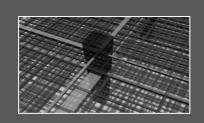
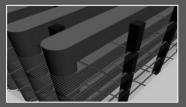
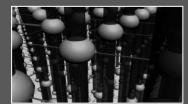
# DREAM-GAN: Advancing DREAMPlace towards Commercial-Quality using Generative Adversarial Learning









Yi-Chen Lu<sup>1</sup>, Haoxing Ren<sup>2</sup>, Hao-Hsiang Hsiao<sup>1</sup>, and Sung Kyu Lim<sup>1</sup>

Georgia Institute of Technology<sup>1</sup>



#### **Presentation Outline**

- Motivations
  - Importance of DREAMPlace and its current limitations
- Generative Adversarial Learning
  - Introduction and why using GAN to improve DREAMPlace
- DREAM-GAN Overview
  - DREAMPlace as a generator to generate tool-alike placements
- Detailed Architectures
  - GNN-based and CNN-based discriminators
  - Soft-Bin Transformation
- Experimental results
  - Full-flow head-to-head comparisons using Synopsys ICC2
- Discussion
- Conclusion and Future Work



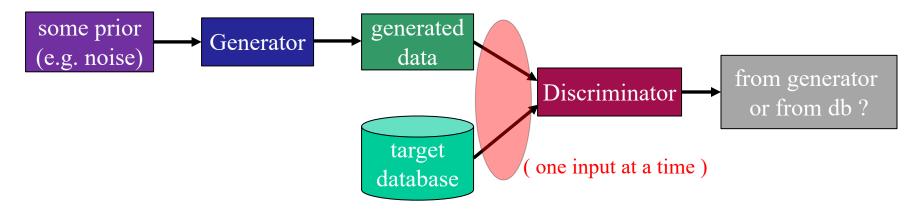
#### **Motivation**

- DREAMPlace (DP) significantly boosts chip design productivity
  - perform placement from hours to minutes
  - originates from RePlace, the state-of-the-art academic placer
    - cpu-intensive objectives are implemented in CUDA and accelerated by PyTorch
  - but, <u>solution quality</u> is yet comparable to commercial tools'
- Commercial tools adopt multi-objective placement optimization
  - e.g., timing, power, routability ...
  - vanilla DP solely focuses on wirelength and density
  - same netlist, but very "different" placement
    - in terms of "cell locations" → can be visualized using "density maps"
- How can we use existing tool placements to improve DP?
  - generative adversarial learning to close the "difference gap"



## **Generative Adversarial Learning**

- Introduction of Generative Adversarial Networks (GANs)
  - Generator goal:
    - To generate <u>meaningful</u> distributions from non-meaningful inputs
  - Discriminator goal:
    - To find out the true origin of its inputs



- DREAMPlace can be naturally considered as a "generator"
- we build "discriminator" to differentiate placement origins



# Why using GAN to Improve DP?

#### Generalizability

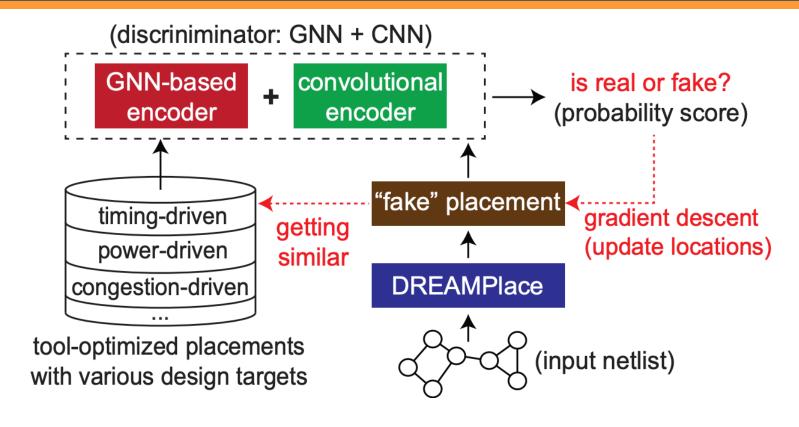
- GAN focuses on parameterizing target distributions
  - Not memorizing! → no net matching, cell alignment... etc.
- DREAM-GAN does not require designs to be "exact" in the database
  - Number of cells/nets can be different between different placements
  - Ideally, can work between different designs (i.e., transfer learning)
    - under investigation (future work)

#### Flexibility in Objectives

- GAN can consume multiple "signals" at the same time
  - E.g., DREAM-GAN uses "netlist connectivity" and "bin-density map"
- Optimization <u>without needs of exact objective formulations</u>
  - Exact, differentiable PPA objectives are hard to define
  - and often require huge effort to be GPU-acceleratable



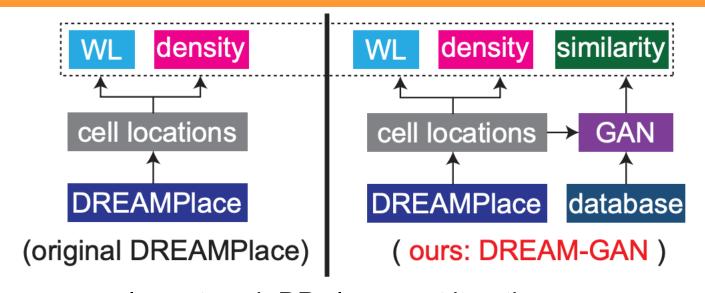
#### **DREAM-GAN Overview**



- Quantify placement similarity by:
  - Graph connectivity → using Graph Neural Networks (GNNs)
  - cell-density map → using Convolutional Neural Networks (CNNs)



## Objective Difference: DP vs. DREAM-GAN



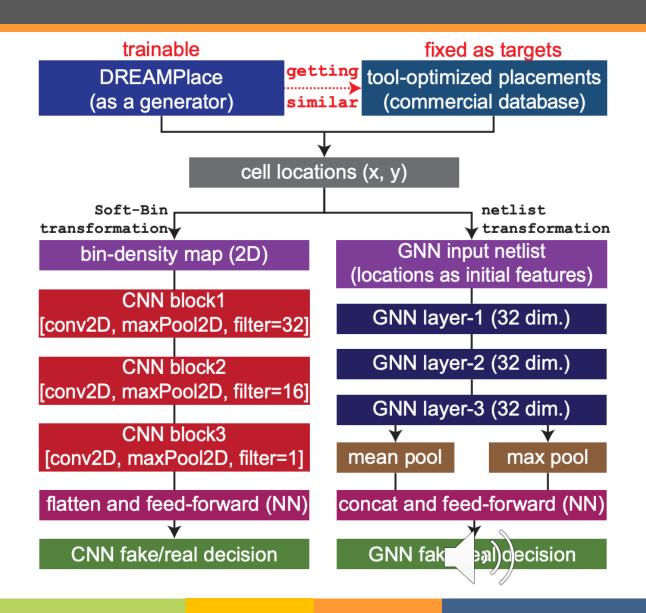
loss at each DP placement iteration

- WL and Density denotes HPWL and Overflow metrics
- DREAM-GAN adds a differentiable similarity loss upon vanilla DP
  - Determined by GNN- and CNN-based discriminators
  - Added after initial 200 iterations

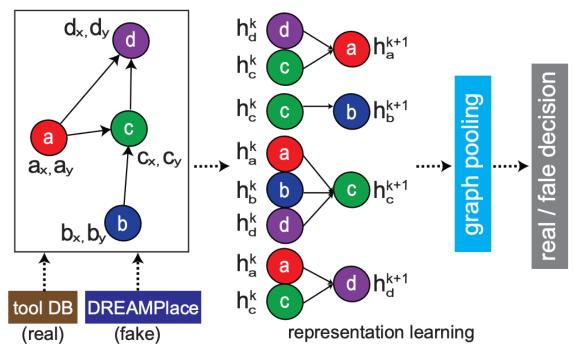


#### **DREAM-GAN Architecture**

- Two discriminators:
  - GNN to encode connectivity
  - CNN to encode bin-density map
- Discriminators' outputs are differentiable w.r.t cell locations
- Optimizing fake/real decisions directly impacts (x,y) locations
- Key proposed algorithm:
  - Soft-Bin Transformation → generate differentiable density maps from locations



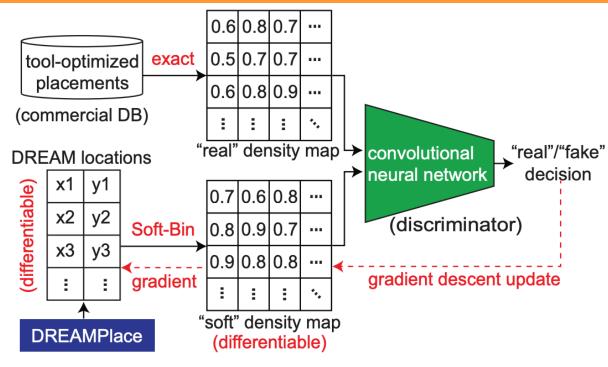
#### **GNN-Based Discriminator**



- Follow netlist transformation proposed in [16]
  - Only preserve driver-to-load connections of original hyperedges and introduce skip connections
- Follow GraphSAGE [6] to perform node representation learning
  - cell locations as initial node features
- Perform [mean, max] pooling to obtain graph-level representations



#### **CNN-Based Discriminator**

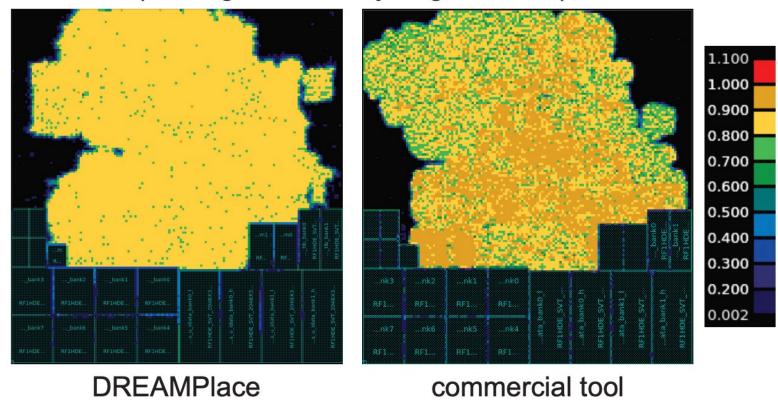


- Goal: discriminate different placements from bin-density maps
- challenge:
  - Naïve bin-density map calculation (exact) is not differentiable w.r.t. locations
    →minimizing/maximizing density will not impact locations
  - Propose Soft-Bin, a differentiable density map transformation, to solve the issue



## **Justification of Bin-Density Map**

(same global density target at 0.85)

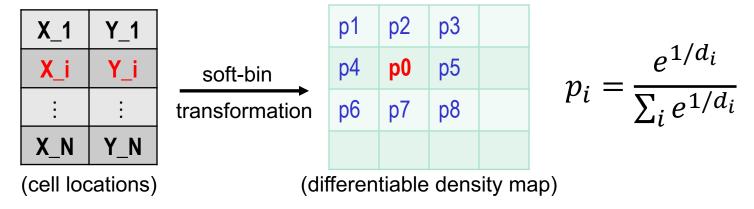


#### Observation:

 Commercial tool has extra intelligence in locally aggregating/loosening cells to improve PPA (while satisfying global density constraints)



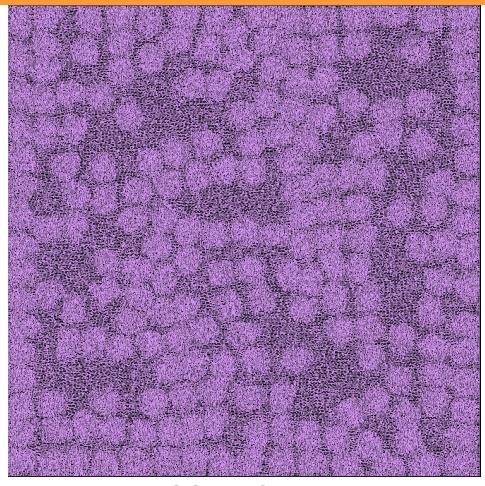
#### **Soft-Bin Transformation**



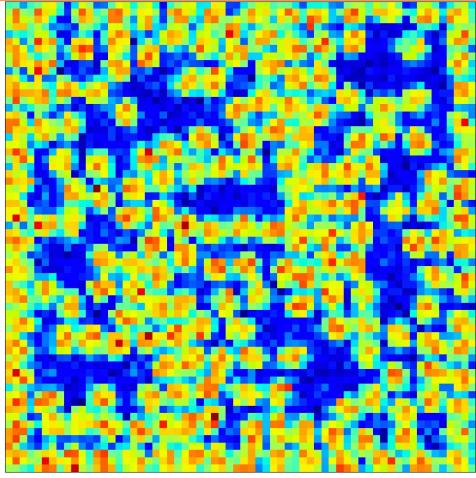
- 1. Assume cell\_i =  $[x_i, y_i]$  belongs to  $\mathbf{p0}$  by bin-definition
- 2. including neighboring bins [p1...p8], calculate distance to bin centers
- 3. we obtain distance vector [d0, ..., d8]
- 4. probability vector = softmax ( 1 / distance\_vector )
- 5. area contribution = prob \* area\_of\_cell\_i
- 6. now, gradient descent on achieved bin-density map will impact locations



## **Cell-Density Visualization on AES (0.85)**



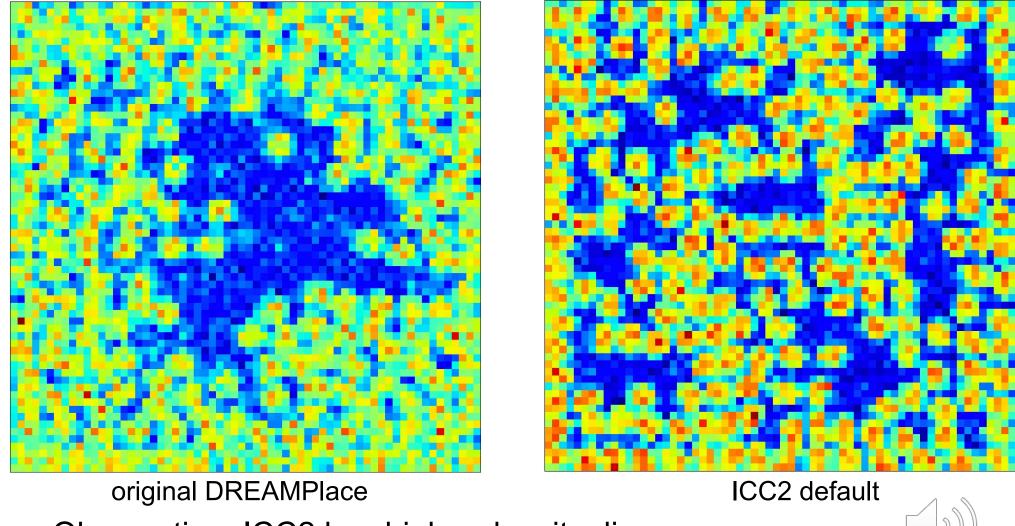
ICC2 default (gui snapshot)



Soft-Bin Cell Density Map (differentiable)

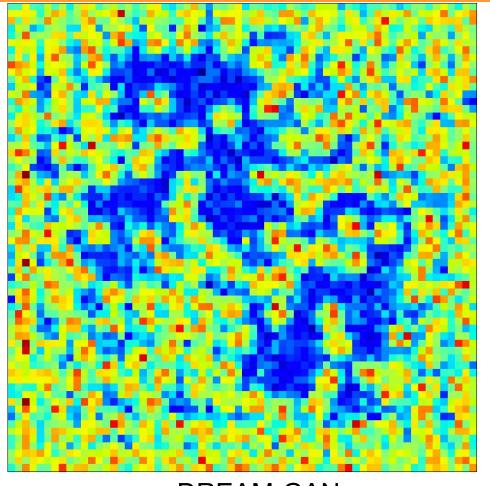


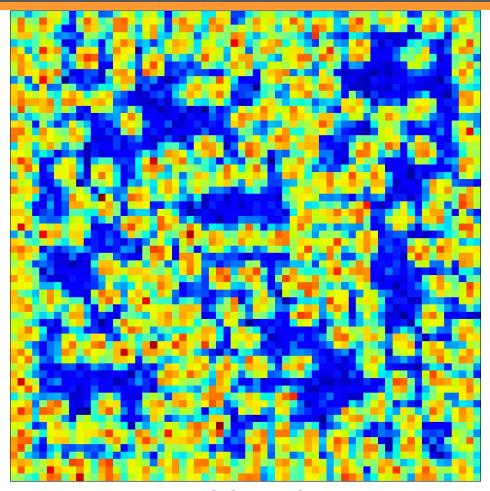
## DreamPlace vs ICC2 on AES (0.85)



Observation: ICC2 has higher density discrepancy

## DREAM-GAN vs ICC2 on AES (0.85)





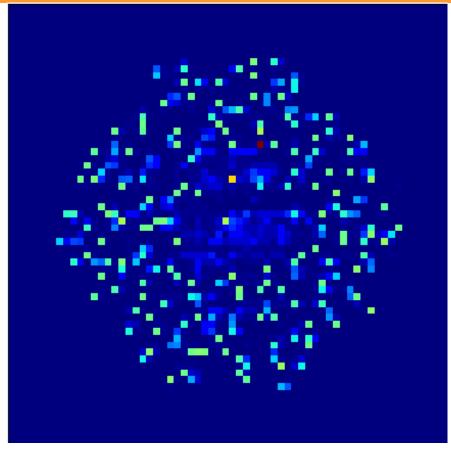
DREAM-GAN

ICC2 default

Arguably more similar with DREAM-GAN



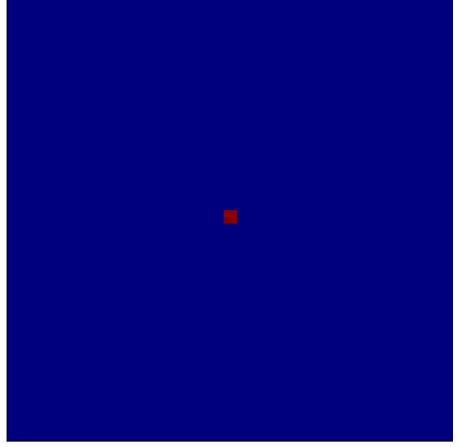
## Animation on AES (0.85): DP vs DREAM-GAN



**DREAMPlace** 

WL: 1946366 um, TNS: -183.14 ns,

#vio: 3258, tot. power: 607.8 uW

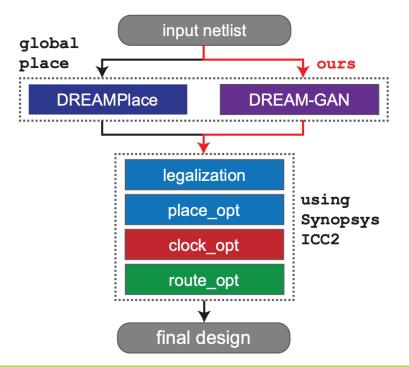


**DREAM-GAN** 

WL: 1755417 um, TNS: -137.29 ns, # vio: 2944, tot. power: 601.5 W

### **Experimental Setup**

- We compare DP and DREAM-GAN using a commercial PD flow
  - Implemented by Synopsys ICC2
  - For each design, we perform sweeping to generate 50 tool-optimized placements
- We only use DP / DREAM-GAN to perform global placement (without legalization)
  - Macros (if any) will be prefixed and non-touched during global place



| ICC2 parameters      | type (values)     | description                       |  |  |  |
|----------------------|-------------------|-----------------------------------|--|--|--|
| set_qor_strategy     | enum (3)          | set optimization priority         |  |  |  |
| low_power_effort     | enum (4)          | effort in low power optimization  |  |  |  |
| congestion_effort    | enum (3)          | effort in congestion optimization |  |  |  |
| is_timing_driven     | bool (2)          | is timing-driven placement        |  |  |  |
| is_power_driven      | bool (2)          | is power-driven placement         |  |  |  |
| buffer_aware         | bool (2)          | buffering of high-fanout nets     |  |  |  |
| coarse_density       | float ([0.7,0.9]) | density of global placement       |  |  |  |
| target_route_density | float ([0.7,0.9]) | density of early global routing   |  |  |  |

parameter sweeping to generate DB for DREAM-GAN



## **Optimization Results**

| docion              | PD<br>stage  | DREAMPlace [11] |           |       |          | DREAM-GAN (ours) |         |          |         |                  |               |
|---------------------|--------------|-----------------|-----------|-------|----------|------------------|---------|----------|---------|------------------|---------------|
| design<br>(# cells) |              | wns             | TNS       | #     | total    | total            | wns     | TNS      | #       | total            | total         |
|                     |              | (ns)            | (ns)      | vios  | WL (um)  | power (mW)       | (ns)    | (ns)     | vios    | WL (um)          | power (mW)    |
| CPU-1<br>(220K)     | global place | -2.05           | -13498    | 19558 | 374130   | 200.1            | -1.46   | -10601   | 18425   | 3546577          | 193.5         |
|                     | place opt    | -1.74           | -6197     | 13018 | 4034908  | 194.7            | -1.52   | -6024    | 12697   | 3870333          | 179.6         |
|                     | clock opt    | -0.30           | -45.89    | 681   | 4163129  | 144.4            | -0.24   | -34.28   | 473     | 4041709          | 140.1         |
|                     | route opt    | -0.26           | -22.4     | 464   | 4166459  | 144.3            | -0.18   | -21.11   | 446     | 4050908 (-2.7%)  | 141.9 (-1.6%) |
| CPU-2<br>(580K)     | global place | -432.97         | -5634543  | 48869 | 12382802 | 25142.4          | -432.98 | -5324323 | 45644   | 11110278         | 25098.2       |
|                     | place opt    | -608.91         | -7218793  | 40780 | 12654907 | 13244.1          | -608.74 | -7202230 | 40544   | 11493278         | 12431.0       |
|                     | clock opt    | -0.20           | -61.48    | 1726  | 17769476 | 488.1            | -0.23   | -48.28   | 1505    | 16305060         | 455.0         |
|                     | route opt    | -0.17           | -45.83    | 1405  | 17765081 | 490.5            | -0.14   | -28.61   | 942     | 16287654 (-8.3%) | 454.2 (-7.4%) |
| CPU-3<br>(121K)     | global place | -2.13           | -8437.48  | 11730 | 1711937  | 149.2            | -1.96   | -8057.19 | 11435   | 1691131          | 147.8         |
|                     | place opt    | -0.54           | -164.78   | 2466  | 1439469  | 155.8            | -0.48   | -138.74  | 1981    | 1413154          | 153.1         |
|                     | clock opt    | -0.51           | -37.68    | 414   | 1588135  | 141.9            | -0.57   | -32.98   | 359     | 1518498          | 137.7         |
|                     | route opt    | -0.49           | -41.21    | 1207  | 1582822  | 143.0            | -0.35   | -36.24   | 1023    | 1520481 (-3.9%)  | 138.9 (-2.9%) |
| VGA<br>(57K)        | global place | -2.2            | -13999.49 | 16630 | 2418386  | 345.5            | -1.65   | -8057.19 | 11435   | 1691131          | 342.2         |
|                     | place opt    | -0.07           | -2.06     | 188   | 1426981  | 279.8            | -0.10   | -2.55    | 171     | 1456516          | 276.5         |
|                     | clock opt    | -0.16           | -7.46     | 441   | 1579559  | 327.8            | -0.14   | -5.37    | 398     | 1536218          | 322.4         |
|                     | route opt    | -0.17           | -13.73    | 1712  | 1586940  | 333.5            | -0.14   | -7.06    | 1050    | 1542569 (-2.8%)  | 329.1 (-1.3%) |
| LDPC<br>(46K)       | global place | -1.14           | -1411.74  | 2184  | 1289738  | 225.8            | -1.10   | -1331.30 | 2048    | 1233014          | 219.5         |
|                     | place opt    | -0.25           | -292.49   | 2192  | 1454863  | 255.5            | -0.21   | -217.76  | -217.76 | 1390693          | 248.6         |
|                     | clock opt    | -0.20           | -156.62   | 1897  | 1857624  | 255.4            | -0.16   | -98.47   | 1757    | 1785355          | 248.4         |
|                     | route opt    | -0.24           | -198.72   | 1976  | 1878969  | 261.8            | -0.18   | -123.94  | 1846    | 1803729 (-4.0%)  | 255.0 (-2.6%) |

- all metrics are reported using ICC2 (including global place stage)
- improvements last firmly to the post-route stage



#### **Conclusion and Future Work**

- We present DREAM-GAN
  - Optimize DP solution quality using generative adversarial learning
- We show that tool's and DP's placements are inherently different
  - obvious difference in cell locations
  - salient difference bin-density maps
- We believe GAN provides a promising way to perform optimization
  - optimization without knowing blackboxed algorithms or constrains
- In the future, we aim to explore transfer learning across designs



# Thank You for Listening! Q&A

