
Routability Booster–Synthesize a
Routing Friendly Standard Cell

Library by Relaxing BEOL
Resources

Bing-Xun Song, Ting Xin Lin, & Yih-Lang Li
National Yang Ming Chiao Tung University

Computer Science Department
ISPD 2024

1

Outline

• Introduction
• Preliminary
• Methodology
• Experimental Results
• Conclusions

2

Outline

• Introduction
• Preliminary
• Methodology
• Experimental Results
• Conclusions

3

Introduction

• In advanced technology nodes, routing resources significantly
determine routability in physical design stage.
• In this work, we propose a method to synthesize a standard cell

library that has two key features to increase routability in P&R stage.
• Offer more routing resources for the following P&R stage.
• Increase pin accessibility when synthesizing the cells.

Y B A2 A1

4

Outline

• Introduction
• Preliminary
• Methodology
• Experimental Results
• Conclusions

5

Spare Track

• To offer more routing resources, we define spare tracks before
synthesizing cell libraries.
• A spare track is an M1-layer routing track that is a specific track and

kept empty during cell routing as an available M1 routing track for the
upper-level routing.

Y B A2 A1

6

Pin Accessibility

• For evaluating the pin accessibility of a synthesized cell, we calculate
its on-grid access points of each pin metal.
• Vertical access points: access points that can be accessed by using a V1 via.
• Planar access points: access points that can be accessed by using the spare

track.

Y B A2 A1

7

Example of P&R Results

Y B AY B A2 A1 Y B A2 A1

Instance1 Instance2 Instance3

Cell boundarySpare track
M1V0 LISD gategrid line LIG dummy gate at boundary

8

Problem Formulation

• Input: Cell netlist and design rule
• Output: Physical Cell Layout that is DRC-clean and passes LVS

verification with
1. Designated spare track unused.
2. Maximize the pin accessibility
3. Minimize the cell area, wirelength and M2 metal usage.

9

Outline

• Introduction
• Preliminary
• Methodology
• Experimental Results
• Conclusions

10

Algorithm Flow
SPICE Netlist Design Rules

Routability-Aware Transistor
Placement (RATP)

Optimal Cell Routing Territory
(OCRT)

OCRT Constrained Pin Accessbility Driven
MILP Routing Planning and IO Pin Allocation

Routing
Succeeds?

Reach
Iteration

Limit?

Next Placement Result,
Dummy Poly Insertion

Yes

No
No

Disable Spare Track, Reset
Placement Candidates

Post Optimization
Yes

Output Layout
11

Track Assignment Based Routing Estimation

• For each sub-chain, we use track assignment to get a fast routing
estimation without using the spare track.
• Generate segments by the current chain pin allocation.
• Use greedy algorithm to place segments onto a minimum cost track in non-

descending order of segment length.

ST CBA

U
12

Optimal Cell Routing Territory (OCRT)

• After the transistor placement is done.
• For each net, we enhance the track assignment results to find a

possibly best topology quickly.
1. Track assignment results
2. Extend to 3D contour graph
3. Find a Steiner Minimum Tree (SMT) on the 3D contour graph

• The found SMT is an important implication for the following MILP
routing.

13

Track Assignment Results

14

3D Contour Graph Example

15

Steiner Minimum Tree (SMT)

• On a 3D contour graph, we use a mixed algorithm of Dijkstra’s
algorithm and Prim’s algorithm to find a Steiner Minimum tree.
• For a pin or a confirmed Steiner point => propagate using Prim’s

algorithm
• For a potential Steiner point => propagate using Dijkstra’s algorithm

16

SMT Result and OCRT Example

17

MILP Cell Routing and IOPA

• MILP: Mixed Integer Linear Programming
• IOPA: IO Pin Metal Allocation
• In our MILP formulation, spacing and short violations are allowed,

while the open violations are not allowed. To plan IO Pin metals more
accurately
• All nets are given starting solution based on the SMT results.
• All nets are constrained to only find solutions in the OCRT.

18

MILP Constraints

• On our routing graph, each net routing is expelled to use the spare track
initially.
• Forbidden Region Constraints

• Prevent nets from routing outside OCRT.
• Connectivity Constraints

• Make sure the nets are not open.

• Pin Accessibility Constraints
• Make sure the length of each pin metal can be maximized legally.
• Single-Terminal Input Nets Constraints
• Cyclic Avoiding Constraints

19

∀𝑛! ∈ 𝑁!, ∀𝑔 𝑥, 𝑦, 𝑧 ∉ ℛ" 𝑛! ,	𝜇#!$ 𝑥, 𝑦, 𝑧, 𝑛! = 0

∀𝑛! ∈ 𝑁!, 𝜇#!$ 𝑥, 𝑦, 𝑧, 𝑛! = 0
∀&∈(!"),+,,

𝜇&!$ 𝑒, 𝑛!

∀𝑝-, 3
∀$./& 0# ∈1$

𝑏-1 𝑣1 = 1

𝑑𝑒𝑔(𝑥, 𝑦, 𝑧, 𝑠𝑛 𝑝-) + 𝑏-1(𝑣1) = 0	 ∨ 𝑑𝑒𝑔(𝑥, 𝑦, 𝑧, 𝑠𝑛 𝑝-) + 𝑏-1(𝑣1) = 2

𝑑𝑒𝑔 𝑥, 𝑦, 𝑧, 𝑛! = 0 ∨ 𝑑𝑒𝑔 𝑥, 𝑦, 𝑧, 𝑛! = 2

Single Terminal Input Nets Constraints

• BFS propagation

20

Level 1 Level 2Level 2

Level 2

Level 2

Level 3Level 3

Level 3Level 3

C

A

B

Single Terminal Input Nets Constraints

• ∀edge e connects g1(x1,y1,z1) and g2(x2,y2,z2) in the routing region
(𝑙𝑒𝑣𝑒𝑙	of	𝑔! < 𝑙𝑒𝑣𝑒𝑙	of	𝑔")
• 𝜇!"# 𝑒, 𝑛" ⇒ ⋁!!∈%"#	'()$ 𝜇!"# 𝑒

*, 𝑛" . Ebt => backtrack edges
• If edge BC is used, edge AB must be used as well.

21

Level 1

Level 3
CB

Level 2

A

Cyclic Avoiding Constraints

22

• For multi-pin I/O nets

Cyclic Avoiding Constraints

• ∀𝑛# ∈ multi-terminal I/O pin net, ∀𝑔 𝑥, 𝑦, 𝑧 ∈ ℛ$(𝑛#)

• 𝑙𝑒𝑛 𝑥, 𝑦, 𝑧, 𝑛! =
1, 𝑖𝑓	𝑑𝑒𝑔 𝑥, 𝑦, 𝑧, 𝑛! = 1

𝐿"#$, 𝑖𝑓	𝑑𝑒𝑔 𝑥, 𝑦, 𝑧, 𝑛! = 0
min

∀('!,)!,*!)∈-"#$(',),*)
𝑙𝑒𝑛 𝑥., 𝑦., 𝑧., 𝑛! + 1 , 𝑜/𝑤

• 𝑙𝑒𝑛 𝑥, 𝑦, 𝑧, 𝑛! ≤ 𝐿"#$
• 𝐿"#$ = 50

23

5050

50

50

50

50

50

5050

51 51 51

515151

MILP Objectives

• Minimize max and total short violations
• 𝛼>× max

∀? @,A,B
∑∀C∈D 𝜇? 𝑥, 𝑦, 𝑧, 𝑛

• 𝛽/× ∑∀0 ',),* ∑∀1∈2𝜇0 𝑥, 𝑦, 𝑧, 𝑛 > 1

• Minimize spacing violations
• 𝛾>×∑C∈D(𝜇?(𝑥F, 𝑦F, 𝑧F, 𝑛) ∧ ⋁C!∈D,C!GC𝜇? 𝑥>, 𝑦>, 𝑧>, 𝑛H)	

• Maximize Pin Accessibility
• ∀𝑛𝑒𝑡	𝑛 ∈ IO	pins,	𝑠𝑙𝑎𝑐𝑘IJ 𝑛 = C

0, 𝑖𝑓	𝑁IJ 𝑛 ≥ 𝑛KL
𝜃>×(𝑛KL −𝑁IJ 𝑛), 𝑜/𝑤

• Minimize M2 Usage
• 𝛿>×∑C∈D∑M 𝜇M(𝑒, 𝑛)	

• Minimize Wirelength
• 𝜀>×∑C∈D∑M∈N"# 𝜇M 𝑒, 𝑛 24

Maze Routing Optimization

• After the MILP routing and IOPA, we use the maze router to eliminate
existing violations, with the lengthened pin metals remaining fixed.
• If there are still violations after maze routing, we insert a dummy poly

for this placement candidate and deal with next placement candidate.

25

Outline

• Introduction
• Preliminary
• Methodology
• Experimental Results
• Conclusions

26

Environments

• Machines
• 2.1 GHz twenty-core CPU and 252GB of memory

• MILP Solver
• CPLEX

• Open source ASAP 7nm PDK.
• https://github.com/The-OpenROAD-Project/asap7

• LVS/DRC verification
• Mentor Calibre

• Cell characterization
• Synopsys SiliconSmart

27

https://github.com/The-OpenROAD-Project/asap7

28

Spare PMOS Track Example

29

Spare NMOS Track Example

Cell Quality Comparison

30

Baseline Values

NCTUcell ASAP7 PDK

[10]	Y.-L.	Li,	et	al.,	“NCTUcell:	A	DDA-Aware	Cell	Library	Generator	for	FinFET	Structure	with	Implicitly	Adjustable	Grid	Map,”	In	Proc.	of	DAC,	Jun,	2019

P&R Results

• IWLS'05 benchmarks

31

NCTUcell

[10]	Y.-L.	Li,	et	al.,	“NCTUcell:	A	DDA-Aware	Cell	Library	Generator	for	FinFET	Structure	with	Implicitly	Adjustable	Grid	Map,”	In	Proc.	of	DAC,	Jun,	2019

Outline

• Introduction
• Preliminary
• Methodology
• Experimental Results
• Conclusions

32

Conclusions

• We present a cell synthesis methodology that allows us to keep the
spare track unused during cell synthesis.
• The proposed MILP can efficiently lengthen the I/O pin metals to

improve pin accessibility.
• The experimental results show that the synthesized cell library

successfully outperforms the handcrafted cell library that has very
high pin accessibility.

33

Thanks for listening.
Q&A.

34

Appendix

35

Routability-Aware Transistor Placement (RATP)

• Use dynamic programming to do transistor placement
• Permutate possible transistor pairs for pMOS and nMOS transistors.
• DP state: 𝑆 𝑛, 𝑘 , the minimum cost transistor placement result of 𝑛 transistor

pairs with the 𝑘GH transistor pair placed at the rightmost of the placement (a
sub-chain)

5 5 1𝑆[4,1]𝑆[3,5]

36

Why Not Using Prim’s Directly

7 151

A

S C
B12
5D14

Weight=25

1

7 13

16

37

Why Not Using Prim’s Directly

7 151

A

S C
B12
5D14

7 13

16

1

38

Weight=25

Why Not Using Prim’s Directly

7 151

A

S C
B12
5D14

7 13

16

1

39

Weight=23 < 25

12
5

1

A

B C

D
S

14

1537

5

15

19

16

40

SMT Finding Example

12
5

1

A

B C

D
S

14

1537

519

1516

41

SMT Finding Example

12
5

1

A

B C

D
S

14

1537

519

151

42

SMT Finding Example

12
5

1

A

B C

D
S

14

1537

519

151

43

SMT Finding Example

12
5

1

A

B C

D
S

14

1537

519

151

44

SMT Finding Example

12
5

1

A

B C

D
S

14

1537

514

121

45

SMT Finding Example

Single Terminal Input Nets Constraints

46

