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Why Computing-In-Memory?

• Von Neumann architecture hitting the power wall
• Data access energy far greater than computation 

• Neural network computation is data-centric 
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How to do Computing-in-Memory? 
• Advanced memory technology + new architectures
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NOR-Flash based
MAC Unit, [X. Guo et 
al, IEDM, 2017]

PCRAM based SNN 
chip [IBM, 2014] 

RRAM-based NeuRRAM [W. 
Wan, et al, Nature, 2022]

MRAM-based MAC [J. Sung, 
et al, Nature, 2022]

SRAM-based logic [S. 
Jeloka, et al, JSSC, 2016]

SRAM-based MAC [X. Shi 
et al, ISSCC, 2020]

DRAM-based logic [F. Gao 
et al, MICRO, 2018]



A Nor-Flash based CIM chip

• NOR-Flash array as multiply–accumulate (MAC) engine
• Each cell stores 8-bit weight
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A Nor-Flash based CIM chip
• Parallel MAC based on Kirchhoff's law
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σ(𝑉𝑖𝑛𝑖 − 𝑉𝑜𝑢𝑡)∗𝐺𝑖=0 𝑉𝑜𝑢𝑡 =
σ 𝑉𝑖𝑛𝑖∗𝐺𝑖
σ 𝐺𝑖

• 90 nm node embedded Flash

• Weight capacity: 6 MB

• Peak speed: 30 GOPS

• Power: 2mW (full chip)

• Used for voice recognition

• In volume production 

• Shipped 1M chips



Accuracy of MAC operation

• Analog computing suffers noises

S. Gao et al., IEEE IEDM, 2019

DFT processing of input signal

Correlation 99.5%
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Memory Array Weight Program Error

• Trade-off between accuracy and programming time(cost)
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Memory cell non-linearity

• Memory cell non-linearity
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Other errors

• Input DAC non-linearity

• Output ADC non-linearity + mismatch

• Interconnect(BL/SL) IR-drop 

• Model quantization loss

• Temperature drift 

• Process variation

• Layer by layer error accumulation

• ...

10

Ideal floating-point model inference output
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Opportunities to conquer analog computing errors

• Transfer learning

• Noise aware neural network training

• ...

11L. Zhao et al., AICIS, 2021



NN model deployment

• Trained on GPUs

• Inferenced by CIM hardware 

• In-house CIM model deployment flow
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A CIM-aware NN compiler
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Front-end

Middle-end

Back-end

PyTorch

ONNX Interpreter

Caffe2 Tensorflow

onnx-tf

Weight for MAC task
Task :

• Dimension

• Operation type

Convolution Optimization

CIM Loadable

Weight Mapping

onnx-caffeonnx-pytorch

Load model

Operator 

Fusion

New Graph

CIM Chip Config Network Information

C. Yang et al., WCCCT, 2023



Weight Mapping

• Weights need to be mapped to memory arrays

• A much simpler floorplan problem
• No performance/WL optimization
• Small amount of blocks

• A greedy algorithm is applied. 

• New constraints for future work
• Multi-core mapping

• Performance driven
• data-flow related

• Adding redundancy 
• IR-drop aware



Operator fusion

• Operations can be merged without cost
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Performance comparison between baseline code and optimized code for four networks.

1.2 x to 2.3 x 
acceleration

significantly reduces model deployment time and cost. 

➢ Overall inference runtime comparison :

Compiler effectiveness

C. YANG et al., WCCCT, 2023



Conclusion

• Computing-in-memory becomes real

• Still facing a lot of challenges
• Analog Computing accuracy 

• Easy to use tool chain

• Technology readiness

• Application ecosystem 

• ...

• Look forward to that CIM chips become widely used in our daily life.
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Thanks!
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