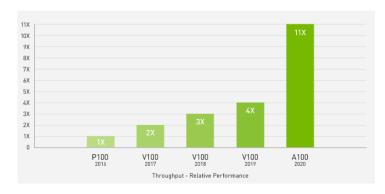

Agenda

- GPU Acceleration on:
 - Placement
 - Routing
 - Routability-driven Placement

Framework Evolution

- Billions of transistors fabricated in a single chip.
- Need frameworks for very large-scale designs.
- Framework evolution for EDA tools: Flat → Hierarchical → GPU Accelerated


Source: Intel (ISSCC-03)

Agenda

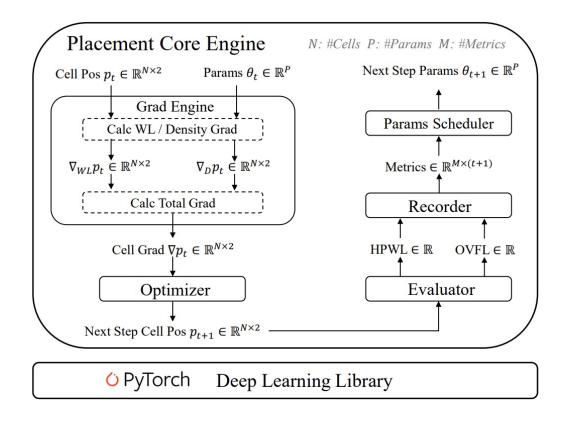
- GPU Acceleration on:
 - Placement
 - Routing
 - Routability-driven Placement

GPU-accelerated Global Placers

- Rapid development of GPU's computational power. GPU acceleration becomes an important direction
- Recently, DREAMPlace[1]:
 - Implemented the approach of ePlace[2] on GPU
 - Produced the SOTA solution quality and performance
- Xplace further improve on DREAMPlace's performance.

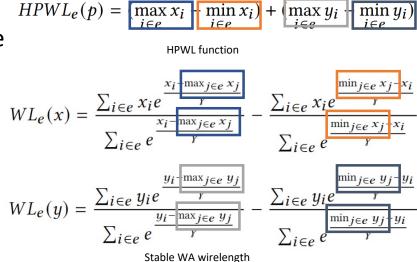
[1] Y. Lin, Z. Jiang, J. Gu, W. Li, S. Dhar, H. Ren, B. Khailany, and D. Z. Pan, "DREAMPlace: Deep learning toolkit-enabled GPU acceleration for modern VLSI placement," IEEE TCAD 2020

[2] J. Lu, H. Zhuang, P. Chen, H. Chang, C.-C. Chang, Y.-C. Wong, L. Sha, D. Huang, Y. Luo, C.-C. Teng, et al., "ePlace-MS: Electrostatics-based placement for mixed-size circuits," IEEE TCAD 2015


ePlace Methodology

Cell density is modeled as an electrostatic system (Poisson's Equation):

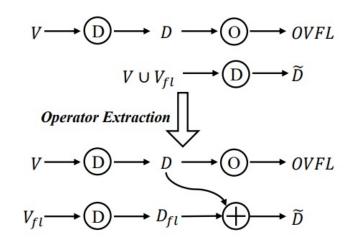
$$\begin{cases} \nabla \cdot \nabla \psi(x,y) = -\rho(x,y), & \partial R \text{ is the boundary} \\ \hat{\mathbf{n}} \cdot \nabla \psi(x,y) = 0, \ (x,y) \in \partial R, & \rho(x,y) \text{ is the electron distribution} \\ \iint_{R} \rho(x,y) = \iint_{R} \psi(x,y) = 0, & \psi(x,y) \text{ is the potential distribution} \end{cases}$$


- ∂R is the boundary
- $\psi(x,y)$ is the potential distribution
- $\nabla \psi(x,y)$ is the Electric Field
- Electron Distribution $\rho \to 2D$ Density map D of placement
- Electric Field $\nabla \psi_{x}$, $\nabla \psi_{v} \to \text{moving force on } x \text{ and } y\text{-axis}$
- Solve this PDE problem by Discrete Cosine Transformation (DCT)

Xplace Framework

Operator-Level Optimization in Xplace

- Wirelength Operator Combination (OC):
 - Observation: Both the HPWL function and the stable WA wirelength function need the min and max cell positions in a net.
 - Method: combining the three operators with heavy wirelength-related workload, WA wirelength, WA gradient and HPWL, into one operator to avoid redundant computation



Operator-Level Optimization in Xplace

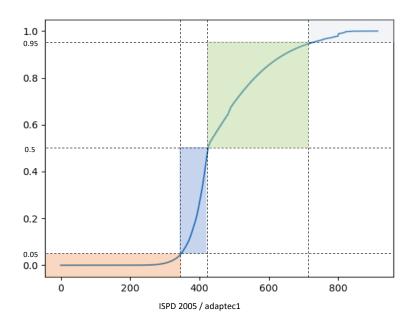
- Density Operator Extraction (OE)
 - Observation: Both the calculation of OVFL and total density map \widetilde{D} need the cell density map D.

$$OVFL = \frac{\sum_{b \in B} \max(D_b - D_t, 0) A_b}{\sum_{i \in V_{mov}} A_i}$$

$$\tilde{D} = D + D_{fl}$$

• Method: common sub-operator D extraction, compute the cell density map D and the filler density map D_{fl} separately

(D) Density OP (O) Overflow OP (+) Element-wise Add


Operator-Level Optimization in Xplace

- Operator Reduction (OR)
 - Avoid invoking the heavy autograd engine. Directly derive the numerical solutions of the WL
 / density grad
 - Use in-place operators as much as possible to avoid redundant copying
 - Reorder the operators that need sync to the end of the execution queue to reduce the frequency of interrupting the GPU pipeline
 - Skip some density grad calculation in early placement stage as their values are very small at that stage. (OS)

Placement-Stage-Aware Parameters Scheduling

- Precondition weighted ratio $\omega = \frac{\lambda |H_D|}{|H_W| + \lambda |H_D|} \in [0,1]$
- To fully exploit the optimization space

Algorithm 1 Placement-Stage-Aware Parameters Scheduling1: $\gamma \leftarrow \gamma_0$ > wirelength coefficient2: $\lambda \leftarrow \lambda_0$ > density weight3: while iteration < ITER and NOT Convergence do</td>4: if $0.5 < \omega < 0.95$ and iteration%3 $\neq 0$ then5: SKIP_UPDATE6: else7: $\gamma \leftarrow \gamma \times coef(overflow)$ 8: $\lambda \leftarrow \lambda \times \mu(\Delta hpwl)$ > Both γ and λ are derived from [10]9: $\omega \leftarrow \frac{\lambda|H_D|}{|H_W|+\lambda|H_D|}$

Comparisons

Validation on Contest Benchmarks

Benchmarks	DRE.	AMPlac	e[1]	Xplace				
	HPWL	GP/s	DP/s	HPWL	GP/s	DP/s		
adaptec1	72.89	4.15	34.9	72.93	1.35	35.8		
adaptec2	81.84	3.73	46.2	81.04	1.58	45.4		
adaptec3	191.68	4.54	88.1	190.94	2.38	89.6		
adaptec4	173.45	4.90	95.4	172.41	2.85	96.1		
bigblue1	89.39	4.03	42.3	89.12	1.47	42.1		
bigblue2	136.57	4.68	129.3	136.56	2.41	127.2		
bigblue3	302.58	8.05	207.9	301.36	5.49	209.8		
bigblue4	742.95	13.38	459.7	741.18	11.65	463.1		
Sum	1791.36	47.46	1103.6	1785.6	29.18	1109.0		
Ratio	1.003	1.626	0.995	1.000	1.000	1.000		

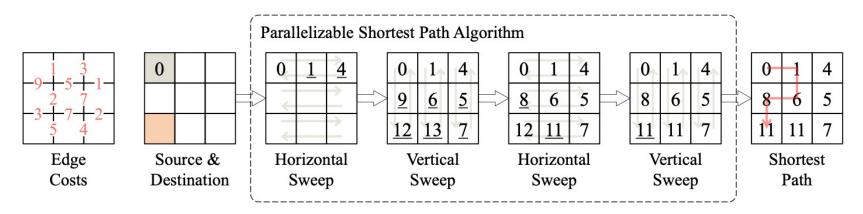
Benchmarks	D	REAMPlac	5 GP/s DP/s HPWL OVFL-5 GP/s D 3.71 1.31 1106.7 64.35 1.14 1. 3.59 0.67 411.3 56.34 1.17 0. 4.28 0.69 374.3 47.49 1.18 0. 3.57 0.74 846.2 52.02 1.28 0. 3.71 1.61 2116.4 81.69 1.29 1. 3.97 1.63 2152.9 77.95 1.23 1. 4.04 2.79 3031.7 48.34 1.29 3. 8.91 16.37 25783.8 93.18 4.64 17 4.56 8.26 15544.1 62.39 1.46 6. 3.66 2.04 1998.6 52.32 1.18 1. 3.97 2.31 4198.7 80.10 1.45 2. 3.82 1.98 2765.7 44.98 1.29 1.					
Deficialities	HPWL	OVFL-5	GP/s	DP/s	HPWL	OVFL-5	GP/s	DP/s
des_perf_1	1107.5	65.28	3.71	1.31	1106.7	64.35	1.14	1.23
fft_1	411.7	56.19	3.59	0.67	411.3	56.34	1.17	0.61
fft_2	374.0	47.72	4.28	0.69	374.3	47.49	1.18	0.64
fft_a	627.6	35.12	3.60	0.61	625.6	34.7	1.29	0.70
fft_b	845.7	51.82	3.57	0.74	846.2	52.02	1.28	0.73
matrix_mult_1	2129.2	81.02	3.71	1.61	2116.4	81.69	1.29	1.44
matrix_mult_2	2163.3	77.61	3.97	1.63	2152.9	77.95	1.23	1.48
matrix_mult_a	3036.8	48.10	4.04	2.79	3031.7	48.34	1.29	3.68
superblue12	25803.0	92.45	8.91	16.37	25783.8	93.18	4.64	17.29
superblue14	23015.5	63.56	4.63	11.49	23017.1	64.34	1.60	13.74
superblue19	15633.1	61.82	4.56	8.26	15544.1	62.39	1.46	6.60
des_perf_a†	2020.5	53.27	3.66	2.04	1998.6	52.32	1.18	1.67
des_perf_b†	1610.3	54.65	3.66	1.70	1612.6	53.64	1.27	1.58
edit_dist_a†	4217.9	80.30	3.97	2.31	4198.7	80.10	1.45	2.13
matrix_mult_b†	2786.7	44.86	3.82	1.98	2765.7	44.98	1.29	1.89
matrix_mult_c†	2672.9	42.13	4.07	2.07	2675.2	42.20	1.29	1.89
pci_bridge32_a†	361.8	30.55	3.54	0.82	356.0	30.36	1.08	0.69
pci_bridge32_b†	741.1	22.89	6.77	1.04	714.2	22.75	1.12	1.04
superblue11_a†	33411.2	54.51	5.59	13.33	33528.3	54.78	2.87	12.73
superblue16_a†	25600.9	65.85	4.38	10.60	25505.1	65.85	1.91	11.08
Sum	148571	1129.70	88.03	82.06	148364	1129.77	31.03	82.84
Ratio	1.001	1.000	2.837	0.991	1.000	1.000	1.000	1.000

ISPD 2005 ISPD 2015 12

Ablation Study

• Ablation Study of the Operator-Level Optimization Techniques

Methods	OR	OC	OE	OS	adaptec1 adaptec2		adaptec3	adaptec3 adaptec4		bigblue1 bigblue2		bigblue4	Avg
	-	-	-	-	234%	194%	136%	124%	198%	140%	123%	121%	159%
Ratio	/	-	-	-	110%	109%	113%	115%	105%	115%	119%	118%	113%
Ratio	/	✓	-	-	107%	107%	107%	108%	104%	108%	113%	112%	108%
	/	✓	✓	-	104%	102%	104%	104%	102%	104%	106%	105%	104%
Veloco		Ra	tio		100%	100%	100%	100%	100%	100%	100%	100%	100%
Xplace		GP / Iter	Time (ms	(3)	1.478	1.671	2.325	2.688	1.572	2.441	4.974	10.018	-
DREAMPlace		Ra	tio		462%	345%	288%	254%	376%	288%	199%	158%	296%
DREAMPIACE		GP / Iter Time (ms)				5.769	6.699	6.840	5.915	7.023	9.904	15.831	-


Agenda

- GPU Acceleration on:
 - Placement
 - Routing
 - Routability-driven Placement

GPU Accelerated Maze Routing

GPU Accelerated Maze Routing

Shortest Path via Alternating Sweeps

 d_i : current shortest distance to G-cell i c_i : wire cost between G-cell i-1 and G-cell i $d_i^* = \min_{0 \leq j \leq i} \left(d_j + \sum_{k=j+1}^i c_k \right)$

Sweep Operations

- Notations
 - $ightharpoonup d_i$: current shortest distance
 - $ightharpoonup c_i$: wire cost
 - $ightharpoonup s_i = \sum_{j=0}^i c_j$
 - Original formulation

$$d_i^* = \min_{0 \leq j \leq i} \left(d_j + \sum_{k=j+1}^i c_k
ight)$$

New formulation

$$d_i^* - s_i = \min_{0 \leq j \leq i} (d_j - s_j)$$

This new formulation is a prefix sum problem and a prefix min problem.

Maze Routing Results

- Sequential maze routing is implemented with priority queues.
- ▶ 11 alternations of sweeps in GAMER
- ▶ Directional change cost: 50
- Congestion cost:
 - **▶** 91% : {1, 2, 3}
 - $1\%:3+2^1$
 - $1\%:3+2^2$
 - **...**
 - $1\%:3+2^9$

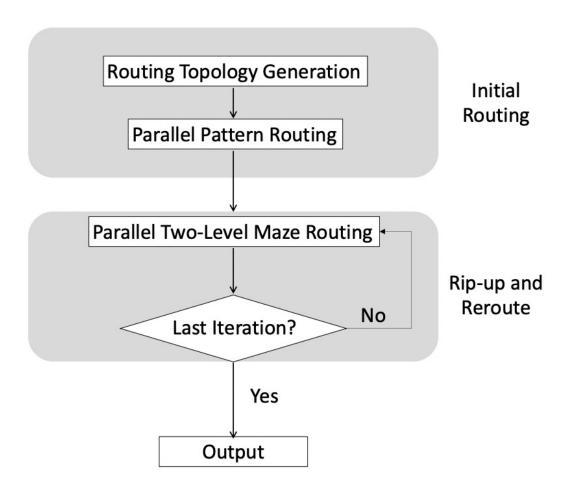
G : 1 G : 1 G:	WD:	Rui	C	
Grid Graph Size	#Pins	GAMER	Maze Routing	Speedup
256×256	4	0.07	17.36×	
256×256	8	0.14	2.51	17.71×
256×256	16	0.29	4.93	17.25×
512×512	4	0.16	5.57	33.92×
512×512	8	0.25	11.44	45.14×
512×512	16	0.40	24.60	61.53×
1024×1024	4	0.34	30.40	90.02×
1024×1024	8	0.65	74.51	115.05×
1024×1024	16	1.25	152.52	121.78×

Global Routing Results

Benchmarks	Coars	se-Grained T	ime (s)	Fine	-Grained Ti	me (s)		Total Time (s)	Quality	Score
Benefiniarks	CUGR	GAMER	Speedup	CUGR	GAMER	Speedup	CUGR	GAMER	Speedup	CUGR	GAMER
ispd18_test5	29.15	1.08	26.98	1.91	1.17	1.63	73.08	47.70	1.53	16104127	16146848
ispd18_test8	185.21	6.83	27.13	8.22	5.58	1.47	282.90	99.72	2.84	37937622	37982628
ispd18_test10	257.22	8.98	28.66	18.41	5.17	3.56	373.25	118.59	3.15	40593601	40942190
ispd19_test7	488.70	11.45	42.67	11.63	7.84	1.48	652.42	170.61	3.82	88481579	86843860
ispd19_test8	207.28	9.22	22.48	7.07	9.02	0.78	431.06	226.44	1.90	128287651	127394338
ispd19_test9	308.81	11.72	26.34	7.29	7.09	1.03	620.88	326.84	1.90	201500802	199734785
ispd18_test5_metal5	41.96	7.49	5.60	20.36	6.70	3.04	93.48	40.49	2.31	16206355	16258160
ispd18_test8_metal5	147.38	22.09	6.67	60.89	14.61	4.17	289.95	100.72	2.88	37313105	37334467
ispd18_test10_metal5	226.19	27.18	8.32	76.63	15.68	4.89	399.13	114.33	3.49	46068410	45991227
ispd19_test7_metal5	297.36	15.72	18.92	30.29	12.89	2.35	434.59	136.02	3.20	82368279	81140446
ispd19_test8_metal5	442.85	29.04	15.25	61.31	22.34	2.74	670.22	224.17	2.99	126219722	126706049
ispd19_test9_metal5	427.64	46.91	9.12	72.96	18.48	3.95	732.86	304.05	2.41	197686583	196779131
Average			19.85×			2.59×			2.70×	84897320	84437844

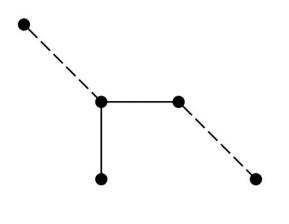
Modern Parallel Global Routers

Router	Dimension	Pattern Routing Maze Routing
SPRoute 2.0[5]	2D	Multi-Threading
CUGR[9]		With Threading
GAMER[8]	3D	Multi-Threading Partially GPU
FastGR[10]		GPU Multi-Threading
Ours		GPU

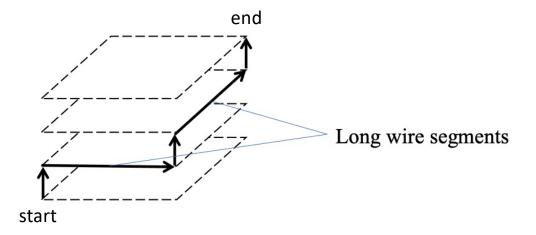

^{[5] &}quot;SPRoute 2.0: A Detailed-Routability-Driven Deterministic Parallel Global Router with Soft Capacity", ASP-DAC 2022.

^{[9] &}quot;CUGR: Detailed-Routability-Driven 3D Global Routing with Probabilistic Resource Model", DAC 2020.

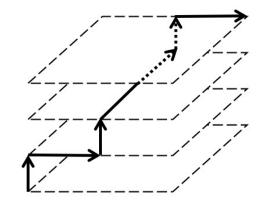
^{[10] &}quot;FastGR: Global Routing on CPU-GPU with Heterogeneous Task Graph Scheduler", DATE 2022.

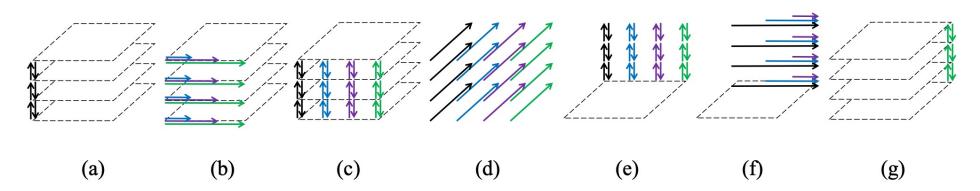

^{[11] &}quot;Superfast Full-Scale GPU-Accelerated Global Routing", ICCAD 2022.

An Overview of GUGR

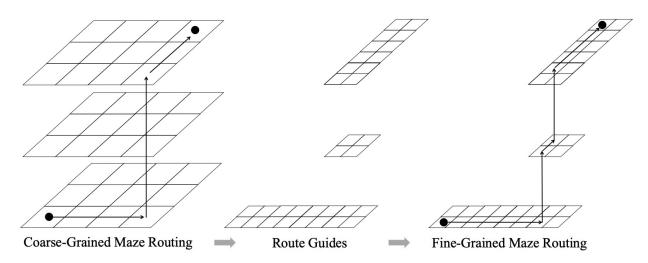

GPU Accelerate Pattern Routing

- RSMT construction with FLUTE
- L/Z-shape routing and layer assignment
- Jointly optimized by dynamic programming on GPU


Parallel L-Shaped Routing


- L-shape routing can finish in O(K) time with one thread:
- Five steps:
 - from starting point to every layer
 - first long wire on every layer
 - bending on every layer
 - second long wire on every layer
 - from every layer to end point

Parallel Z-Shaped Routing


- O(K) time with n threads
- Seven steps as shown below. Each color represents one thread

Other Parallelization Techniques

- Inter-net parallelism:
 - Route a batch of nets that do not have overlapping bounding boxes in parallel
 - Many nets are small and local, resulting in large batch size and small batch number
- Adapted GAMER to handle fine-grained maze routing with irregular routing grid graph

Experimental Results

• All the routers are run on our machine

Benchmark	C	UGR[9]	Fas	stGR[10]	GA	MER[8]	SPRo	oute 2.0[5]		Ours
Denchinark	Time	Score	Time	Score	Time	Score	Time	Score	Time	Score
ispd18_test5	73.1	16104127	34.5	16144948	48.0	16099658	9.5	16266324	5.6	16157416
ispd18_test8	282.9	37937622	123.8	37899025	108.0	37936493	26.0	38303840	15.4	38123108
ispd18_test10	373.2	40593601	151.5	40674135	126.0	40523120	33.0	42865920	17.5	41257617
ispd19_test7	652.4	88481579	225.3	88502557	179.0	88478185	46.6	87406430	30.6	88686088
ispd19_test8	431.1	128287651	222.2	128446998	253.0	128411260	65.5	127723613	37.0	127403748
ispd19_test9	620.9	20.9 201500802 321.1 201490357 355.0 201161603 101.		101.3	199900738	59.2	199574710			
ispd18_test5_metal5	93.5	16206355	46.5	16224663	55.0	16206853	11.1	16101826	7.8	16559899
ispd18_test8_metal5	289.9	37313105	181.2	37240290	149.0	37262694	45.9	39604236	24.1	37738787
ispd18_test10_metal5	399.1	46068410	212.1	48513161	192.0	45685561	97.2	47267127	22.0	47909903
ispd19_test7_metal5	434.6	82368279	232.4	82243597	164.0	82349960	51.5	81104527	32.8	81344536
ispd19_test8_metal5	670.2	126219722	472.5	126674690	265.0	126175581	128.3	126389940	48.4	126366645
ispd19_test9_metal5	732.9	197686583	652.9	197866328	367.0	197778170	128.3	197033254	80.1	195588171
Average	421.2	84897320	239.7	85160062	188.4	84839095	62.0	84997315	31.7	84725886
Ratio	13.3	1.002	7.6	1.005	5.9	1.001	2.0	1.003	1.0	1.000

^{[9] &}quot;CUGR: Detailed-Routability-Driven 3D Global Routing with Probabilistic Resource Model", DAC 2020.

^{[10] &}quot;FastGR: Global Routing on CPU-GPU with Heterogeneous Task Graph Scheduler", DATE 2022.

^{[5] &}quot;SPRoute 2.0: A Detailed-Routability-Driven Deterministic Parallel Global Router with Soft Capacity", ASP-DAC 2022.

^{[11] &}quot;Superfast Full-Scale GPU-Accelerated Global Routing", ICCAD 2022.

Agenda

- GPU Acceleration on:
 - Placement
 - Routing
 - Routability-driven Placement

Routability Xplace (All on GPU)

DR					Xplace + GGR						DREAMPlace					DF	REAMPlace + CUG	R		
design	#cells	#nets	DR WL (um)	#DR Vias	#DRC	Place Time (s)	DR Time (s)	PnR Total Time	DR WL (um)	#DR Vias	#DRC	Place Time (s)	DR Time (s)	PnR Total Time	DR WL (um)	#DR Vias	#DRC F	Place Time (s)	DR Time (s)	PnR Total Time
des_perf_1	113k	113k	1439037	569154	19642	16	2594	2610	1450914	571104	20104	16	272	7 2743	1581152	612600	21358	208	341	2 362
des_perf_a	108k	115k	1906755	564605	21599	20	3716	3736	2442153	548296	39528	16	73	7 753	2439715	546586	37663	201	76	3 96
des_perf_b	113k	113k	1456675	546994	19278	18	2118	2136	1877233	538765	14923	16	243	0 2446	1875447	525621	14021	253	238	0 263
edit_dist_a	127k	134k	5261914	961245	468215	23	3 2743	3 2766	5792993	1015546	463347	18	277	3 2791	5786429	1015029	463634	195	289	2 308
fft_1	35k	33k	512157	186784	7020	12	1286	1298	518943	187982	7822	25	145	3 1478	526801	184942	8235	89	26	5 35
fft_2	35k	33k	621183	196145	4787	11	1262	1273	601729	187979	9445	10	42	8 438	606512	187448	7665	72	35	3 42
fft_a	34k	32k	1123576	195799	5110	12	1348	1360	1079919	192806	5426	11	115	1 1162	1082475	193604	5586	81	121	8 129
fft_b	34k	32k	1254629	203870	35161	13	3 773	786	1254097	212459	21824	12	2 84	6 858	1249536	211817	22050	82	87	6 95
matrix_mult_1	160k	159k	2645899	829772	28676	21	6567	6588	2717619	811317	79404	21	138	3 1404	2713886	810909	81273	155		
matrix_mult_2	160k	159k	2684676	864351	30878	22	7186	7208	2724075	842557	69226	16	151	6 1532	2713664	835190	55544	142	165	5 179
matrix_mult_a	154k	154k	3897297	863779	27597	5	6061	6066	3880868	863304	27369	17	501	0 5027	3881274	865086	27455	135	517	1 530
matrix_mult_b	146k	152k	3714463	783806	97327	17	1643	1660	3763409	753502	78694	19	143	7 1456	3749777	743892	57641	129	125	9 138
matrix_mult_c	146k	152k	3854406	793071	63158	15	1265	1280	3783339	785381	30185	21	777	8 7799	3779358	785276	30140	138	818	7 832
pci_bridge32_a	30k	34k	356213	127447	4939	12	857	869	668228	143073	5959	10	260	3 2613	667505	143367	6388	100	284	4 294
pci_bridge32_b	29k	33k	799554	134161	5526	12	954	966	1032143	145702	2872	14	38	0 394	1052680	146910	2791	328	34	
superblue11_a	926k	936k	39819167	6229072	4175	97	8819	8916	39989373	5659125	2476	92	756	5 7657	41233052	5594255	2331	1270	735	3 862
superblue12	1293k	1293k	42991473	10294135	22463	277	20982	21259	42643015	11289783	3362900	101	3004	5 30146	48380447	11537300	36723	2589	2952	8 3211
superblue14	634k	620k	27894811	4248981	309	55	11237	11292	28368425	4415917	356	56	1432	1 14377	28667576	4224657	335	1163	702	9 819
superblue16_a	680k	697k	29968257	4918597	4127	174	19790	19964	31468535	4734294	3422	62	1584	3 15905	31330051	4612795	2465	823	1286	6 1368
superblue19	522k	512k	20384423	3501561	8071	41	8088	8129	20568915	3608958	7147	54	776	7 7821	23358871	3839686	14518	1373	1214	
mean			9629328	1850666	43903	44	5464	5508	9831296	1875393	212621	30	541	0 5440	10333810	1880849	44891	476	509	2 556
geo mean			3346652	783682	14063	23	3230	3258	3613371	788832	18469	23	268		3687014	789453	14462	246	242	
trim mean (outli	er)		6806722	1264282	19255	25	4180	4205	7054554	1266885	26459	24	384	4 3870	7245587	1262196	21890	338	367	7 404
	Place Time	(s) includes IO	GP, DP, and internal	GR																

Thank YOU