 𝑛! + 1 , 𝑜/𝑤

• 𝑙𝑒𝑛 𝑥, 𝑦, 𝑧, 𝑛! ≤ 𝐿"#$
• 𝐿"#$ = 50

23

5050

50

50

50

50

50

5050

51 51 51

515151



MILP Objectives

• Minimize max and total short violations
• 𝛼>× max

∀? @,A,B
∑∀C∈D 𝜇? 𝑥, 𝑦, 𝑧, 𝑛

• 𝛽/× ∑∀0 ',),* ∑∀1∈2𝜇0 𝑥, 𝑦, 𝑧, 𝑛 > 1

• Minimize spacing violations
• 𝛾>×∑C∈D(𝜇?(𝑥F, 𝑦F, 𝑧F, 𝑛) ∧ ⋁C!∈D,C!GC𝜇? 𝑥>, 𝑦>, 𝑧>, 𝑛H )	

• Maximize Pin Accessibility
• ∀𝑛𝑒𝑡	𝑛 ∈ IO	pins,	𝑠𝑙𝑎𝑐𝑘IJ 𝑛 = C

0, 𝑖𝑓	𝑁IJ 𝑛 ≥ 𝑛KL
𝜃>×(𝑛KL −𝑁IJ 𝑛 ), 𝑜/𝑤

• Minimize M2 Usage
• 𝛿>×∑C∈D∑M 𝜇M(𝑒, 𝑛)	

• Minimize Wirelength
• 𝜀>×∑C∈D∑M∈N"# 𝜇M 𝑒, 𝑛 24



Maze Routing Optimization

• After the MILP routing and IOPA, we use the maze router to eliminate 
existing violations, with the lengthened pin metals remaining fixed.
• If there are still violations after maze routing, we insert a dummy poly 

for this placement candidate and deal with next placement candidate.
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Environments

• Machines
• 2.1 GHz twenty-core CPU and 252GB of memory

• MILP Solver
• CPLEX

• Open source ASAP 7nm PDK.
• https://github.com/The-OpenROAD-Project/asap7

• LVS/DRC verification
• Mentor Calibre

• Cell characterization
• Synopsys SiliconSmart
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Spare PMOS Track Example
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Spare NMOS Track Example



Cell Quality Comparison
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Baseline Values

NCTUcell ASAP7 PDK
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P&R Results

• IWLS'05 benchmarks
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Conclusions

• We present a cell synthesis methodology that allows us to keep the 
spare track unused during cell synthesis.
• The proposed MILP can efficiently lengthen the I/O pin metals to 

improve pin accessibility.
• The experimental results show that the synthesized cell library 

successfully outperforms the handcrafted cell library that has very 
high pin accessibility.
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Thanks for listening. 
Q&A.
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Appendix
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Routability-Aware Transistor Placement (RATP)

• Use dynamic programming to do transistor placement
• Permutate possible transistor pairs for pMOS and nMOS transistors.
• DP state: 𝑆 𝑛, 𝑘 , the minimum cost transistor placement result of 𝑛 transistor 

pairs with the 𝑘GH transistor pair placed at the rightmost of the placement ( a 
sub-chain)

5 5 1𝑆[4,1]𝑆[3,5]
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SMT Finding Example
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SMT Finding Example



Single Terminal Input Nets Constraints
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