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• Motivations
– Importance of DREAMPlace and its current limitations

• Generative Adversarial Learning
– Introduction and why using GAN to improve DREAMPlace

• DREAM-GAN Overview
– DREAMPlace as a generator to generate tool-alike placements

• Detailed Architectures
– GNN-based and CNN-based discriminators
– Soft-Bin Transformation

• Experimental results
– Full-flow head-to-head comparisons using Synopsys ICC2

• Discussion
• Conclusion and Future Work

Presentation Outline
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• DREAMPlace (DP) significantly boosts chip design productivity
– perform placement from hours to minutes
– originates from RePlace, the state-of-the-art academic placer

• cpu-intensive objectives are implemented in CUDA and accelerated by PyTorch
– but, solution quality is yet comparable to commercial tools’

• Commercial tools adopt multi-objective placement optimization
– e.g., timing, power, routability …
– vanilla DP solely focuses on wirelength and density
– same netlist, but very “different” placement

• in terms of “cell locations” à can be visualized using “density maps”

• How can we use existing tool placements to improve DP?
– generative adversarial learning to close the “difference gap”

Motivation



4

• Introduction of Generative Adversarial Networks (GANs)
– Generator goal:

• To generate meaningful distributions from non-meaningful inputs
– Discriminator goal:

• To find out the true origin of its inputs

• DREAMPlace can be naturally considered as a “generator”
• we build “discriminator” to differentiate placement origins

Generative Adversarial Learning

Discriminator
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target
database

generated
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some prior
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( one input at a time )
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• Generalizability
– GAN focuses on parameterizing target distributions

• Not memorizing!à no net matching, cell alignment… etc.
– DREAM-GAN does not require designs to be “exact” in the database

• Number of cells/nets can be different between different placements
• Ideally, can work between different designs (i.e., transfer learning)

– under investigation (future work)

• Flexibility in Objectives
– GAN can consume multiple “signals” at the same time

• E.g., DREAM-GAN uses “netlist connectivity” and “bin-density map”
– Optimization without needs of exact objective formulations

• Exact, differentiable PPA objectives are hard to define
• and often require huge effort to be GPU-acceleratable

Why using GAN to Improve DP?
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DREAM-GAN Overview

• Quantify placement similarity by:
– Graph connectivity à using Graph Neural Networks (GNNs)
– cell-density map à using Convolutional Neural Networks (CNNs)
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Objective Difference: DP vs. DREAM-GAN

• WL and Density denotes HPWL and Overflow metrics
• DREAM-GAN adds a differentiable similarity loss upon vanilla DP

– Determined by GNN- and CNN-based discriminators
– Added after initial 200 iterations

loss at each DP placement iteration
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DREAM-GAN Architecture
• Two discriminators:

– GNN to encode connectivity
– CNN to encode bin-density map

• Discriminators’ outputs are 
differentiable w.r.t cell locations

• Optimizing fake/real decisions directly 
impacts (x,y) locations

• Key proposed algorithm:
– Soft-Bin Transformation à generate 

differentiable density maps from locations
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GNN-Based Discriminator

• Follow netlist transformation proposed in [16]
– Only preserve driver-to-load connections of original hyperedges and introduce skip connections

• Follow GraphSAGE [6] to perform node representation learning
– cell locations as initial node features

• Perform [mean, max] pooling to obtain graph-level representations
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CNN-Based Discriminator

• Goal: discriminate different placements from bin-density maps
• challenge:

– Naïve bin-density map calculation (exact) is not differentiable w.r.t. locations
àminimizing/maximizing density will not impact locations

– Propose Soft-Bin, a differentiable density map transformation, to solve the issue
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Justification of Bin-Density Map

• Observation:
– Commercial tool has extra intelligence in locally aggregating/loosening cells to 

improve PPA (while satisfying global density constraints)
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Soft-Bin Transformation
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1. Assume cell_i = [x_i, y_i] belongs to p0 by bin-definition

2. including neighboring bins [p1…p8], calculate distance to bin centers 

3. we obtain distance vector [d0, …, d8]

4. probability vector = softmax ( 1 / distance_vector )

5. area contribution = prob * area_of_cell_i

6. now, gradient descent on achieved bin-density map will impact locations

(cell locations) (differentiable density map)

soft-bin

transformation

… …
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Cell-Density Visualization on AES (0.85)

ICC2 default
(gui snapshot)

Soft-Bin Cell Density Map
(differentiable)
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DreamPlace vs ICC2 on AES (0.85)

original DREAMPlace ICC2 default
• Observation: ICC2 has higher density discrepancy
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DREAM-GAN vs ICC2 on AES (0.85)

DREAM-GAN ICC2 default

• Arguably more similar with DREAM-GAN
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Animation on AES (0.85): DP vs DREAM-GAN

DREAM-GAN
WL: 1755417 um, TNS: -137.29 ns, 
# vio: 2944, tot. power: 601.9 uW

DREAMPlace
WL: 1946366 um, TNS: -183.14 ns,

#vio: 3258, tot. power: 607.8 uW
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• We compare DP and DREAM-GAN using a commercial PD flow
– Implemented by Synopsys ICC2
– For each design, we perform sweeping to generate 50 tool-optimized placements

• We only use DP / DREAM-GAN to perform global placement (without legalization)
– Macros (if any) will be prefixed and non-touched during global place

Experimental Setup

parameter sweeping to generate DB for DREAM-GAN
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Optimization Results

– all metrics are reported using ICC2 (including global place stage)
– improvements last firmly to the post-route stage
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• We present DREAM-GAN
– Optimize DP solution quality using generative adversarial learning

• We show that tool’s and DP’s placements are inherently different
– obvious difference in cell locations
– salient difference bin-density maps

• We believe GAN provides a promising way to perform optimization
– optimization without knowing blackboxed algorithms or constrains

• In the future, we aim to explore transfer learning across designs

Conclusion and Future Work
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