
DREAMPlaceFPGA-PL: An Open-Source GPU-Accelerated
Packer-Legalizer for Heterogeneous FPGAs

Rachel Selina Rajarathnam1, Zixuan Jiang1, Mahesh A. Iyer2, David Z. Pan1

1ECE Department, The University of Texas at Austin, TX, USA

2Intel Corporation, CA, USA

This work was supported in part by Intel and VMware

2

⌖ Background & Motivation

⌖ Previous Works

⌖ DREAMPlaceFPGA-PL

⌖ Results

⌖ Summary

OUTLINE

2

3

FPGAS IN ASIC PROTOTYPING

One or more FPGAs used

https://sirinsoftware.com/blog/technology/great-challenges-fpga-prototyping-must-overcome/ S. M. Trimberger, IEEE, 2015

10M logic
elements

9M logic
cells

Source: Intel & AMD

https://sirinsoftware.com/blog/technology/great-challenges-fpga-prototyping-must-overcome/

Logic Netlist

Technology Mapping

4

FPGA DESIGN IMPLEMENTATION

http://wuxili.net/pdf/dissertation.pdf

http://wuxili.net/pdf/dissertation.pdf

5

FPGA PLACEMENT

Global
Placement

Architecture
Description

Packing +
Legalization

Detailed
Placement Placed design

Design
Information

Source: Xilinx; ISPD’2016 Contest

Stages in an FPGA Placement

min
!,#

$ %, ' (. *. +,-(*./0-*(

Constraints:

• Density: No overlaps between instances,

• Routability: Design is routable,

• Congestion: Ensure placement is not congested etc.,

Placement Problem Formulation

A simplified Xilinx Ultrascale architecture

Minimize
wire length

Slice

6

GLOBAL PLACEMENT

⌖ Obtain rough legal locations for instances

⌖ Optimization problem can be formulated as:

§ Simulated Annealing

§ Quadratic Placement

§ Non-linear Placement

LUT

6

LEGALIZATION

Slice DSP/RAM

sliceUnit

y
x

Assign instances to respective sites on the FPGA

§ Look-up tables (LUTs) & FlipFlops (FFs) are packed

FF

6

DETAILED PLACEMENT

⌖ Further refine the legalized placement

⌖ Formulated as

§ Independent Set Matching

§ Dynamic Programming

§ Hill Climbing, etc.

7

FPGA PLACEMENT ACCELERATION

R.S.Rajarathnam+, ASPDAC’2022

DREAMPlaceFPGA Runtime
Breakdown

GP

LG

DP

Packing +
Legalization

Global Placement
accelerated on a GPU

Global
Placement

8

EXISTING PACKER-LEGALIZER ACCELERATION SCHEMES

⌖ Multi-threaded CPU [W.Li+, ICCAD’2019; W.Li+, TCAD’2017; L.Singhal+, DAC’2017]

§ Scalable consensus-based algorithms

⌖ Use of CPU-GPU systems in ASIC LG Acceleration [H.Yang+, DATE’2022]

§ 2x - 4x speedup observed

§ In ASIC, Legalization accounts for ~5% of total placement runtime [Y.Lin+, TCAD’2020]

Other acceleration schemes not explored for FPGA packing-legalization!

8

EXISTING PACKER-LEGALIZER ACCELERATION SCHEMES

⌖ Multi-threaded CPU [W.Li+, ICCAD’2019; W.Li+, TCAD’2017; L.Singhal+, DAC’2017]

§ Scalable consensus-based algorithms

⌖ Use of CPU-GPU systems in ASIC LG Acceleration [H.Yang+, DATE’2022]

§ 2x - 4x speedup observed

§ In ASIC, Legalization accounts for ~5% of total placement runtime [Y.Lin+, TCAD’2020]

Other acceleration schemes not explored for FGPA packing-legalization!In FPGAs, LG takes ~35% of total placement runtime

Accelerating on GPUs can help reduce runtime!

9

PACKING RULES IN FPGA ARCHITECTURES

Intel StratixIV: https://www.intel.com/content/www/us/en/products/programmable/devices/features.html; Xilinx Ultrascale: https://www.ispd.cc/contests/16/Legalization.html

Each Logic Array Block (LAB) contains 10 Adaptive Logic Modules (ALMs).
Each ALM contains 2 LUTs, 2 FFs, and 2 adders.

(a) Stratix-IV Architecture [2]

CLK &
Ctrl

ALM0

ALM1

ALM2

ALM3

ALM5

ALM6

ALM7

ALM8

ALM4 ALM9

Data
Inputs

CLK &
Ctrl

LUTA FFA

 FFB
D Q

Data
Outputs

LUTB

I1

I1

I2

I2

I3

I3

I4

I4

I5

I5

I6

I6

ADDB

ADDA
D Q

carry in

carry out

LAB DSP
M9K & M144KIO & PLL

StratixIV Arch
(a) Stratix-IV Architecture [2]

IO BRAM DSPCLB

CLK

LUTB

LUTA

I5 O1I6

I4
I3
I2
I1

O2

 FFA
D

CE
SR

Q

I5
I4
I3
I2
I1

 FFB
D

CE
SR Q

SR
CE

Data
Inputs

Data
Outputs

SR1

CE01

CLK1

BLE0

BLE1

BLE2

BLE3

CE11

SR0

CE00

CLK0

BLE4

BLE5

BLE6

BLE7

CE10

Each Configurable Logic Block (CLB) contains 8 Basic Logic Elements (BLEs).
Each BLE contains 2 LUTs, and 2 FFs. Ultrascale Arch

Slice⟷ LAB
sliceUnit⟷ ALM

Slice⟷ CLB
sliceUnit⟷ BLE

10

SIMULTANEOUS PACK-LEGALIZE ALGORITHM

⌖ Site centric algorithm⇒ Scalable

⌖ LUTs and FFs in a flat global placement are

packed and legalized

⌖ Initialization:

§ Precluster LUT with FFs in fanout

§ Get neighbor instances of each site

W.Li+, TCAD’2018

Slice Site0

10

SIMULTANEOUS PACK-LEGALIZE ALGORITHM

⌖ Direct Legalization (DL) Algorithm:

§ Best Candidate for GPU Acceleration

§ A Candidate: cluster of LUTs + FFs that

can be placed in a Slice

§ Each site runs in parallel

§ > 90% LUTs + FFs are legalized

⌖ RipUp & Greedy Legalization:

Handles the remaining instances

W.Li+, TCAD’2018

Slice Site0Slice Site0

11

⌖ First attempt to accelerate the pack-legalize stage on GPUs

⌖ Accelerate the Direct Legalization (DL) algorithm

§ Revise runtime-critical portions in the algorithm

§ Employ task scheduling for even load across GPU threads

⌖ Contribute to FPGA open-source ecosystem

DREAMPLACEFPGA-PL

W.Li+, TCAD’2018

12

IsNbr : Set of all the neighboring instances of Slice s within a distance D
Nbr : Instances currently considered by the Slice - a subset of IsNbr
Cseed : Set of cluster candidates for Slice s

Cprime : Top 10 candidates in Cseed based on score (HPWL + internal nets)

ctop : Best candidate in Cprime

cfinal : Final solution for Slice s

FLAT DATASTRUCTURES FOR EACH SLICE

IsNbr CprimeCseed
ctop

cfinal

13

THE DIRECT LEGALIZATION (DL) ALGORITHM

Run in parallel for all Slice sites

W.Li+, TCAD’2018

13

THE DIRECT LEGALIZATION (DL) ALGORITHM

Run in parallel for all Slice sites

W.Li+, TCAD’2018

GPU Runtime
Bottleneck (RB)!

A naive GPU Implementation
is > 3x slower than 8T CPU

14

⌖ New candidates = Neighbor Instances in Nbr × candidates in Cseed

⌖ Slice sites can have different | Nbr | and | Cseed |⇒ Exploration space differs!

§ Some Slice sites can have no new candidates

§ Some could have 100s-1000s of new candidates => Load imbalance!

RB1: NEW CLUSTER CANDIDATE CREATION

(1) Staggered addition of new neighbor instances

⌖ Default: Group of neighbors added

⌖ Stagger |"|: Max of |"| neighbors added

|1|: Max number of LUTs + FFs in Slice

For example, consider a Slice with 100 neighbor instances

All neighbor instances are at a distance 3 from Slice.

Let |1|= 32. New neighbor addition is as follows:

Default : {0, 0, 100}

Stagger |1|: {32, 32, 32, 4}

| || |sc

15

RB1: MITIGATION SCHEMES

(1) Staggered addition of new neighbor instances

(2) Scheduling of Slice sites

⌖ Order Slice sites in decreasing order of new candidate exploration space

⌖ Work on Slice sites with similar load at any given time

16

RB1: MITIGATION SCHEMES

(1) Staggered addition of new neighbor instances

(2) Scheduling of Slice sites

(3) Restrict total new candidates explored

⌖ Limit the total | Nbr | x | Cseed | combinations explored

⌖ Could degrade placement quality as potential candidates could be discarded

17

RB1: MITIGATION SCHEMES

18

⌖ Instances in ctop select the best Slice site based on:

§ HPWL improvement for instance to move to Slice

§ Possiblity of internal nets absorbed in a Slice

⌖ Tie-break if multiple Slice sites have same score – low site identifier

⌖ Each Instance selects best site sequentially⇒ Stalls GPU threads!

⌖ Changes to instance datastructure increases memory footprint significantly

RB2: INSTANCE BEST SITE ASSIGNMENT

19

⌖ Minimize sequential portion and include post-processing step

§ Slower on CPU but much faster on GPU

§ Solution is different but there is no loss of placement quality!

RB2: MITIGATION

20

EXPERIMENTAL SETUP

⌖ Design suite: ISPD’2016 benchmarks

⌖ Placers: elfPlace

⌖ Router: Xilinx Vivado v2015.4

⌖ Comparison Metrics

§ Placement HPWL, Routed Wirelength

§ Placement Runtime
*DP run on elfPlace

W. Li+, ICCAD’2019; S. Yang+, ISPD’2016

21

STAGGERED NEIGHBOR ADDITION

W. Li+, ICCAD’2019

CPU: Intel Core i9-7900X @ 3.30 GHz

GPU: NVIDIA TITAN Xp (Pascal)

|!|= 32

22

RESTRICTED NEW CANDIDATE EXPLORATION

W. Li+, ICCAD’2019

CPU: Intel Core i9-7900X @ 3.30 GHz

GPU: NVIDIA TITAN Xp (Pascal)

|!|= 32

23

SG + RT VARIANTS
Two variants that produce the best runtime vs QoR tradeoff considered are:

⌖ V1: Sg = |"|/16 + Rt = |"|/8

§ Aggressive limits on Staggered neighbor addition and Restricted search space

§ Achieves the best runtime speedup with a slight degradation of QoR

⌖ V2: Sg = |"|/8 + Rt = |"|/4

§ Less aggressive than V1

§ Has lower QoR degradation and runtime improvement

24

RUNTIME IMPROVEMENTS

W. Li+, ICCAD’2019

Metric elfPlace(8T) elfPlace(16T) Ours V2 Ours V1

Init 0.97 0.97 0.92 1.00

Direct Legalization (DL) 9.51 7.05 1.84 1.00

RipUp & Greedy LG (RG) 0.79 0.76 0.74 1.00

Total LG 2.80 2.23 1.06 1.00

CPU: Intel Core i9-7900X @ 3.30 GHz

GPU: NVIDIA TITAN Xp (Pascal)

Pack-Legalize (LG) RuntimeDirect Legalization (DL) Runtime

25

IMPACT ON PLACEMENT QUALITY

W. Li+, ICCAD’2019

Placement HPWL Routed Wirelength

Metric elfPlace Ours V2 Ours V1

Placement HPWL 0.994 0.999 1.000

Routed Wirelength 0.991 0.997 1.000

26

DREAMPLACEFPGA-PL SUMMARY

⌖ First attempt to accelerate FPGA packer-legalizer on GPU

⌖ Revise the direct legalization algorithm => 7x speedup than 16T CPU

⌖ DREAMPlaceFPGA-PL

§ 2.23x faster LG than 16T CPU

§ +0.6% placement HPWL and +0.9% routed WL

⌖ With GP and LG accelerated on GPU, placement is 2.38x faster than 16T CPU

https://github.com/rachelselinar/DREAMPlaceFPGA

https://github.com/rachelselinar/DREAMPlaceFPGA

THANK YOU

