
Challenges and Opportunities for Computing-
in-Memory Chips

Xiang Qiu

School of Integrated Circuits,

East China Normal University

& Shanghai Flash Billion Semiconductor Inc.

1

Outline

• Computing-In-Memory Overview

• A NOR-Flash based CIM chip

• Analog Computing Accuracy Challenge

• Neural Network Model Deployment on CIM chips

• Conclusions

2

Why Computing-In-Memory?

• Von Neumann architecture hitting the power wall
• Data access energy far greater than computation

• Neural network computation is data-centric

CPU

Ctrl

ALU

Mem

3

How to do Computing-in-Memory?
• Advanced memory technology + new architectures

4

NOR-Flash based
MAC Unit, [X. Guo et
al, IEDM, 2017]

PCRAM based SNN
chip [IBM, 2014]

RRAM-based NeuRRAM [W.
Wan, et al, Nature, 2022]

MRAM-based MAC [J. Sung,
et al, Nature, 2022]

SRAM-based logic [S.
Jeloka, et al, JSSC, 2016]

SRAM-based MAC [X. Shi
et al, ISSCC, 2020]

DRAM-based logic [F. Gao
et al, MICRO, 2018]

A Nor-Flash based CIM chip

• NOR-Flash array as multiply–accumulate (MAC) engine
• Each cell stores 8-bit weight

5

Linear region Saturation region

Vg = Von

Vd = Vin Vs = 0

Vd = Vin Vs = 0

Id

Vd

S. Gao et al., IEEE IEDM, 2019

A Nor-Flash based CIM chip
• Parallel MAC based on Kirchhoff's law

6

σ(𝑉𝑖𝑛𝑖 − 𝑉𝑜𝑢𝑡)∗𝐺𝑖=0 𝑉𝑜𝑢𝑡 =
σ 𝑉𝑖𝑛𝑖∗𝐺𝑖
σ 𝐺𝑖

• 90 nm node embedded Flash

• Weight capacity: 6 MB

• Peak speed: 30 GOPS

• Power: 2mW (full chip)

• Used for voice recognition

• In volume production

• Shipped 1M chips

Accuracy of MAC operation

• Analog computing suffers noises

S. Gao et al., IEEE IEDM, 2019

DFT processing of input signal

Correlation 99.5%

7

Example:

(a) (b)

(c)

DFT matrix:

 Freq. domain
= Time domain

 𝑖𝑛 Time domain

 (−

)

 (−)

 (−) =

 =
 (−)

 𝑖𝑛 =
 (−)

1

0.5

0

…
…

……

Measured weight in memory array

A 256-Point DFT matrix

Memory Array Weight Program Error

• Trade-off between accuracy and programming time(cost)

8

Erase Program

@ =

~900 cells

@ =

S. Gao et al., IEEE IEDM, 2019

Memory cell non-linearity

• Memory cell non-linearity

9

 max~

 max

 max

Solid line: standard process

Dotted line: PLRAM

Dashed line: linear region

Linear region Saturation region

Vg = Von

Vd = Vin Vs = 0

Vd = Vin Vs = 0

Id

Vd

When large input meets small weight

Other errors

• Input DAC non-linearity

• Output ADC non-linearity + mismatch

• Interconnect(BL/SL) IR-drop

• Model quantization loss

• Temperature drift

• Process variation

• Layer by layer error accumulation

• ...

10

Ideal floating-point model inference output

ch
ip

 A
D

C
 o

u
tp

u
t

Opportunities to conquer analog computing errors

• Transfer learning

• Noise aware neural network training

• ...

11L. Zhao et al., AICIS, 2021

NN model deployment

• Trained on GPUs

• Inferenced by CIM hardware

• In-house CIM model deployment flow

original
model

weight
extraction/c

onversion

dataflow
planning

weight
allocation

code
generation

performance
evaluation

Not OK

on-chip test

Not Accurate

successNot OK

Not OK

A CIM-aware NN compiler

13

Front-end

Middle-end

Back-end

PyTorch

ONNX Interpreter

Caffe2 Tensorflow

onnx-tf

Weight for MAC task
Task :

• Dimension

• Operation type

Convolution Optimization

CIM Loadable

Weight Mapping

onnx-caffeonnx-pytorch

Load model

Operator

Fusion

New Graph

CIM Chip Config Network Information

C. Yang et al., WCCCT, 2023

Weight Mapping

• Weights need to be mapped to memory arrays

• A much simpler floorplan problem
• No performance/WL optimization
• Small amount of blocks

• A greedy algorithm is applied.

• New constraints for future work
• Multi-core mapping

• Performance driven
• data-flow related

• Adding redundancy
• IR-drop aware

Operator fusion

• Operations can be merged without cost

15

data bias

weight

conv batchnorm

alpha

data

weight+bias

conv+

𝑌 = 𝑎𝑙𝑝ℎ𝑎 ∗ ∗ 𝑋 𝑐𝑜𝑛𝑣𝑏𝑖𝑎𝑠 𝑏𝑎𝑡𝑐ℎ𝑏𝑖𝑎𝑠
= (𝑎𝑙𝑝ℎ𝑎 ∗) ∗ 𝑋 (𝑎𝑙𝑝ℎ𝑎 ∗ 𝑐𝑜𝑛𝑣𝑏𝑖𝑎𝑠 𝑏𝑎𝑡𝑐ℎ𝑏𝑖𝑎𝑠)

 ⋯
⋮ ⋱ ⋮

 𝑀 𝑀

𝐵
⋮
𝐵𝑀

𝑋
⋮
𝑋

 ⋯
⋮ ⋱ ⋮

 𝑀 𝑀

𝑋
⋮
𝑋

Merge bias into matrix

Performance comparison between baseline code and optimized code for four networks.

1.2 x to 2.3 x
acceleration

significantly reduces model deployment time and cost.

➢ Overall inference runtime comparison :

Compiler effectiveness

C. YANG et al., WCCCT, 2023

Conclusion

• Computing-in-memory becomes real

• Still facing a lot of challenges
• Analog Computing accuracy

• Easy to use tool chain

• Technology readiness

• Application ecosystem

• ...

• Look forward to that CIM chips become widely used in our daily life.

17

Thanks!

18

	幻灯片 1
	幻灯片 2: Outline
	幻灯片 3: Why Computing-In-Memory?
	幻灯片 4: How to do Computing-in-Memory?
	幻灯片 5: A Nor-Flash based CIM chip
	幻灯片 6: A Nor-Flash based CIM chip
	幻灯片 7: Accuracy of MAC operation
	幻灯片 8: Memory Array Weight Program Error
	幻灯片 9: Memory cell non-linearity
	幻灯片 10: Other errors
	幻灯片 11: Opportunities to conquer analog computing errors
	幻灯片 12: NN model deployment
	幻灯片 13: A CIM-aware NN compiler
	幻灯片 14: Weight Mapping
	幻灯片 15: Operator fusion
	幻灯片 16: Compiler effectiveness
	幻灯片 17: Conclusion
	幻灯片 18: Thanks!

