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Global Placement Preliminaries

Nonlinear optimization
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E-Place & DREAMPIlace solve this problem using first-order methods
Generally initialize using random or min-WL layout

Initialization plays an important role for NNs and nonlinear optimization
We formulate initialization as a graph embedding problem

Gu et al., DREAMPIace 3.0: Multi-Electrostatics Based Robust VLS| Placement with Re29ion Constraint, 2020



Overview

Chen et al., Placement Initialization via Sequential Subspace Optimization with Sphere Constraints, 2022

1. Compute eigenvectors of | e >SMInitialization
laplacian. Align with fixed nodes | ot %{ 39 I { e 59 }
esorere )
2. Flnd bIOCk—glObaI SO|UtIOﬂ 'tO the mln_HPWLprObIemf (SSSVM) YSIRS . (Sesc%)w:
Cael((::.uifte: g sale
. subspace S s, 4 o
3. Perform global and detailed placement T subspac

|

Reweight
(Sec. 3.3):
Minimize
HPWL

using 3. as a seed

(4.) SSM

Lu et al., ePlace: Electrostatics-Based Placement Using Fast Fourier Transform and Nesterov’s Method, 2015
Lin et al., DREAMPIlace: Deep Learning Toolkit-Enabled GPU Acceleration for Modern VLSI Placement, 2019
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Spectral embeddings

A generalized eigenvalue problem and geometric interpretation
Normalized

Sqguared distance Assume v = 1 rigin constraints

Cell positions

min(x'Lx +y Ly
Xy

Cell positions

Congestion constraints Any psd matrix.
E.g. assume diag(v)



Initialization: two-stage eigenvector

projection h 2
Chen et al., LBR: Placement Initialization via a Projected ey

Eigenvector Algorithm, 2022
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lterative refinement with SSM

* Need to invert L each time we update X (Newtons Method) - Expensive!

 Can show that a solution lies in a low-dim subspace spanned by 8 vectors:

Small eigenvector of L

Current iterate Newton Gradient
\ / / Fixed pins
v, LPX, + E j/

» & = span(PX, Z,

 Can generate a sequence of candidate solutions by iteratively solving the
graph embedding problem in this (tiny) subspace. Very efficient!

« Lo — V'LV, V = col($)

Hager, Minimizing a Quadratic over a Sphere, 2001



Results

Squared-wirelength Direct HPWL
HPWL z HPWL -
adaptecl 70.34 0.131 + 0.046 70.07 10.139 + 0.052
adaptec2 81.21 0.069 = 0.031 381.13 }0.073 + 0.0338
adaptec3 | 187.95 0.072 +0.041 | 187.27 |0.076 + 0.043
adaptec4 | 171.62 0.126 = 0.057 | 170.39 |0.131 + 0.061
bigbluel 87.04 0.063 +0.039 85.9 ]0.067 + 0.041
bigblue2 | 131.37 0.079 £0.037 | 130.04 ]0.081 £ 0.044
bigblue3 | 297.31 0.074 +£0.041 | 296.11 ]0.074 + 0.043
bigblue4 | 724.78 0.081 + 0.053 | 724.39 |0.081 + 0.054

Design

Significant improvements up to
(4%) on adaptec1 in post-
detailed placement wire length

* runtime details

(c) (d)
Struct f th lJution to direct
HPWL-minimizatl pblem |
p Desien Random Min-wirelength Projected Eigenvectors Projected Eigenvectors + SSM

cc re S e rV e d 3J b e S't & GP runtime (s) GP runtime (s) 3 GP runtime (s) Init. runtime (m) A GP runtime (s) Init. runtime (m)
adaptecl 84.39 74.31,| £70.36 (3.9%) 63.86 1.56 [ 70.34 (3.96%) 62.42 43.92
adaptec? 189.46 172.91 | § 81.68 (1.0%) 164.37 1.47 § 81.21(1.58%) 162.49 37.61
adaptec3 314.54 309.88 | 189.13 (2.5%) 313.29 3.02 | 187.95 (3.18%) 314.01 96.31
adaptec4 371.72 354.16 | §71.73 (1.5%) 372.14 2.81 § 171.62 (1.61%) 361.37 79.91
bigbluel 112.64 107.56 | § 87.32 (2.3%) 94.11 2.07 | 87.04 (2.67%) 94.23 76.19
bigblue2 387.94 361.75 | §32.49 (3.0%) 327.14 2.51 § 131.37 (3.89%) 321.86 89.27
bigblue3 1064.63 1047.66 | £98.47 (1.8%) 847.03 6.15 § 297.31 (2.20%) 849.23 184.39
bigblue4 1534.11 1500.70 | §26.71 (2.2%) 1372.49 25.66 |724.78 (2.55%) 1293.10 537.21

Lin et al., DREAMPIlace: Deep Learning Toolkit-Enabled GPU Acceleration for Modern VLSI Placement, 2019
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Conclusions and future work

* |nitialization can significantly help placement engines based on first-order
methods

o Scalability and implementation is critical for huge cases

 More practical considerations for chip placement applications in the wild
* [Iming via reweighing
* | ocal congestion and “over clustering”

* Slow convergence of alternating minimization (reweighing for HPWL
minimization)



Appendix

Reweighting for HPWL minimization

Addressing “HPWL-minimization”

* VLSI engineers: HPWL as a surrogate for wire length

» HPWL = reformulate as a linear £, minimization problem

1 1
) ° 2 2
min E 2(]x; = x;| + [y; — y;|) < min max E (u; ;| x; — x|~ 4 Fviilyi = yilT+—)
. u; >0 v, >0 £ U; ; Vi
[,jEE J J i,JEE J

J
* The solution to this problem can be recovered by solving a sequence of reweighted quadratic programs
1. Foreach u,v > 0, solve inner problem with respect to (x, y).

2. For each (x, y), solve outer problem with respect to u, v : U; i = \xl- — X \_1 (likewise for v).

p

Alpert et al., Faster minimization of linear wirelength for global placement, 1998



Appendix

Computation of the SQP descent directions and eigenvectors of PAP

PROPOSITION 3 (NEWTON DIRECTION). Assume A symmetric and
PZ=Z ie,v'Z=0"X=[0,0]. The solution (Z, A) is

(A = XTL+w;D ™ x) XL+ wiD) T E; (10)
Z;=P(L+W;I)"'P{-X(A); + E;} (11)

where W is given by the eigenvector decomposition of A: A = UWU L,
W = diag(W1, W>) for two eigenvalues Wi, Wy of A.

Proposition 2.1. Let P = I —vv' with some unit vector v. Suppose A — sl is invertible. Let u' :=
(A—sI)lug_1 and vy := (A —sI)'v. Let yp = {P(A —sI)"*PYug_y. Thenv'vy #0

v '.’T : .
Py, = {P(A —sI)"'PVuy_y = (1 - 22 )u/'. (6)
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