Placement Initialization via Sequential Subspace Optimization with Sphere Constraints

Pengwen Chen, Chung-Kuan Cheng, Albert Chern, Chester Holtz, Aoxi Li, and Yucheng Wang

Global Placement Preliminaries

Nonlinear optimization

$$\begin{aligned} & \min_{\mathbf{x},\mathbf{y}} & \sum_{e \in E} \mathrm{WL}(e;\mathbf{x},\mathbf{y}) \\ & \mathrm{s.t.} & \mathcal{D}(\mathbf{x},\mathbf{y}) \leq \hat{\mathcal{D}}, \end{aligned} \qquad \begin{aligned} & \min_{v} & \sum_{e \in E} \mathrm{WL}(e;v) + \langle \lambda, \mathcal{D}(v,r) \rangle \\ & \lambda = (\lambda_0, \cdots, \lambda_K) \end{aligned}$$

$$v_k = (\mathbf{x}_k, \mathbf{y}_k) \in r_k, \quad k = 0, \cdots, K \qquad \mathcal{D}(v,r) = (\mathcal{D}(v_0, r_0), \cdots, \mathcal{D}(v_k, r_k)) \end{aligned}$$

E-Place & **DREAMPlace** solve this problem using first-order methods Generally initialize using random or min-WL layout Initialization plays an important role for NNs and nonlinear optimization We formulate initialization as a graph embedding problem

Gu et al., DREAMPlace 3.0: Multi-Electrostatics Based Robust VLSI Placement with Region Constraint, 2020

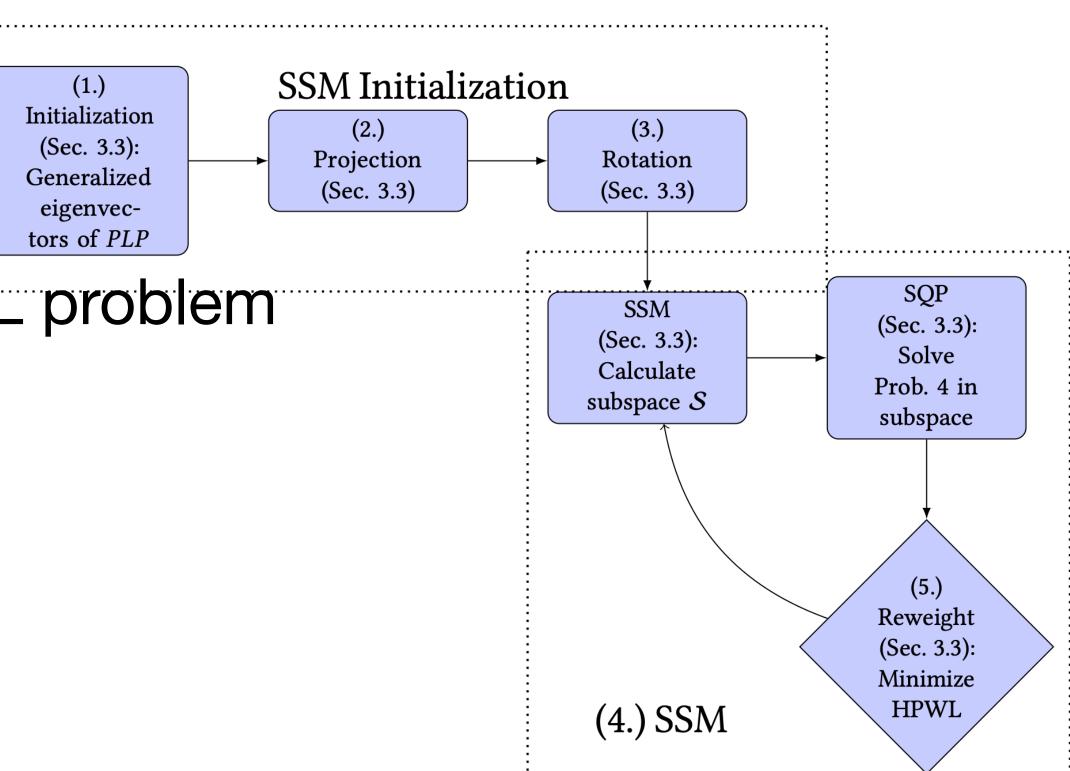
Overview

Chen et al., Placement Initialization via Sequential Subspace Optimization with Sphere Constraints, 2022

1. Compute eigenvectors of laplacian. Align with fixed nodes

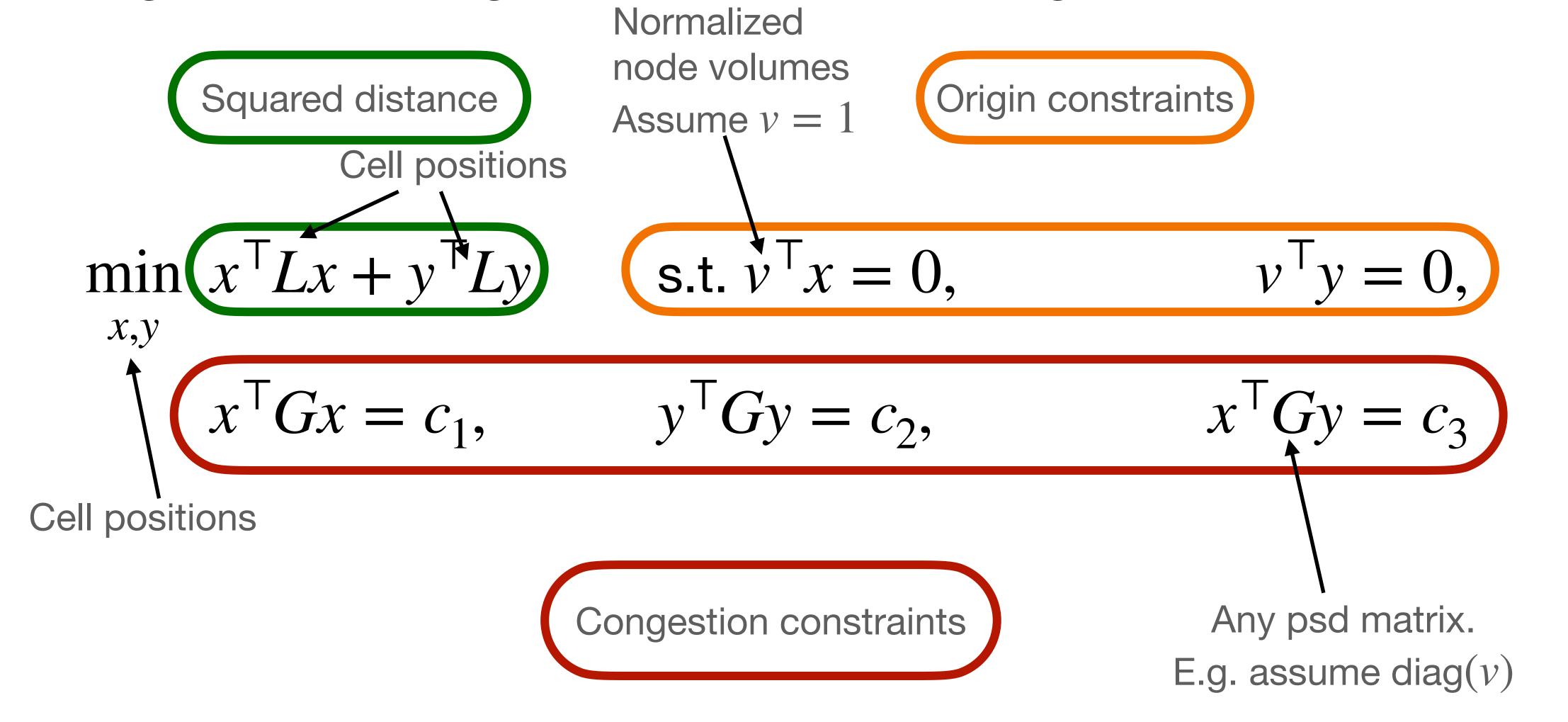
2. Find block-global solution to the min-HPWL problem

3. Perform global and detailed placement using 3. as a seed



Spectral embeddings

A generalized eigenvalue problem and geometric interpretation

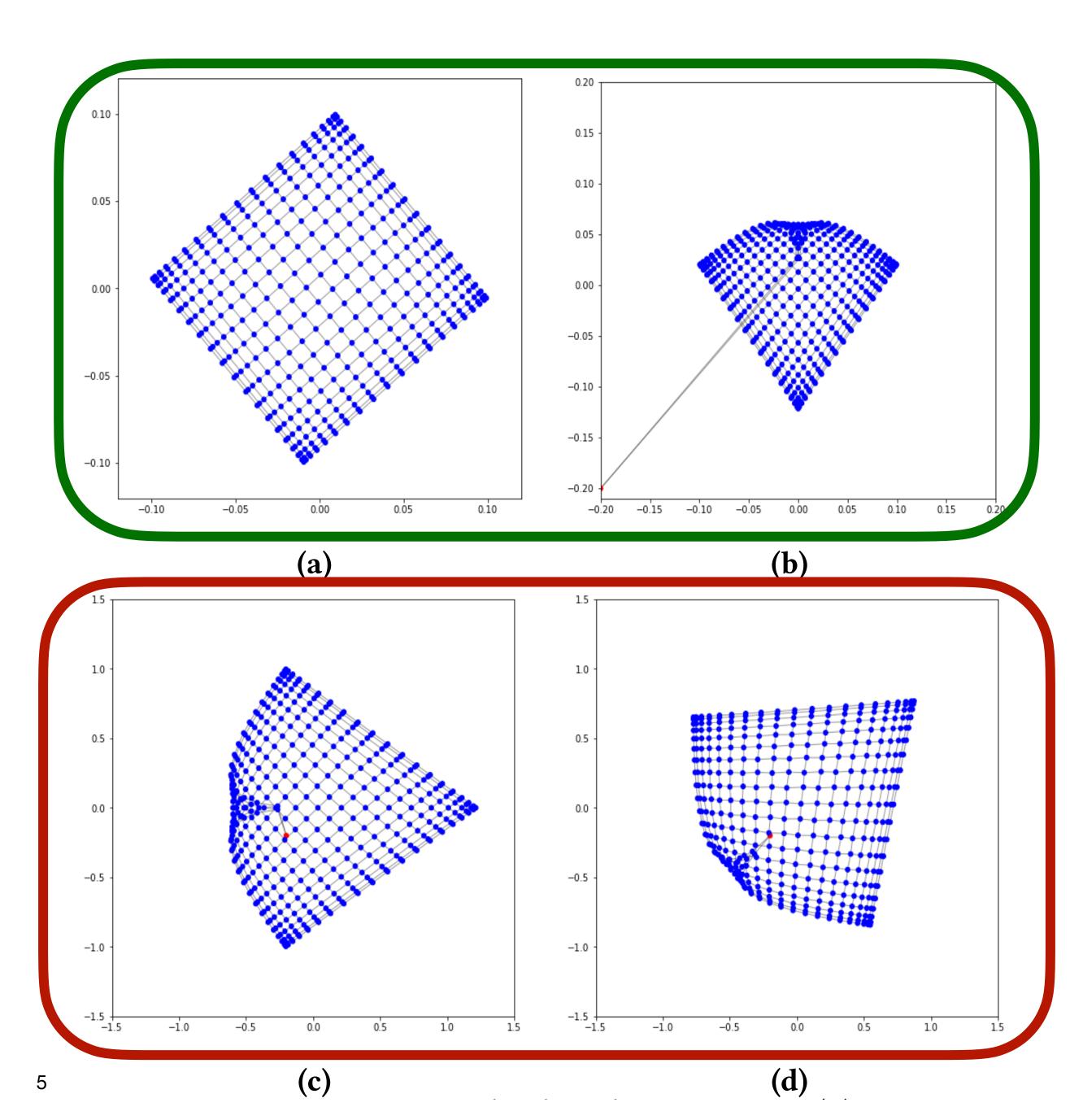


Initialization: two-stage eigenvector projection

Chen et al., LBR: Placement Initialization via a Projected Eigenvector Algorithm, 2022

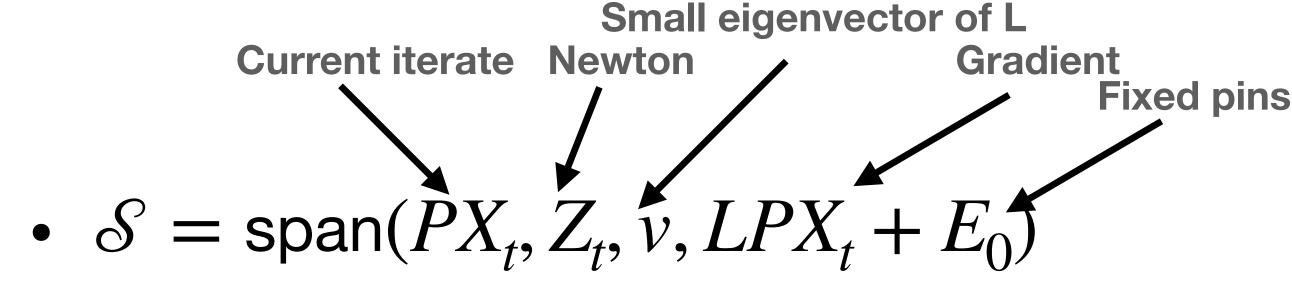
1. Solving the EV problem min trace(X^T , PLPX) $X: X^TX = I$

2. Transform to (a.) resolve $X^{\mathsf{T}}X = C$ (b.) align X with fixed nodes



Iterative refinement with SSM

- ullet Need to invert L each time we update X (Newtons Method) Expensive!
- Can show that a solution lies in a low-dim subspace spanned by 8 vectors:

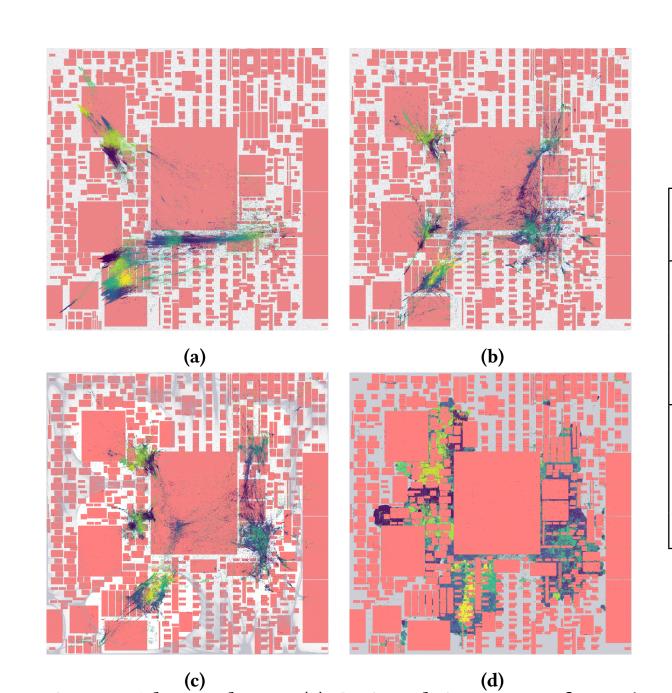


 Can generate a sequence of candidate solutions by iteratively solving the graph embedding problem in this (tiny) subspace. Very efficient!

•
$$L_{\mathcal{S}} \to V^{\mathsf{T}} L V$$
, $V = \operatorname{col}(\mathcal{S})$

Results

- Significant improvements up to (4%) on adaptec1 in postdetailed placement wire length
- runtime details
- Structure of the solution to direct HPWL-minimization problem is "preserved" best



Design	Square	d-wirelength	Direct HPWL				
	HPWL	z	HPWL	~~~			
adaptec1	70.34	0.131 ± 0.046	70.07	0.139 ± 0.052			
adaptec2	81.21	0.069 ± 0.031	81.13	0.073 ± 0.038			
adaptec3	187.95	0.072 ± 0.041	187.27	0.076 ± 0.043			
adaptec4	171.62	0.126 ± 0.057	170.39	0.131 ± 0.061			
bigblue1	87.04	0.063 ± 0.039	85.9	0.067 ± 0.041			
bigblue2	131.37	0.079 ± 0.037	130.04	0.081 ± 0.044			
bigblue3	297.31	0.074 ± 0.041	296.11	0.074 ± 0.043			
bigblue4	724.78	0.081 ± 0.053	724.39	0.081 ± 0.054			

Design	Random		Min-wirelength		Projected Eigenvectors			Projected Eigenvectors + SSM						
Design	HPWI.	L GP runtime (s)		HPWL	GP runtime (s)		HPWI.	HPWI GP runtime (s)		Init. runtime (m)	HPWI.	GP runtime (s)		Init. runtime (m)
adaptec1	73.24		84.39	73.23		74.31	70.36 (3.9%)		63.86	1.56	70.34 (3.96%)		62.42	43.92
adaptec2	82.51		189.46	82.24		172.91	81.68 (1.0%)		164.37	1.47	81.21 (1.58%)		162.49	37.61
adaptec3	194.12		314.54	193.87		309.88	189.13 (2.5%)		313.29	3.02	187.95 (3.18%)		314.01	96.31
adaptec4	174.43		371.72	174.16		354.16	171.73 (1.5%)		372.14	2.81	171.62 (1.61%)		361.37	79.91
bigblue1	89.43		112.64	89.43		107.56	87.32 (2.3%)		94.11	2.07	87.04 (2.67%)		94.23	76.19
bigblue2	136.69		387.94	136.69		361.75	132.49 (3.0%)		327.14	2.51	131.37 (3.89%)		321.86	89.27
bigblue3	303.99		1064.63	303.99		1047.66	298.47 (1.8%)		847.03	6.15	297.31 (2.20%)		849.23	184.39
bigblue4	743.75		1534.11	743.75		1500.70	726.71 (2.2%)		1372.49	25.66	724.78 (2.55%)		1293.10	537.21

7

Conclusions and future work

- Initialization can significantly help placement engines based on first-order methods
- Scalability and implementation is critical for huge cases
- More practical considerations for chip placement applications in the wild
 - Timing via reweighing
 - Local congestion and "over clustering"
- Slow convergence of alternating minimization (reweighing for HPWL minimization)

Appendix

Reweighting for HPWL minimization

Addressing "HPWL-minimization"

- VLSI engineers: HPWL as a surrogate for wire length
- HPWL = reformulate as a linear ℓ_1 minimization problem

$$\min \sum_{i,j \in \mathcal{E}} 2(|x_i - x_j| + |y_i - y_j|) \le \min_{u_{i,j} > 0} \max_{v_{i,j} > 0} \left\{ \sum_{i,j \in \mathcal{E}} (u_{i,j}|x_i - x_j|^2 + \frac{1}{u_{i,j}} + v_{i,j}|y_i - y_j|^2 + \frac{1}{v_{i,j}}) \right\}$$

- The solution to this problem can be recovered by solving a sequence of reweighted quadratic programs
 - 1. For each $u, v \ge 0$, solve inner problem with respect to (x, y).
 - 2. For each (x, y), solve outer problem with respect to $u, v : u_{i,j} = |x_i x_j|^{-1}$ (likewise for v).

Appendix

Computation of the SQP descent directions and eigenvectors of PAP

PROPOSITION 3 (NEWTON DIRECTION). Assume Λ symmetric and PZ = Z, i.e., $v^{\top}Z = v^{\top}X = [0, 0]$. The solution (Z, Δ) is

$$(\Delta)_{j} = (X^{T}(L + W_{j}I)^{-1}X)^{-1}X^{T}(L + W_{j}I)^{-1}E_{j}$$
 (10)

$$Z_{j} = P(L + W_{j}I)^{-1}P\{-X(\Delta)_{j} + E_{j}\}$$
(11)

where W is given by the eigenvector decomposition of Λ : $\Lambda = UWU^{-1}$, $W = diag(W_1, W_2)$ for two eigenvalues W_1, W_2 of Λ .

Proposition 2.1. Let $P = I - vv^{\top}$ with some unit vector v. Suppose A - sI is invertible. Let $u' := (A - sI)^{-1}u_{k-1}$ and $v_1 := (A - sI)^{-1}v$. Let $y_k = \{P(A - sI)^{-1}P\}^{\dagger}u_{k-1}$. Then $v^{\top}v_1 \neq 0$

$$Py_k = \{P(A - sI)^{-1}P\}^{\dagger}u_{k-1} = (I - \frac{v_1v^{\top}}{v^{\top}v_1})u'.$$
(6)