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COMPUTATIONAL LITHOGRAPHY

GPUs manufactured inside the lithography system

Mask 

Optimization

Lithography 

Modeling

Chip Design Mask Resist/Wafer

• Computational lithography is a critical research area that 
numerically models the behavior inside the lithography system. 

• Traditional approaches take days to optimize and simulate a 
design on hundreds/thousands of CPU clusters, bottlenecking 
the turn-around-time.

• Essential for chip yield improvement, and manufacturing cost 
reduction.

Mask (containing chip design)

Silicon Wafer
Optical Source



Already the Largest Workload in Semiconductor Design, OPC Requires Innovations in Computational Lithography

OPTICAL PROXIMITY CORRECTION

Design Mask

OPC Lithography

Silicon

OPC is the largest workload in semi design & manufacturing, tens of billions of CPU hours/yr



LITHOGRAPHY MODELING and MASK OPTIMIZATION

Optical Resist

Mask Image Aerial Image Resist Image

► Optical modeling maps a mask image to

light intensity (aerial image) that is

projected on a silicon wafer.

► Resist modeling deals with the interaction

between light intensity and resist materials 

and determines the final shape formed on

the silicon wafer.

Lithography Modeling

Computes the post-lithography shape on the silicon wafer given a mask design

Mask->Resist

Mask Optimization

Optimizes a mask  such that the remaining pattern on the silicon wafer after the lithography process is as close as the 

desired shape (design)

An inverse process of lithography modeling

Design->Mask



Lithography images 80 billion 
microscopic transistors in a 
single GPU onto silicon

Even a $200M camera doesn’t 
have enough resolution for 
this without computational 
lithography

Must solve an inverse Physics 
problem, for trillions of 
polygons in a single GPU

We cannot keep adding giant 
datacenters for this 
exponentially growing 
computation

AI can allow foundries to deploy new lithography solutions, like ILT, necessary to continue semiconductor scaling

Computational Lithography Challenges
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MILLION-X LEAP IN SCIENTIFIC COMPUTING

1980 1990 2000 2010 2020
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AI/ML to enable the leap in performance

Design MaskDiffractive optics



AI COMPUTATIONAL LITHOGRAPHY
Motivations and Challenges

▪ AI is well-suited for image understanding tasks

▪ Computational Lithography is capturing the relationship among Design, Mask, and Resist.  

▪ AI is fast thanks to the Computing Power from GPU/CUDA

▪ Traditional Lithography Simulation (10s) vs Single A100 ML Resist Prediction (5ms)

▪ Traditional Mask Optimization Engine (100s) vs Single A100 ML Mask Optimization (5ms)

▪ Critical challenge of AI computational lithography: Lacking Data

▪ ML models, simply speaking, are learning distributions, that are built upon well-distributed big data assumptions. 

▪ Chip data are hard to collect due to the long design cycle and IP protection.



Lithography Simulation with Conditional GAN Backbone
LithoGAN [Ye+,DAC’19] TEMPO [Ye+,ISPD’20] DAMO-DLS [Chen+,ICCAD’20]

► Thin mask model.

► Optical and resist 

modeling.

► Single via simulation 

on small clip only.

► Requires additional 

effort to predict via 

location.

► Max tile size: 1µm2.

► DCGAN

► Thick mask model.

► Optical modeling 

only.

► Requires thin mask 

aerial image as 

input.

► DCGAN

► Thin mask model.

► Optical and resist 

modeling.

► Multiple via simulation 

in a tile.

► Resolution: 4nm2/pixel.

► UNet++

► None of them considers the frequency domain characteristics of lithography simulation.
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AI Computational Lithography
Inductive Bias: Fourier Neural Operator as Lithography Learner

Li, Zongyi, et al. "Fourier neural operator for parametric partial differential equations." arXiv preprint arXiv:2010.08895 (2020).

• FNO: Learning Channel Mixing in Frequency Domain

• Forward Lithography Process

Analogy between lithography simulation and FNO



Global+Local Lithography Modeling

The overall contour prediction pipeline of the dual-band neural networks.
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AI Computational Lithography

• Design Note:
• FNO introduces inductive bias of the lithography process
• TokenConv contributes to long-range dependency
• Patch size and tokenConv can be adjusted to accommodate different receptive field.

• Shared FNO:
• Input images will be divided into non-overlapped 

patches, which will share the same FNO unit to learn 
global embedding.

• TokenConv:
• Capture the spatial/long-range dependency among 

neighbor patches.

• Local Perception:
• An auxiliary path with stacked convolution layers to 

capture local information.  



FULL CHIP GLOBAL PERCEPTION

Optimized 

Fourier Unit

pool, /8

Full Tile Core

► The light intensity at a location is determined by area surrounding location.

► Simulated contours near the tile boundary are not reliable.
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Our Contributions
AI for Lithography Modeling

• Compared to the state-of-the-art ML-based 
lithography simulator, we have: a 20X smaller 
model size (1.3M vs 20M), 2% higher simulation 
accuracy, and 10X faster training convergence (10 
epoch vs 100 epoch), 7X faster simulation speed.

• Compared to an open-source physical lithography 
simulator (Lithosim) or Calibre, we have: a <1% 
accuracy loss with 85X speedup.

Ours

Predicted resist pattern vs simulated resist pattern



ISPD-2019-Full mPA (%) mIOU (%)

DBNN 

DBNN-FS

96.30 92.03

99.25 98.23

(a) Mask (b) DOINN (c) DOINN-FS

(d) Mask (e) DOINN (f) DOINN-FS

Full Chip Simulation



What Does DOINN Learn?

(a) Global Perception (b) Local Perception
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Our Contributions
AI for Inverse Lithography (Mask Optimization)

Evaluation of Mask Quality

Compared to the state-of-the-art academic mask optimization 

engine, we can solve the mask optimization in single inference.

600x speedup and better mask quality than numerical solvers 

provide better mask quality: 57X smaller EPE violation

progressive self-training of FNO with better design samples, which is 

not feasible with a traditional solver. 

Desig

n

Mask Resist
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Our Contributions
AI for Inverse Lithography (Mask Optimization)

Evaluation of Mask Quality

• Compared to the state-of-the-art academic mask 
optimization engine: We can solve the mask 
optimization in single inference, achieve a 
speedup of an order of magnitude (<1s on A100 vs 
a couple of hours per tile), and provide better 
mask quality in terms of 57X smaller EPE violation 
(2.7 vs 165.2).

Desig

n

Mask Resist
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FOURIER NEURAL 
OPERATOR



DISCRETIZATION-INVARIANT LEARNING
One AI model for any discretization: no re-training

Neural Network Neural Operator

Input and output at fixed resolution Input and output at any points in domain



Definition: a trained AI model is discretization-invariant if

• We can query at any point.

• Converges upon mesh refinement to a limit.

DISCRETIZATION-INVARIANCE OF NEURAL OPERATOR

Mesh refinement

Converging solution



FNO: FOURIER NEURAL OPERATOR

Input Output
Convolution
Operator

Non-linearity

• Convolution = multiplication in frequency domain.

• Learning weights in frequency domain.

• Fourier Transform implements convolution and also discretization invariant.



INTEGRAL OPERATOR FOR SOLVING LINEAR PDE

• Integral operator outputs functions (not just finite-dimensional vectors).

• Integral operator is discretization invariant. 

Input OutputIntegral Linear Operator

𝐾(x, y)

Kernel of integral operator
For heat diffusion



NEURAL OPERATOR: A GENERAL FRAMEWORK

Input Output
Integral 
Linear 

Operator
Non-linearity

• Integral operator outputs functions (not just finite-dimensional vectors).

• Integral operator is discretization invariant. 



FNO: FOURIER NEURAL OPERATOR

Input Output
Convolution
Operator

Non-linearity

• Convolution = multiplication in frequency domain.

• Learning weights in frequency domain.

• Fourier Transform implements convolution and also discretization invariant.



• Neural operators are discretization-invariant.

• Neural operators are universal approximators in function spaces.

DISCRETIZATION-INVARIANCE



DEMONSTRATING DISCRETIZATION INVARIANCE OF FNO
Zero-shot super-resolution

Train using coarse resolution data

Directly evaluate on higher resolution (no re-training)
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PHYSICS INFORMED NEURAL 
OPERATORS



PINO: PHYSICS-INFORMED NEURAL OPERATOR



Operator learning Instance-wise finetuning

PINO can learn solution operator for a family of equations and fine-tune on an instance

PINO: PHYSICS-INFORMED NEURAL OPERATOR



TRANSFER LEARNING WITH PINO

Operator learned on Re100, fine-tune to Re500. Converges 3x faster.

Re100 Re500



INVERSE PROBLEMS WITH PINO
Inverse problem: given solution of forward simulation, recover input.

PINO makes the inverse prediction more physically valid.
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AI FOR WEATHER AND CLIMATE
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Our AI (FourCastNet) is 45,000 times faster than current weather models



CLIMATE CHANGE MITIGATION: MODELING CO2 STORAGE
Our AI Method accelerates by 700,000 times



well1

well2

well3
global

Permeability Heat Map

FOUR-DIMENSIONAL CCS MODELING WITH AI (FNO)

Our AI Method accelerates by 700,000 times



Gas Saturation

FOUR-DIMENSIONAL CCS MODELING WITH AI (FNO)

Our AI Method accelerates by 700,000 times

well1

well2

well3

global
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Summary

• Computational Lithography Challenges

• Slow, costly, …

• AI for Computational Lithography 

• Promising

• Lacking Data 

• FNO and CFNO Backbone

• Carrying good inductive biases to be plugged into machine learning models

• Our Contributions

• AI lithography modeling

• AI mask optimization
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