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Framework Evolution
• Billions of transistors fabricated in a single chip.
• Need frameworks for very large-scale designs.
• Framework evolution for EDA tools: Flat è Hierarchical è GPU 

Accelerated
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GPU-accelerated Global Placers

• Rapid development of GPU’s computational 
power. GPU acceleration becomes an 
important direction
• Recently, DREAMPlace[1]:

• Implemented the approach of ePlace[2] on GPU 
• Produced the SOTA solution quality and 

performance

• Xplace further improve on DREAMPlace’s
performance.
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ePlace Methodology
• Cell density is modeled as an electrostatic system (Poisson's Equation):

• Electron Distribution 𝜌 → 2D Density map 𝐷 of placement
• Electric Field ∇𝜓!, ∇𝜓" → moving force on x and y-axis
• Solve this PDE problem by Discrete Cosine Transformation (DCT)
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• 𝜕𝑅 is the boundary

• 𝜌 𝑥, 𝑦 is the electron distribution

• 𝜓(𝑥, 𝑦) is the potential distribution

• ∇𝜓(𝑥, 𝑦) is the Electric Field 

J. Lu, H. Zhuang, P. Chen, H. Chang, C.-C. Chang, Y.-C. Wong, L. Sha, D. Huang, Y. Luo, C.-C. Teng, et al., “ePlace-MS: Electrostatics-based placement for mixed-size circuits,” 
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Xplace Framework
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Operator-Level Optimization in Xplace

• Wirelength Operator Combination (OC):

• Observation: Both the HPWL function and 
the stable WA wirelength function need the 
min and max cell positions in a net.

• Method: combining the three operators 
with heavy wirelength-related workload, 
WA wirelength, WA gradient and HPWL, 
into one operator to avoid redundant 
computation
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Operator-Level Optimization in Xplace

• Density Operator Extraction (OE)

• Observation: Both the calculation of 
𝑂𝑉𝐹𝐿 and total density map %𝐷 need the 
cell density map 𝐷.

• Method: common sub-operator 𝐷
extraction, compute the cell density map 
𝐷 and the filler density map 𝐷+,
separately
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Operator-Level Optimization in Xplace

• Operator Reduction (OR)
• Avoid invoking the heavy autograd engine. Directly derive the numerical solutions of the WL

/ density grad

• Use in-place operators as much as possible to avoid redundant copying

• Reorder the operators that need sync to the end of the execution queue to reduce the

frequency of interrupting the GPU pipeline

• Skip some density grad calculation in early placement stage as their values are very small at

that stage. (OS)
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Placement-Stage-Aware Parameters Scheduling

• Precondition weighted ratio 𝜔 = ∈ [0,1]
• To fully exploit the optimization space
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Comparisons

• Validation on Contest Benchmarks
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Ablation Study

• Ablation Study of the Operator-Level Optimization Techniques
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GPU Accelerated Maze Routing
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GPU Accelerated Maze Routing
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Sweep Operations
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Maze Routing Results
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Global Routing Results
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Modern Parallel Global Routers
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An Overview of GUGR
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GPU Accelerate Pattern Routing

• RSMT construction with FLUTE
• L/Z-shape routing and layer assignment
• Jointly optimized by dynamic programming on GPU
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Parallel L-Shaped Routing

• L-shape routing can finish in O(K) time with one thread:
• Five steps:

• from starting point to every layer
• first long wire on every layer
• bending on every layer
• second long wire on every layer
• from every layer to end point

23

start

end



Parallel Z-Shaped Routing

• O(K) time with n threads
• Seven steps as shown below. Each color 

represents one thread
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Other Parallelization Techniques
• Inter-net parallelism:

• Route a batch of nets that do not have overlapping bounding boxes in parallel
• Many nets are small and local, resulting in large batch size and small batch 

number

• Adapted GAMER to handle fine-grained maze routing with irregular 
routing grid graph
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Experimental Results
• All the routers are run on our machine

26

[9] “CUGR: Detailed-Routability-Driven 3D Global Routing with Probabilistic Resource Model”, DAC 2020.
[10] ”FastGR: Global Routing on CPU-GPU with Heterogeneous Task Graph Scheduler”, DATE 2022.
[5] “SPRoute 2.0: A Detailed-Routability-Driven Deterministic Parallel Global Router with Soft Capacity”, ASP-DAC 2022.
[11] “Superfast Full-Scale GPU-Accelerated Global Routing”, ICCAD 2022.



Agenda

• GPU Acceleration on:
• Placement
• Routing
• Routability-driven Placement

27



Routability Xplace (All on GPU)
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Thank YOU
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