International Symposium
on Physical Design ’

March 26-29, 2023
Online with virtual participation

DREAMPlaceFPGA-PL: An Open-Source GPU-Accelerated
Packer-Legalizer for Heterogeneous FPGAs

Rachel Selina Rajarathnam?, Zixuan Jiang', Mahesh A. lyer?, David Z. Pan?

1ECE Department, The University of Texas at Austin, TX, USA
2Intel Corporation, CA, USA

B
)

X

TEXAS ;
This work was supported in part by Intel and VMware M Intel
The University of Texas at Austin 3

OUTLINE

+ Background & Motivation
¢ Previous Works

+ DREAMPlaceFPGA-PL
+ Results

+ Summary

FPGAS IN ASIC PROTOTYPING

10M logic
elements

I I
: Vi N |
I Software

Development

I ST)
FPGA = L 1 1

=/ |BalEa EallEa
Prototype | Sl il

=W W e

=i

Lll:._'.'._'.'.__.— M Iogic Source: Intel & AMD
cells

One or more FPGAs used

https://sirinsoftware.com/blog/technology/great-challenges-fpga-prototyping-must-overcome/ S. M. Trimberger, IEEE, 2015

https://sirinsoftware.com/blog/technology/great-challenges-fpga-prototyping-must-overcome/

FPGA DESIGN IMPLEMENTATION

[Placement]

http://wuxili.net/pdf/dissertation.pdf

http://wuxili.net/pdf/dissertation.pdf

FPGA PLACEMENT

L Stages in an FPGA Placement
Architecture
Description

H . .
H Placement Legalization Placement

Global Packing + . Detailed __>/ Placed desi,tgjl/

Design
Information

A simplified Xilinx Ultrascale architecture

EEENEE/ EEENDE BEENEDE BENDEE
P Problem F lati AN NN N
N L N O N\
acement Problem Formulation EEENEN/ENENEE/ENENENE ENEEE
SN EEIEEIE N B R IE IR EI B EIE NI
R EENEE CEENEE oEENSES EENEES
: ; NEE SEEREEER 3
min W (x,y) s.t. Constraints Ill§l. &I!gl! E!lﬁlll llﬁlll
) FEEREEEEEEREREEEEREEEEEEREEE
=====_S=IE== %=====_=====
.« e . \ \
Minimize RN EEER AR R R
. wire length Y N B
Constraints: & cooNonl esNoo seeNons noNone
NN EEEREEE R EEREEE
. : DENENEE REENEE SEENDEED EENDEE
* Density: No overlaps between instances, SN EEEENEEEEEEN R AN
[Slice [] DsP raM B 1/0

e Routability: Design is routable,

* Congestion: Ensure placement is not congested etc.,
Source: Xilinx; ISPD’2016 Contest

GLOBAL PLACEMENT

¢ QObtain rough legal locations for instances

¢ Optimization problem can be formulated as:

= Simulated Annealing
= Quadratic Placement

= Non-linear Placement

LEGALIZATION

Assign instances to respective sites on the FPGA rC] aOrrnao C]N
= Look-up tables (LUTs) & FlipFlops (FFs) are packed 88 — 88
ooUUoo
O

7 Slice (] DSP/RAM
sliceUnit
" FF
X LUT

b

DETAILED PLACEMENT

¢ Further refine the legalized placement

+ Formulated as

Independent Set Matching
Dynamic Programming

Hill Climbing, etc.

0000

0000

J |
J

00

00
00

00

FPGA PLACEMENT ACCELERATION

Design H ’/\rchitecturc“
|| Information | || Description
Global Placement N ‘T/m\‘ . "T/"\\
accelerated on a GPU —y
Global cp
Placement
Packing +
. . LG
Legalization
Detailed DP
Placement
DREAMPlaceFPGA Runtime l

Breakdown

Placed design

R.S.Rajarathnam*, ASPDAC’2022

EXISTING PACKER-LEGALIZER ACCELERATION SCHEMES

¢+ Multi-threaded CPU [w.Li+, ICCAD’2019; W.Li+, TCAD’2017; L.Singhal+, DAC’2017]

= Scalable consensus-based algorithms

Other acceleration schemes not explored for FPGA packing-legalization!

¢ Use of CPU-GPU systems in ASIC LG Acceleration [H.Yang+, DATE'2022]
= 2x-4xspeedup observed

= |In ASIC, Legalization accounts for ~5% of total placement runtime [v.Lin+, TcAD’2020]

EXISTING PACKER-LEGALIZER ACCELERATION SCHEMES

In FPGASs, LG takes ~35% of total placement runtime

Accelerating on GPUs can help reduce runtime!

PACKING RULES IN FPGA ARCHITECTURES

Each BLE contains 2 LUTs, and 2 FFs.

S S[S[R[S[S[S[=[= S .
E%% %g %% %E ALM, | | ALM; S — ADDB -
113 LUTB T
MO0 [OO00) [Cle| oxe | (A0 (AN} S g R
O S L Bt | 1] e |
wll LM a00cd) (Ee ALM;3 ALMgy —'{? ADDA) il
S] S P
—t 116 r‘

P | 8 ™ AN Bl J
DDDEDDDDDDD carr)u/out

L] TO&PLL [] M9K & M144K Each Logic Arran Elg)]il;/[(LAB)'conzta]iIgj}o é&lc:l;ptiveszog(ijchodules (ALMs). -

D LAB I:I DSP acC contains S, S, anl aaders. StratixIV AI'C

]] Ld] DDDDD SRI CLK! SRO CLK® (LUTB) —
RO0| O | Oe00H Y B LT o
TR L (L] DD BLE BLE ‘——% 14 E 11~ .--lcg FFB
RENEEE N 0 4 Daa | i BLUTA i il ' | Data
= (] [[~ ™ BLE, ||| BLEs || s T2 b | B —m g | O
OO OO BLE, BLEq \11! __________ ;) |y FFA
EDD_D DDDDD BLE; BLE, _:\” - i l["
DDD_D_DDDDD CEL CEO CCLEK T L
[10 [BRAM [cLB [] Dsp Each Configurable Logic Block (CLB) contains 8 Basic Logic Elements (BLEs). Ultrascale Arch

Slice <= LAB
sliceUnit «—= ALM

Slice <= CLB
sliceUnit «— BLE

Intel StratixIV: https://www.intel.com/content/www/us/en/products/programmable/devices/features.html; Xilinx Ultrascale: https://www.ispd.cc/contests/16/Legalization.html

SIMULTANEOUS PACK-LEGALIZE ALGORITHM

/Flat Global Placement solution

¢ Site centric algorithm = Scalable ‘
¢ LUTs and FFs in a flat global placement are [Listofneighbormg] Pre-cluster]
instances for sites LUT-FF pairs
Initialization

packed and legalized |

6%

//
/

Direct
b : O Legalization

Algorithm

Slice Site,

= Precluster LUT with FFs in fanout

Repeat until sites have no seed candidates

= Get neighbor instances of each site !
[RipUp & Greedy Legalization }

:

, ,,
/Legal Placement Solution /

W.Li*, TCAD’2018

SIMULTANEOUS PACK-LEGALIZE ALGORITHM

& . / Flat Global Placement solution /

.

= Best Candidate for GPU Acceleration {Lm Ofneighboﬂng]

Pre-cluster]

instances for sites LUT-FF pairs
= A Candidate: cluster of LUTs + FFs that Initialization
can be placed in a Slice T
. . Direct \
= Each site runs in parallel O | [esalizaion /
Algorithm 0 20,
= >90% LUTs + FFs are legalized Slice Siteo _[Jf '
Repeat until sites have no seed candidates
¢ RipUp & Greedy Legalization: '

[RIPUP & Greedy Legalizauon } -

Handles the remaining instances v

’]
/Legal Placement Solution /

W.Li*, TCAD’2018
10

11

DREAMPLACEFPGA-PL

¢ First attempt to accelerate the pack-legalize stage on GPUs
+ Accelerate the Direct Legalization (DL) algorithm
= Revise runtime-critical portions in the algorithm
= Employ task scheduling for even load across GPU threads

+ Contribute to FPGA open-source ecosystem

W.Li*, TCAD’2018

FLAT DATASTRUCTURES FOR EACH SLICE

12

E
Insty

Instances in the
neighborhood

Candidate

seed candidates

I sNbr

Cieeq - Set of cluster candidates for Slice s

C

p

ctop

cﬁnal

Cprime

’ Prime Candidate ’

High scoring candidates

: Best candidate in C,,.,

: Final solution for Slice s

o List of LUTs
o List of FFs

o Control Signals used

|
e

Top clustering candidate

Ctop

o Candidate score

o Stable [teration

C
final Q
Best candidate for site |
- List of LUTs
- List of FFs

- Control signals used

Final solution

: Set of all the neighboring instances of Slice s within a distance D
Nbr : Instances currently considered by the Slice - a subset of I,

-me - TOP 10 candidates in C,,.; based on score (HPWL + internal nets)

THE DIRECT LEGALIZATION (DL) ALGORITHM

13

Run in parallel for all Slice sites

Algorithm 1 The Direct Legalization Algorithm

1: while | np,| >0 or |Cgpeq| > 0 do

10:
1§
12:
13:
14:

2
3
4
5
6:
7
8
9

if ctop is stable for T iterations then

Cfinal = Ctop

Clear all seed candidates in Cs,.4

Add ctop to Cgeeq as seed candidate
else

Remove invalid candidates in Cseeq and Cprime
end if
Remove committed neighbor instances in Nbr and I np,
if |Nbr| < MinNbrCount then

add next group of neighbors from Iy, to Nbr;
end if
Create new seed candidates from C,.4 and Nbr
Update best site for instances in czop

15: end while

W.Li*, TCAD’2018

THE DIRECT LEGALIZATION (DL) ALGORITHM

13

Run in parallel for all Slice sites

Algorithm 1 The Direct Legalization Algorithm

1: while | np,| >0 or [Cgppgq| > 0 do

10:
1§
12:
13:
14:

2
3
4
5
6:
7
8
9

if ctop is stable for T iterations then
Cfinal = Ctop
Clear all seed candidates in Cs,q
Add ctop to Cgeeq as seed candidate
else
Remove invalid candidates in Cseeq and Cprime
end if
Remove committed neighbor instances in Nbr and I np, _ _
if |[Nbr| < MinNbrCount then A.nalve GPU Implementation
add next group of neighbors from Iy, to Nbr; 's > 3xslower than 8T CPU
end if
Create new seed candidates from C,,,4 and Nbr GPU Runtime
Update best site for instances in czop Bottleneck (RB)!

15: end while

W.Li*, TCAD’2018

14

RB1: NEW CLUSTER CANDIDATE CREATION

+ New candidates = Neighbor Instances in Nbr x candidates in C,,_,

+ Slice sites can have different | Nbr | and | C,,,; | = Exploration space differs!

Some Slice sites can have no new candidates

Some could have 100s-1000s of new candidates => Load imbalance!

15

RB1: MITIGATION SCHEMES

(1) Staggered addition of new neighbor instances

¢ Default: Group of neighbors added

10* 4

¢ Stagger |¢|: Max of |¢| neighbors added A103-:
|¢|: Max number of LUTs + FFs in Slice oio

< 102 .

For example, consider a Slice with 100 neighbor instances g :
=3

All neighbor instances are at a distance 3 from Slice. E 101 4

Let [¢[= 32. New neighbor addition is as follows: |

Default : {0, 0, 100}
Stageer |¢|:{32, 32, 32, 4}

—
(e}
o

Default
Stagger | C |

200 400 600 800 1000
Possible new cluster candidates

Histogram of new candidate search space of all the
sites at the fourth DL algorithm iteration in FPGA12.

RB1: MITIGATION SCHEMES

16

(1) Staggered addition of new neighbor instances
(2) Scheduling of Slice sites
¢ Order Slice sites in decreasing order of new candidate exploration space

¢ Work on Slice sites with similar load at any given time

RB1: MITIGATION SCHEMES

17

(1) Staggered addition of new neighbor instances
(2) Scheduling of Slice sites

(3) Restrict total new candidates explored
¢ Limit the total | Nbr | x | C,,.; | combinations explored

4+ Could degrade placement quality as potential candidates could be discarded

18

RB2: INSTANCE BEST SITE ASSIGNMENT

+ Instances in ¢, select the best Slice site based on:

= HPWL improvement for instance to move to Slice

= Possiblity of internal nets absorbed in a Slice
+ Tie-break if multiple Slice sites have same score — low site identifier
¢ Each Instance selects best site sequentially = Stalls GPU threads!

¢ Changes to instance datastructure increases memory footprint significantly

RB2: MITIGATION

¢+ Minimize sequential portion and include post-processing step

= Slower on CPU but much faster on GPU

= Solution is different but there is no loss of placement quality!
//Sequential assignment of
set_lock(); //Begin sequential portion // instance best score
if (site.score == inst.bestScore) atomicMax (&inst.bestScore,site.score);
{
//Tie-break condition //Parallel post-processing
if (site.id < inst.bestSiteId) //Get instance bestSiteld
{ // based on bestScore
inst.bestSiteId = site.id; for (sites in neighborhood of inst)
} > {
} if (site.score == inst.bestScore &&
else if (site.score > inst.bestScore) site.top.candidate contains inst &&
{ site.id < inst.bestSitelId) //tie-break
inst.bestSitelId = site.id; {
inst.bestScore = site.score; inst.bestSiteld = site.id;
} }
unset_lock(); //End sequential portion 3
//End of parallel post-processing

20

EXPERIMENTAL SETUP

¢ Design suite: ISPD’2016 benchmarks
¢+ Placers: elfrlace
s Router: Xilinx Vivado V20154

¢ Comparison Metrics
= Placement HPWL, Routed Wirelength

= Placement Runtime

Design #I0 #RAM #DSP #LUT #FF
FPGAO1 156 0 0 50k 55k
FPGAO2 156 100 100 100k 66k
FPGAO03 406 600 500 250k 170k
FPGA04 406 600 500 250k 172k
FPGAO5 406 600 500 250k 174k
FPGAO06 606 1000 600 350k 352k
FPGAO7 606 1000 600 350k 355k
FPGAO08 406 600 500 500k 216k
FPGA09 606 1000 600 500k 366k
FPGA10 606 1000 600 350k 600k
FPGA11 606 1000 400 480k 363k
FPGA12 406 600 500 500k 602k

Resources 2580 1728 768 538k 1075k

*DP run on elfPlace

STAGGERED NEIGHBOR ADDITION

CPU: Intel Core i9-7900X @ 3.30 GHz
GPU: NVIDIA TITAN Xp (Pascal)

21

4.01

3.01

Pack-Legalize Runtime Ratio

1.0 1

0.0

[\J
cn

2.01

[o—
<t

O
A Sg=2]| % Baseline elfPlace(87)
':' O Without Sg or Rt of New Candidates
A Staggered Neighbor Addition Sg
A Sg=||
A 59 = cl/8
................... A

Sg=s|/16 *
elfPlace(8T)
0.9980 0.9985 0.9990 0.9995 1.0000

Placement HPWL Ratio

1¢1=32

W. Li+, ICCAD’2019

RESTRICTED NEW CANDIDATE EXPLORATION

CPU: Intel Core i9-7900X @ 3.30 GHz
GPU: NVIDIA TITAN Xp (Pascal)

22

4.0

3.01

Pack-Legalize Runtime Ratio

2.01

Sg or K
o Rt = 16/|

® Rt = §[q|

o Rt =4[]

Bt =l

% Baseline elfPlace(87)
0O Without Sg or Rt of New Candidates
® Restricted Candidate Search Space Rt

1.0- * Rf: Np:
elfPlace(8T) Rt = |¢|/4
0.5 B i Rt = |s|/16
0.0 : - - : '
0.998 1.000 1.002 1.004 1.006

Placement HPWL Ratio

1¢1=32

W. Li+, ICCAD’2019

23

SG + RT VARIANTS

Two variants that produce the best runtime vs QoR tradeoff considered are:
¢ VI:S¢=1¢[/16 + Rt = [¢|/8
= Aggressive limits on Staggered neighbor addition and Restricted search space
= Achieves the best runtime speedup with a slight degradation of QoR
¢ V2:S¢=|¢l/8+Re=|¢|/4
= Less aggressive than V1

= Has lower QoR degradation and runtime improvement

CPU: Intel Core i9-7900X @ 3.30 GHz

RUNTIME IMPROVEMENTS GPU: NVIDIA TITAN X (Pascal)

DL Runtime Ratio

Direct Legalization (DL) Runtime Pack-Legalize (LG) Runtime

clfPlace(8T) W clfPlace(16T) #9 DREAMPlaceFPGA V2 BB DREAMPlaceFPGA V1 elfPlace(8T) W elfPlace(16T) F9 DREAMPlaceFPGA V2 HEEl DREAMPlaceFPGA V1

Overall Pack-Legalize Runtime Ratio

(8@@ @C’v@ Q&& QQC’Y& & ¥ & > QQOY§\ QQC’@% QCF@ (36»@ &L QQC’YQ QQC’@\ ‘20?@ Q‘ZC’@% &’v@’ @C’Y§D QQC’YS% Qq&é\ QQC’@% QC’@(B (3&@ QQC’Y}\ Q‘ZC’YQ)
, elfPlace(8T) | elfPlace(1l6T) Ours V2 Ours V1

Metric

Init 0.97 0.97 0.92 1.00

Direct Legalization (DL) 9.51 7.05 1.84 1.00

RipUp & Greedy LG (RG) 0.79 0.76 0.74 1.00

Total LG 2.80 2.23 1.06 1.00

W. Li+, ICCAD’2019

IMPACT ON PLACEMENT QUALITY

Placement HPWL Routed Wirelength

1.06
1.06

—

(=)

=
=
()
=

—

janl

\]
—_
[en}
[\S]

Norm. Placement HPWL
3

Norm. Routed Wirelength
s

0.981 0.981
0.96 1 0.96 1
0.94° . o —— : MU= & @ o e ®
5@“ (80@ QQ@Q (3@“ & (30?* (8@ (30?” (3@ (3@*
Metric elfPlace Ours V2 QOurs V1
Placement HPWL 0.994 0.999 1.000
Routed Wirelength 0.991 0.997 1.000

25 W. Li+, ICCAD’2019

DREAMPLACEFPGA-PL SUMMARY

¢ First attempt to accelerate FPGA packer-legalizer on GPU
¢ Revise the direct legalization algorithm => 7x speedup than 16T CPU
¢+ DREAMPlaceFPGA-PL

= 2.23x faster LG than 16T CPU

= +0.6% placement HPWL and +0.9% routed WL

¢+ With GP and LG accelerated on GPU, placement is 2.38x faster than 16T CPU

https:/ /github.com/rachelselinar/DREAMPlace FPGA

https://github.com/rachelselinar/DREAMPlaceFPGA

THANK YOU

