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COMPUTATIONAL LITHOGRAPHY

GPUs manufactured inside the lithography system
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Mask Lithography
Optimization Modeling

* Computational lithography is a critical research area that
numerically models the behavior inside the lithography system.

* Traditional approaches take days to optimize and simulate a
design on hundreds/thousands of CPU clusters, bottlenecking
the turn-around-time.

* Essential for chip yield improvement, and manufacturing cost
' reduction.
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OPTICAL PROXIMITY CORRECTION

Design Mask Silicon

OPC M ZE EF,\::ZE Lithography
D D

OPC is the largest workload in semi design & manufacturing, tens of billions of CPU hours/yr



LITHOGRAPHY MODELING and MASK OPTIMIZATION

Optical Resist Optical modeling maps amask image to

:> :> light intensity (aerial image) that is

projected on a silicon wafer.

Resist modeling deals with the interaction
between light intensity and resist materials

Mask Image Aerial Image Resist Image and determines the final shape formed on
the silicon wafer.

Lithography Modeling
Computes the post-lithography shape on the silicon wafer given a mask design
Mask->Resist

Mask Optimization
Optimizes a mask such that the remaining pattern on the silicon wafer after the lithography process is as close as the
desired shape (design)
An inverse process of lithography modeling
Design->Mask
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Computational Lithography Challenges

Lithography images 80 billion
microscopic transistors in a
single GPU onto silicon

Even a $200M camera doesn’t
have enough resolution for
this without computational
lithography

Must solve an inverse Physics
problem, for trillions of
polygons in a single GPU

We cannot keep adding giant
datacenters for this
exponentially growing
computation

Process node, nm

Number of datacenters

Al can allow foundries to deploy new lithography solutions, like ILT, necessary to continue semiconductor scaling



Design

MILLION-X LEAP IN SCIENTIFIC COMPUTING

Diffractive optics

Al/ML to enable the leap in performance
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Al COMPUTATIONAL LITHOGRAPHY

Motivations and Challenges

Al is well-suited for image understanding tasks

Computational Lithography is capturing the relationship among Design, Mask, and Resist.

Al is fast thanks to the Computing Power from GPU/CUDA
Traditional Lithography Simulation (10s) vs Single A100 ML Resist Prediction (5ms)
Traditional Mask Optimization Engine (100s) vs Single A100 ML Mask Optimization (5ms)

Critical challenge of Al computational lithography: Lacking Data
ML models, simply speaking, are learning distributions, that are built upon well-distributed big data assumptions.

Chip data are hard to collect due to the long design cycle and IP protection.

NVIDIA.



NVIDIA

Lithography Simulation with Conditional GAN Backbone

LithoGAN TEMPO DAMO-DLS

Thin mask model.
Optical and resist

. Thick mask model. Thin mask model.
modeling. | |
. o . Optical modeling Optical and resist
Single via simulation .
. only. modeling.
on small clip only. | o |
. "y Requires thin mask Multiple via simulation
Requires additional L - -
L aerial image as in a tile.
effort to predict via .
location. Input. Resolution: 4nm?/pixel.
DCGAN UNet++

Max tile size: 1pum?.
DCGAN

None of them considers the frequency domain characteristics of lithography simulation.



Al Computational Lithography

Inductive Bias: Fourier Neural Operator as Lithography Learner

a(x) vo(x) v1(x) vr(z)  u(z)

* FNO: Learning Channel Mixing in Frequency Domain
P | Fourter Fourner Fourter Q
Unit Unit | | Unit

Vi1 = o(FUF(V2) - W), Wy € COXCXEXW "k e

* Forward Lithography Process

Analogy between lithography simulation and FNO

Step Lithography Simulation FNO
1 F(M): FFT on rasterized mask F(V;): FFT on input space
2 F(hy)(-): Linear transformation with lithography kernels W (-): Linear channel mixing
3 F~1(-): Convert back to spatial domain F~1(-): Convert back to spatial domain
4 | a[-]%: Weighted summation across intensity responses to all lithography kernels o: Some activation

Li, Zongyi, et al. "Fourier neural operator for parametric partial differential equations.” arXiv preprint arXiv:2010.08895 (2020).
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Global+Local Lithography Modeling

B ——————————————————_——————————————————————————————— —

The overall contour prediction pipeline of the dual-band neural networks.

pool, /8 = Optimized :
S22 j?h. — Béstties Uit (3) Image Reconstruction a
—
(1) Global Perception
—> >

(2) Local Perceptlon"
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Al Computational Lithography

3) CNN Local Perception « Shared FNO:
* Input images will be divided into non-overlapped
»L.Cony. [—*.C0NY pre~menmemmen > Conv patches, which will share the same FNO unit to learn
\ global embedding.
HEEE :-I-i-l:I\\EIEIEIEI + TokenConv:
_J:II:II:II:I e _’,...'. ) ’EEDD_> . Ca!oture the spatial/long-range dependency among
1 11 'HEER --" 0000 neighbor patches.
111 EEEDE OoooOo - .
Input Embedding * Local Perception:
: : . * An auxiliary path with stacked convolution layers to
(D Shared FNO @ TokenConv capture local information.

* Design Note:
* FNO introduces inductive bias of the lithography process
* TokenConv contributes to long-range dependency
* Patch size and tokenConv can be adjusted to accommodate different receptive field.
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FULL CHIP GLOBAL PERCEPTION

Optimized
Fourier Unit

Full Tile ~. Core

The light intensity at a location is determined by area surrounding location.

Simulated contours near the tile boundary are not reliable.
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Our Contributions
Al for Lithography Modeling

: ; <A
Result Comparison with State-of-the-art nviDIA
Banch ! UNet DAMO-DLS Ours
enchmark ' mpA (%) mIOU (%) |mPA (%) mIOU (%) |mPA (%) mIOU (%)
ISPD-2019 (L) | 99.40 98.03 | 99.25 98.11 | 99.43  98.27
ISPD-2019 (H) | 99.08  97.97 - . 99.21  98.45
ICCAD-2013 (L)| 97.30 95.38 | 98.94 96.97 | 98.98  97.79
ICCAD-2013 (H)| 95.16  93.04 . : 99.12  97.77
Ours
45 —4 I
34/
2 30
5 151
S UNet Ours 4.76 0l
enchmark! mpA (%) mlOU (%) |mPA (%) mIOU (%) 0 -
N14 9439 9164 | 98.68  96.49 & O & .&
N3 99.96 99.92 | 99.97  99.94 S NS P
o OV

Predicted resist pattern vs simulated resist pattern

k
1 P; N Gj
mIOU(P,G) = — .
(' ) k;PiUG,'
i <% P
mPA(P,G) = — ——
(P.G) k; 5

* Compared to the state-of-the-art ML-based
lithography simulator, we have: a 20X smaller
model size (1.3M vs 20M), 2% higher simulation
accuracy, and 10X faster training convergence (10
epoch vs 100 epoch), 7X faster simulation speed.

* Compared to an open-source physical lithography
simulator (Lithosim) or Calibre, we have: a <1%
accuracy loss with 85X speedup.
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Full Chip Simulation

&~ DOINN —o— UNet

1.00
0.95 - | -e-a A A Ao {.Xv«,;‘w;_fH}“{}_{:);_‘
S 0.90
= &
0.85 4-
¢ [ 1
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OPC Iterations
Lithography modeling performance on subtle perturbations.

ISPD-2019-Full mPA (%) mIOU (%)

DBNN 96.30 92.03
DBNN-FS 99.25 98.23

DOINN-FS
S
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What Does DOINN Learn?

(a) Global Perception (b) Local Perception
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Our Contributions

| EPE

Design

Resist

Evaluation of Mask Quality

/71 PV Band

Compared to the state-of-the-art academic mask optimization
engine, we can solve the mask optimization in single inference.

600x speedup and better mask quality than numerical solvers
provide better mask quality: 57X smaller EPE violation

progressive self-training of FNO with better desigh samples, which is
not feasible with a traditional solver.

Epoch 1
Al: MSE 920798 EPE 382
ILT: MSE 717711 EPE 123

Mask
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Evaluation of Mask Quality

| EPE
T

Design

Resist

771 PV Band

Definition 1 (EPE Violation[20]). EPE is measured as the geomet-
ric distance between the target edge and the lithographic contour
printed at the nominal condition. If the EPE measured at a point is
greater than certain tolerance value, we call it an EPE violation.

Definition 2 (MSE). MSE measures the pixel-wise difference be-
tween the design and the resist image as in:

MSE = ||Z — Z;||%. (3)

Definition 3 (PVB Area[20]). This is evaluated by running lithogra-
phy simulation at different corners on the final mask solution. Once
run, a process variation band metric will be defined as the XOR of all

the contours. The total area of the process variation band is defined
as PVB Area.

Our Contributions
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Epoch 1
Al: MSE 920798 EPE 382
ILT: MSE 717711 EPE 123

Desig Mask

s=====
======

Compared to the state-of-the-art academic mask
optimization engine: We can solve the mask
optimization in single inference, achieve a
speedup of an order of magnitude (<1s on A100 vs
a couple of hours per tile), and provide better
mask quality in terms of 57X smaller EPE violation
(2.7 vs 165.2).
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FOURIER NEURAL

OPERATOR



DISCRETIZATION-INVARIANT LEARNING

Input and output at fixed resolution Input and output at any points in domain




DISCRETIZATION-INVARIANCE OF NEURAL OPERATOR

Definition: a trained Al model is discretization-invariant if

®* We can query at any point.

* Converges upon mesh refinement to a limit.
Mesh refinement
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FNO: FOURIER NEURAL OPERATOR

Convolution
| —_ o0
nPUt operator l o

R ~

/]'

27N = >
) N Nt Nl T/

« Convolution = multiplication in frequency domain.

« Learning weights in frequency domain.

« Fourier Transform implements convolution and also discretization invariant.



INTEGRAL OPERATOR FOR SOLVING LINEAR PDE

Input —> Integral Linear Operator —> Output

K(x,y)

Kernel of integral operator
For heat diffusion

) = wly) o) dy —

 Integral operator outputs functions (not just finite-dimensional vectors).

 Integral operator is discretization invariant.



NEURAL OPERATOR: A GENERAL FRAMEWORK

Integral
Input —> Linear ® ® (Output
Operator
y)dy —

 Integral operator outputs functions (not just finite-dimensional vectors).

v(y)

 Integral operator is discretization invariant.



FNO: FOURIER NEURAL OPERATOR

Convolution
| —_ o0
nPUt operator l o
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« Convolution = multiplication in frequency domain.

« Learning weights in frequency domain.

« Fourier Transform implements convolution and also discretization invariant.



DISCRETIZATION-INVARIANCE

Model
Property

NNs

DeepONets

Interpolation

Neural Operators

Discretization Invariance

X

v

Is the output a function?

Can query the output at any point?

Can take the input at any point?

Universal Approximation

x| XXX | X

v
v
X
v

v
v
v
X
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Neural operators are discretization-invariant.
Neural operators are universal approximators in function spaces.



DEMONSTRATING DISCRETIZATION INVARIANCE OF FNO

Zero-shot super-resolution
Train using coarse resolution data

Directly evaluate on higher resolution (no re-training)
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PINO: PHYSICS-INFORMED NEURAL OPERATOR

query points x

7
/7
non-linearity projection
linear integral operator 1 one i linear integral operator L data IOSS
output: v4 output: v,
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PINO: PHYSICS-INFORMED NEURAL OPERATOR

PINO can learn solution operator for a family of equations and fine-tune on an instance

Operator learning Instance-wise finetuning

& B =0




TRANSFER LEARNING WITH PINO

Operator learned on Re100, fine-tune to Re500. Converges 3x faster.




INVERSE PROBLEMS WITH PINO

Inverse problem: given solution of forward simulation, recover input.
PINO makes the inverse prediction more physically valid.
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(a) Ground truth input @ (b) Inversion using only (¢) Inversion using data
data constraint and PDE constraints
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(d) Observed output func- (¢) Output function of in- (f) Output function of in-
tion version using only data version using data and
constraint PDE constraints



Al FOR WEATHER AND CLIMATE



Ground Truth FourCastNet

Our Al (FourCastNet) is 45,000 times faster than current weather models



CLIMATE CHANGE MITIGATION: MODELING CO, STORAGE
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FOUR-DIMENSIONAL CCS MODELING WITH Al (FNO)
Our Al Method accelerates by 700,000 times

Permeability Heat Map



FOUR-DIMENSIONAL CCS MODELING WITH Al (FNO)

Pred, t=10 day

Gas Saturation



Summary

Computational Lithography Challenges
Slow, costly, ...

Al for Computational Lithography
Promising
Lacking Data

FNO and CFNO Backbone
Carrying good inductive biases to be plugged into machine learning models

Our Contributions

Al lithography modeling
Al mask optimization

<2 NVIDIA.
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