DREAM-GAN: Advancing DREAMPlace towards
Commercial-Quality using Generative Adversarial Learning

Yi-Chen Lu', Haoxing Ren?, Hao-Hsiang Hsiao', and Sung Kyu Lim'

Georgia Institute of Technology®

Nvidia? “ ’>>

Presentation Outline

 Motivations
— Importance of DREAMPIace and its current limitations

 Generative Adversarial Learning
— Introduction and why using GAN to improve DREAMPIlace

» DREAM-GAN Overview

— DREAMPIlace as a generator to generate tool-alike placements

« Detailed Architectures
— GNN-based and CNN-based discriminators

— Soft-Bin Transformation

« Experimental results
— Full-flow head-to-head comparisons using Synopsys ICC2

 Discussion
« Conclusion and Future Work 2

Motivation

- DREAMPIace (DP) significantly boosts chip design productivity
— perform placement from hours to minutes

— originates from RePlace, the state-of-the-art academic placer
* cpu-intensive objectives are implemented in CUDA and accelerated by PyTorch

— but, solution quality is yet comparable to commercial tools’

« Commercial tools adopt multi-objective placement optimization
- e.g., timing, power, routability ...
— vanilla DP solely focuses on wirelength and density

— same netlist, but very “different” placement
* in terms of “cell locations” = can be visualized using “density maps”

* How can we use existing tool placements to improve DP? e
— generative adversarial learning to close the “difference gap”

Generative Adversarial Learning

* Introduction of Generative Adversarial Networks (GANs)
— Generator goal:
* To generate meaningful distributions from non-meaningful inputs

— Discriminator goal:
* To find out the true origin of its inputs

some prior

Generator BSHCIa
(e.g. noise) data

] Discriminator

- DREAMPIace can be naturally considered as a “generator”
* we build “discriminator” to differentiate placement origins o0

one input at a time)

Why using GAN to Improve DP?

 Generalizability

— GAN focuses on parameterizing target distributions
 Not memorizing!-> no net matching, cell alignment... etc.

— DREAM-GAN does not require designs to be “exact” in the database
« Number of cells/nets can be different between different placements

* Ideally, can work between different designs (i.e., transfer learning)
— under investigation (future work)

* Flexibility in Objectives
— GAN can consume multiple “signals” at the same time
 E.g., DREAM-GAN uses “netlist connectivity” and “bin-density map”
— Optimization without needs of exact objective formulations
* Exact, differentiable PPA objectives are hard to define
* and often require huge effort to be GPU-acceleratable ~

DREAM-GAN Overview

(discriniminator: GNN + CNN)

_timing-driven _
power-driven
MN— Iy

.congestion-driven,

is real or fake?
(probability score)

getting
similar +

DREAMPIlace

tool-optimized placements 1 (input netlist)
with various design targets P

(update locations)

* Quantify placement similarity by:
— Graph connectivity = using Graph Neural Networks (GNNs)
— cell-density map > using Convolutional Neural Networks (CNNs)

Objective Difference: DP vs. DREAM-GAN

cell locations cell locations

DREAMPIlace DREAMPIlace @ldatabase
(original DREAMPIlace) (ours: DREAM-GAN)

loss at each DP placement iteration

* WL and Density denotes HPWL and Overflow metrics

« DREAM-GAN adds a differentiable similarity loss upon vanilla DP

— Determined by GNN- and CNN-based discriminators
— Added after initial 200 iterations 2R\

DREAM-GAN Architecture

. . s . trainable fixed as targets
Two discriminators: DREAMPIace Ewsmied t00I-optimized placements
— GNN to encode connectivity (as a generator) SRR (commercial database)

— CNN to encode bin-density map
cell locations (X, y)
Soft-Bin netlist

transformation

* Discriminators’ outputs are T TT— T
differentiable w.r.t cell locations

transformation

GNN input netlist
(locations as initial features)

CNN block1

[conv2D, maxPool2D, filter=32] GNN layer-1 (32 dim.)

 Optimizing fake/real decisions directly CNN block2 GNN layer-2 (32 dim.)

. . [conv2D, maxPool2D, filter=16] ,
impacts (x,y) locations GNN layer-3 (32 dim.)

mean pool I max pool

* Key proposed algorithm: flatten and feed-forward (NN)gconcat and feed-forward (NN)

— Soft-Bin Transformation = generate CNN fake/real decision " GNN fakpfba)decision

differentiable density maps from locations
e

CNN block3
[conv2D, maxPool2D, filter=1]

GNN-Based Discriminator

hs
hk
hk
hk
hy
hs
hk

a H ‘
tool DB IDREAMPIace IRERLA

(real) (fake) representation learning

* Follow netlist transformation proposed in [16]
— Only preserve driver-to-load connections of original hyperedges and introduce skip connections

* Follow GraphSAGE [6] to perform node representation learning

— cell locations as initial node features 1 N

+ Perform [mean, max] pooling to obtain graph-level representations NR),

c
e
i

o

@
T
Q@
S
=~
©

5]

|

CNN-Based Discriminator

0.6/0.8(0.7{ =

‘tool-optimized! exact) 0.5|0.7]0.7{ =
placements 0.6l08lo9l -

(commercial DB)

DREAM locations “real” density map > [Sea el liile s -1 “real’/“fake”

= [x1y1 kg neural network decision
= 0.7(0.6(0.8] = :
© . .. !
?p X2 | y2 Soft-Bin |0.8/0.9/0.7(- (discriminator) :
ol Rl R I 0.9{0.8[0.8] ¢
) gradient T -1 -1 gradient descent update

& “soft” density map
(differentiable)
« Goal: discriminate different placements from bin-density maps

* challenge:

— Naive bin-density map calculation (exact) is not differentiable w.r.t. locations

—> minimizing/maximizing density will not impact locations ZIN
— Propose Soft-Bin, a differentiable density map transformation, to solve the issue E\\
s

Justification of Bin-Density Map

DREAMPIlace commercial tool
« QObservation:

— Commercial tool has extra intelligence in locally aggregating/loosening cells to
improve PPA (while satisfying global density constraints) D)

Soft-Bin Transformation

X1 | Y1 p1T p2 p3
Xi | Y| sotbin P4 PO pS el
: : transformatio:l p6 p7 p8 Pi = Zi el/d;
XN| YN
(cell locations) (differentiable density map)

1. Assume cell 1=[x 1,y 1] belongs to p0 by bin-definition

2. including neighboring bins [pl...p8&], calculate distance to bin centers
3. we obtain distance vector [dO, ..., d§]

4. probability vector = softmax (1 / distance vector)

5. area contribution = prob * area_of cell 1

6. now, gradient descent on achieved bin-density map will impact locations NRY
s

Cell-Density Visualization on AES (0.85)

|CC2 default Soft-Bin Cell Density Map
gui snapshot (differentiable ~15)

DreamPlace vs ICC2 on AES (0.85)

original [;REARAPI;ce @
 Observation: ICC2 has higher density discrepancy N,

DREAM-GAN vs ICC2 on AES (0.85)

DREAM-GAN |ICC2 default

« Arguably more similar with DREAM-GAN

Animation on AES (0.85): DP vs DREAM-GAN

16

DREAMPIlace DREAM-GAN
WL: 1946366 um, TNS: -183.14 ns, WL: 1755417 um, TNS: -137.29 ns,
#vio: 3258, tot. power: 607.8 uW # vio: 2944, tot. power: 601.9 W

Experimental Setup

* We compare DP and DREAM-GAN using a commercial PD flow

— Implemented by Synopsys ICC2

— For each design, we perform sweeping to generate 50 tool-optimized placements

* We only use DP / DREAM-GAN to perform global placement (without legalization)

— Macros (if any) will be prefixed and non-touched during global place

ICC2 parameters type (values) | description
set_qor_strategy enum (3) set optimization priority
low_power_effort enum (4) effort in low power optimization
congestion_effort enum (3) effort in congestion optimization
is_timing_driven bool (2) is timing-driven placement
is_power_driven bool (2) is power-driven placement
buffer_aware bool (2) buffering of high-fanout nets
coarse_density float ([0.7,0.9]) | density of global placement
target_route_density | float ([0.7,0.9]) | density of early global routing
parameter sweeping to generate DB for DREAM-GAN AN
)
final design L J7)

Optimization Results

desi PD DREAMPlace [11] DREAM-GAN (ours)
@ celglrsl) stage wns TNS # total total wns TNS # total total
& (ns) (ns) vios | WL (um) | power (mW) (ns) (ns) vios WL (um) power (mW)
global place -2.05 -13498 19558 | 374130 200.1 -1.46 -10601 18425 3546577 193.5
CPU-1 place opt -1.74 -6197 13018 | 4034908 194.7 -1.52 -6024 12697 3870333 179.6
(220K) clock opt -0.30 -45.89 681 4163129 144.4 -0.24 -34.28 473 4041709 140.1
route opt -0.26 -22.4 464 4166459 144.3 -0.18 -21.11 446 4050908 (-2.7%) | 141.9 (-1.6%)
global place || -432.97 | -5634543 | 48869 | 12382802 251424 -432.98 | -5324323 | 45644 11110278 25098.2
CPU-2 place opt -608.91 | -7218793 | 40780 | 12654907 13244.1 -608.74 | -7202230 | 40544 11493278 12431.0
(580K) clock opt -0.20 -61.48 1726 | 17769476 488.1 -0.23 -48.28 1505 16305060 455.0
route opt -0.17 -45.83 1405 | 17765081 490.5 -0.14 -28.61 942 16287654 (-8.3%) | 454.2 (-7.4%)
global place -2.13 -8437.48 | 11730 | 1711937 149.2 -1.96 -8057.19 | 11435 1691131 147.8
CPU-3 place opt -0.54 -164.78 2466 | 1439469 155.8 -0.48 -138.74 1981 1413154 153.1
(121K) clock opt -0.51 -37.68 414 1588135 141.9 -0.57 -32.98 359 1518498 137.7
route opt -0.49 -41.21 1207 | 1582822 143.0 -0.35 -36.24 1023 1520481 (-3.9%) | 138.9 (-2.9%)
global place -2.2 -13999.49 | 16630 | 2418386 345.5 -1.65 -8057.19 | 11435 1691131 342.2
VGA place opt -0.07 -2.06 188 1426981 279.8 -0.10 -2.55 171 1456516 276.5
(57K) clock opt -0.16 -7.46 441 1579559 327.8 -0.14 -5.37 398 1536218 3224
route opt -0.17 -13.73 1712 | 1586940 333.5 -0.14 -7.06 1050 1542569 (-2.8%) | 329.1 (-1.3%)
global place -1.14 -1411.74 | 2184 | 1289738 225.8 -1.10 -1331.30 2048 1233014 219.5
LDPC place opt -0.25 -292.49 2192 | 1454863 255.5 -0.21 -217.76 | -217.76 1390693 248.6
(46K) clock opt -0.20 -156.62 1897 | 1857624 255.4 -0.16 -98.47 1757 1785355 248.4
route opt -0.24 -198.72 1976 | 1878969 261.8 -0.18 -123.94 1846 1803729 (-4.0%) | 255.0 (-2.6%)
— all metrics are reported using ICC2 (including global place stage) 2R\

— improvements last firmly to the post-route stage JY)

Conclusion and Future Work

We present DREAM-GAN

— Optimize DP solution quality using generative adversarial learning

We show that tool’s and DP’s placements are inherently different
— obvious difference in cell locations
— salient difference bin-density maps

We believe GAN provides a promising way to perform optimization
— optimization without knowing blackboxed algorithms or constrains

In the future, we aim to explore transfer learning across designs

Q&A

Thank You for Listening!

