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FPGAS IN ASIC PROTOTYPING

One or more FPGAs used

https://sirinsoftware.com/blog/technology/great-challenges-fpga-prototyping-must-overcome/ S. M. Trimberger, IEEE, 2015

10M logic 
elements

9M logic 
cells

Source: Intel & AMD

https://sirinsoftware.com/blog/technology/great-challenges-fpga-prototyping-must-overcome/


Logic Netlist

Technology Mapping
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FPGA DESIGN IMPLEMENTATION

http://wuxili.net/pdf/dissertation.pdf

http://wuxili.net/pdf/dissertation.pdf
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FPGA PLACEMENT

Global 
Placement

Architecture 
Description

Packing + 
Legalization

Detailed 
Placement Placed design

Design 
Information

Source: Xilinx; ISPD’2016 Contest

Stages in an FPGA Placement
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Constraints:

• Density: No overlaps between instances,

• Routability: Design is routable,

• Congestion: Ensure placement is not congested etc.,

Placement Problem Formulation

A simplified Xilinx Ultrascale architecture 

Minimize 
wire length

Slice
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GLOBAL PLACEMENT

⌖ Obtain rough legal locations for instances

⌖ Optimization problem can be formulated as:

§ Simulated Annealing

§ Quadratic Placement

§ Non-linear Placement



LUT
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LEGALIZATION

Slice DSP/RAM

sliceUnit

y
x

Assign instances to respective sites on the FPGA

§ Look-up tables (LUTs) & FlipFlops (FFs) are packed

FF
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DETAILED PLACEMENT

⌖ Further refine the legalized placement

⌖ Formulated as

§ Independent Set Matching

§ Dynamic Programming

§ Hill Climbing, etc.
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FPGA PLACEMENT ACCELERATION

R.S.Rajarathnam+, ASPDAC’2022

DREAMPlaceFPGA Runtime 
Breakdown

GP

LG

DP

Packing + 
Legalization

Global Placement 
accelerated on a GPU

Global 
Placement
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EXISTING PACKER-LEGALIZER ACCELERATION SCHEMES

⌖ Multi-threaded CPU [W.Li+, ICCAD’2019; W.Li+, TCAD’2017; L.Singhal+, DAC’2017]

§ Scalable consensus-based algorithms

⌖ Use of CPU-GPU systems in ASIC LG Acceleration [H.Yang+, DATE’2022]

§ 2x - 4x speedup observed

§ In ASIC, Legalization accounts for ~5% of total placement runtime [Y.Lin+, TCAD’2020]

Other acceleration schemes not explored for FPGA packing-legalization!
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EXISTING PACKER-LEGALIZER ACCELERATION SCHEMES

⌖ Multi-threaded CPU [W.Li+, ICCAD’2019; W.Li+, TCAD’2017; L.Singhal+, DAC’2017]

§ Scalable consensus-based algorithms

⌖ Use of CPU-GPU systems in ASIC LG Acceleration [H.Yang+, DATE’2022]

§ 2x - 4x speedup observed

§ In ASIC, Legalization accounts for ~5% of total placement runtime [Y.Lin+, TCAD’2020]

Other acceleration schemes not explored for FGPA packing-legalization!In FPGAs, LG takes ~35% of total placement runtime

Accelerating on GPUs can help reduce runtime!
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PACKING RULES IN FPGA ARCHITECTURES

Intel StratixIV: https://www.intel.com/content/www/us/en/products/programmable/devices/features.html; Xilinx Ultrascale: https://www.ispd.cc/contests/16/Legalization.html

Each Logic Array Block (LAB) contains 10 Adaptive Logic Modules (ALMs).
Each ALM contains 2 LUTs, 2 FFs, and 2 adders.

(a) Stratix-IV Architecture [2]
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Each Configurable Logic Block (CLB) contains 8 Basic Logic Elements (BLEs).
Each BLE contains 2 LUTs, and 2 FFs. Ultrascale Arch

Slice⟷ LAB
sliceUnit⟷ ALM

Slice⟷ CLB
sliceUnit⟷ BLE
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SIMULTANEOUS PACK-LEGALIZE ALGORITHM

⌖ Site centric algorithm⇒ Scalable

⌖ LUTs and FFs in a flat global placement are

packed and legalized

⌖ Initialization:

§ Precluster LUT with FFs in fanout

§ Get neighbor instances of each site

W.Li+, TCAD’2018

Slice Site0
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SIMULTANEOUS PACK-LEGALIZE ALGORITHM

⌖ Direct Legalization (DL) Algorithm:

§ Best Candidate for GPU Acceleration

§ A Candidate: cluster of LUTs + FFs that

can be placed in a Slice

§ Each site runs in parallel

§ > 90% LUTs + FFs are legalized

⌖ RipUp & Greedy Legalization:

Handles the remaining instances

W.Li+, TCAD’2018

Slice Site0Slice Site0
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⌖ First attempt to accelerate the pack-legalize stage on GPUs

⌖ Accelerate the Direct Legalization (DL) algorithm

§ Revise runtime-critical portions in the algorithm

§ Employ task scheduling for even load across GPU threads

⌖ Contribute to FPGA open-source ecosystem

DREAMPLACEFPGA-PL

W.Li+, TCAD’2018
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IsNbr : Set of all the neighboring instances of Slice s within a distance D
Nbr : Instances currently considered by the Slice - a subset of IsNbr
Cseed : Set of cluster candidates for Slice s

Cprime : Top 10 candidates in Cseed based on score (HPWL + internal nets)

ctop : Best candidate in Cprime

cfinal : Final solution for Slice s

FLAT DATASTRUCTURES FOR EACH SLICE

IsNbr CprimeCseed
ctop

cfinal
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THE DIRECT LEGALIZATION (DL) ALGORITHM

Run in parallel for all Slice sites

W.Li+, TCAD’2018
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THE DIRECT LEGALIZATION (DL) ALGORITHM

Run in parallel for all Slice sites

W.Li+, TCAD’2018

GPU Runtime 
Bottleneck (RB)!

A naive GPU Implementation 
is > 3x slower than 8T CPU
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⌖ New candidates = Neighbor Instances in Nbr × candidates in Cseed

⌖ Slice sites can have different | Nbr | and | Cseed |⇒ Exploration space differs!

§ Some Slice sites can have no new candidates

§ Some could have 100s-1000s of new candidates => Load imbalance!

RB1: NEW CLUSTER CANDIDATE CREATION



(1) Staggered addition of new neighbor instances

⌖ Default: Group of neighbors added

⌖ Stagger |"|: Max of |"| neighbors added

|1|: Max number of LUTs + FFs in Slice

For example, consider a Slice with 100 neighbor instances

All neighbor instances are at a distance 3 from Slice.

Let |1|= 32. New neighbor addition is as follows:

Default : {0, 0, 100}

Stagger |1|: {32, 32, 32, 4}

|    ||     |sc
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RB1: MITIGATION SCHEMES



(1) Staggered addition of new neighbor instances

(2) Scheduling of Slice sites

⌖ Order Slice sites in decreasing order of new candidate exploration space

⌖ Work on Slice sites with similar load at any given time

16

RB1: MITIGATION SCHEMES



(1) Staggered addition of new neighbor instances

(2) Scheduling of Slice sites

(3) Restrict total new candidates explored

⌖ Limit the total | Nbr | x | Cseed | combinations explored

⌖ Could degrade placement quality as potential candidates could be discarded
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RB1: MITIGATION SCHEMES
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⌖ Instances in ctop select the best Slice site based on:

§ HPWL improvement for instance to move to Slice

§ Possiblity of internal nets absorbed in a Slice

⌖ Tie-break if multiple Slice sites have same score – low site identifier

⌖ Each Instance selects best site sequentially⇒ Stalls GPU threads!

⌖ Changes to instance datastructure increases memory footprint significantly

RB2: INSTANCE BEST SITE ASSIGNMENT
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⌖ Minimize sequential portion and include post-processing step

§ Slower on CPU but much faster on GPU

§ Solution is different but there is no loss of placement quality!

RB2: MITIGATION
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EXPERIMENTAL SETUP

⌖ Design suite: ISPD’2016 benchmarks

⌖ Placers: elfPlace

⌖ Router: Xilinx Vivado v2015.4

⌖ Comparison Metrics

§ Placement HPWL, Routed Wirelength

§ Placement Runtime
*DP run on elfPlace

W. Li+, ICCAD’2019; S. Yang+, ISPD’2016
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STAGGERED NEIGHBOR ADDITION

W. Li+, ICCAD’2019

CPU: Intel Core i9-7900X @ 3.30 GHz 

GPU: NVIDIA TITAN Xp (Pascal)

|!|= 32
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RESTRICTED NEW CANDIDATE EXPLORATION

W. Li+, ICCAD’2019

CPU: Intel Core i9-7900X @ 3.30 GHz 

GPU: NVIDIA TITAN Xp (Pascal)

|!|= 32
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SG + RT VARIANTS
Two variants that produce the best runtime vs QoR tradeoff considered are:

⌖ V1: Sg = |"|/16 + Rt = |"|/8

§ Aggressive limits on Staggered neighbor addition and Restricted search space

§ Achieves the best runtime speedup with a slight degradation of QoR

⌖ V2: Sg = |"|/8 + Rt = |"|/4

§ Less aggressive than V1

§ Has lower QoR degradation and runtime improvement
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RUNTIME IMPROVEMENTS

W. Li+, ICCAD’2019

Metric elfPlace(8T) elfPlace(16T) Ours V2 Ours V1

Init 0.97 0.97 0.92 1.00

Direct Legalization (DL) 9.51 7.05 1.84 1.00

RipUp & Greedy LG (RG) 0.79 0.76 0.74 1.00

Total LG 2.80 2.23 1.06 1.00

CPU: Intel Core i9-7900X @ 3.30 GHz 

GPU: NVIDIA TITAN Xp (Pascal)

Pack-Legalize (LG) RuntimeDirect Legalization (DL) Runtime
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IMPACT ON PLACEMENT QUALITY

W. Li+, ICCAD’2019

Placement HPWL Routed Wirelength

Metric elfPlace Ours V2 Ours V1

Placement HPWL 0.994 0.999 1.000

Routed Wirelength 0.991 0.997 1.000
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DREAMPLACEFPGA-PL SUMMARY

⌖ First attempt to accelerate FPGA packer-legalizer on GPU

⌖ Revise the direct legalization algorithm => 7x speedup than 16T CPU

⌖ DREAMPlaceFPGA-PL

§ 2.23x faster LG than 16T CPU

§ +0.6% placement HPWL and +0.9% routed WL

⌖ With GP and LG accelerated on GPU, placement is 2.38x faster than 16T CPU

https://github.com/rachelselinar/DREAMPlaceFPGA

https://github.com/rachelselinar/DREAMPlaceFPGA
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