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Global Placement Preliminaries
Nonlinear optimization

E-Place & DREAMPlace solve this problem using first-order methods

Generally initialize using random or min-WL layout

Initialization plays an important role for NNs and nonlinear optimization

We formulate initialization as a graph embedding problem
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Gu et al., DREAMPlace 3.0: Multi-Electrostatics Based Robust VLSI Placement with Region Constraint, 2020



Overview
Chen et al., Placement Initialization via Sequential Subspace Optimization with Sphere Constraints, 2022

1. Compute eigenvectors of  
laplacian. Align with fixed nodes


2. Find block-global solution to the min-HPWL problem


3. Perform global and detailed placement  
using 3. as a seed

Lu et al., ePlace: Electrostatics-Based Placement Using Fast Fourier Transform and Nesterov’s Method, 2015

Lin et al., DREAMPlace: Deep Learning Toolkit-Enabled GPU Acceleration for Modern VLSI Placement, 2019
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Spectral embeddings
A generalized eigenvalue problem and geometric interpretation

min
x,y

x⊤Lx + y⊤Ly s.t. v⊤x = 0, v⊤y = 0,

x⊤Gx = c1, y⊤Gy = c2, x⊤Gy = c3

Origin constraints

Congestion constraints

Squared distance

Cell positions

Normalized

node volumes

Assume v = 1

Any psd matrix. 

E.g. assume diag(v)
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Cell positions



Chen et al., LBR: Placement Initialization via a Projected 
Eigenvector Algorithm, 2022

1. Solving the EV problem 
 


2. Transform to (a.) resolve 
 (b.) align X with fixed 

nodes

min
X:X⊤X=I

trace(X⊤, PLPX)

X⊤X = C

Initialization: two-stage eigenvector 
projection

Placement Initialization via Sequential Subspace Optimization with Sphere Constraints

P���������� 1 (P���������). Let -1 be an intermediate solution
and ⇠1 := ->1 -1 and ⇠ � 0.

The projection of -1, [-1]+ := argmin
-

{� (- ) = | |- � -1 | |2�
= tr(⇠) + tr(⇠1) � 2maxh- ,-1i}

s.t. ->- = ⇠ . Take the SVD of ⇠1/2⇠1/2
1 ,* ⌃+> = ⇠1/2⇠1/2

1 .
Then the minimizer - = [-1]+ is given by

- = -1⇠
�1/2
1 *+>⇠1/2 (7)

The following proposition implies an orthogonal transformation (i.e.
a rotation / re�ection) which preserves the eigenvector structure
while minimizing the wirelength between �xed pins and free cells.

P���������� 2 (N������� �������� ������ �� - ). Note that the
�rst term of � satis�es the invariance tr(->%!%- ) = tr(-̃>%!%-̃ ),
where -̃ = -& for any orthogonal matrix& 2 R2⇥2.- is a local min-
imizer if �->⇢0 < 0 and symmetric. Compute the SVD of ->⇢0 =
*⇢⇡⇢+>⇢ . Let & = �*⇢+>⇢ . Then, tr((-&)>⇢0) = �tr(⇡⇢ )  0.

(a) (b)

(c) (d)
Figure 3: Eigenvector method and projection. (a): Eigenvec-
tors of !, ignorant of �xed nodes (denoted in red) (b): Eigen-
vectors of reduced Laplacian! (c): Eigenvectors of!, projected
according to Prop 1 (note the axis scale). (d): Orthogonal trans-
form applied to projected eigenvectors according to Prop 2.

3.2 A Sequential Quadratic Programming
method

Although set of projected eigenvectors of %!% correspond to one
candidate solution, they are by no means a global, or even local,

solution to Prob. 4. In this section, we introduce a method to itera-
tively improve these eigenvectors. Assume that ⇠ = � . We de�ne
the Lagrangian of Prob. 4 by introducing multipliers ⇤ 2 R2⇥2.

L(- ,⇤) = h- , %!%- + 2⇢0i + h⇤,->- �⇠i (8)

The derivative of the Lagrangian characterizes the �rst order con-
dition (FOC) satis�ed by an optimal - :

%!%- = �⇢0 � -⇤, ->- = ⇠ (9)

To �nd a solution, we derive Newton directions for ⇤ and - . i.e. we
update-  - +U/ and ⇤ ⇤+U� according to the linearization
of the FOC:

(%!%/ + /⇤) + -� = ⇢ := �⇢0 � (%!%- + -⇤)
->/ = 0

P���������� 3 (N����� D��������). Assume ⇤ symmetric and
%/ = / , i.e., E>/ = E>- = [0, 0]. The solution (/ ,�) is

(�) 9 = (-) (! +,9 � )�1- )�1-) (! +,9 � )�1⇢ 9 (10)

/ 9 = % (! +,9 � )�1%{�- (�) 9 + ⇢ 9 } (11)

where, is given by the eigenvector decomposition of⇤:⇤ = *,* �1,
, = diag(,1,,2) for two eigenvalues,1,,2 of ⇤.

Applying the projection operation []+ onto the manifold ->- = ⇠ ,
we generate {- = -: ,: = 1, 2, 3, . . .} -:+1 = [-: + U/ ]+ where U
is chosen to decrease the cost.

3.3 Sequential subspace optimization
Despite the sparsity of ! and e�cacy of !* decomposition for ma-
trix inverse-vector multiplication, computing the inverse of ! +,9 �
in Eq. 10 and Eq. 11 may be computationally expensive for large
benchmarks. We introduce a Sequential Subspace Method (SSM) to
address the scalability of SQP. Let - be the matrix of eigenvectors
of ! corresponding to the matrix, . Repeat the following two steps:

(1) Compute the newton direction / = (&% (!,⇤, ⇢0,- ) as de-
�ned in Eq. 11. Let+ be the orthogonal matrices, consisting
of columns in ( , where

( = B?0=(%- ,/ , E, !%- + ⇢0) .
(2) SSM generates an approximation of (- ,⇤) and approxima-

tion of the smallest pair of eigenvalues f /eigenvectors E of
! in the subspace ( ,

[- ,⇤, E,f] = ((" (!, ⇢0, ()
consider the approximation - = +-̃ for some -̃ . Compute

min
-

�( := min
-̃

� (-̃ ;⌫,+>⇢0)

We can consider E = + Ẽ to be a matrix consisting of esti-
mates of the eigenvectors of !, if Ẽ corresponds to a pair of
eigenvectors of ⌫ associate with its smallest two nontrivial
eigenvalues.

The matrix + can be interpreted as a graph coarsening transform,
and its inverse as a graph lifting transform—by reducing the size
of the graph, we achieve signi�cant improvements in scalability
without sacri�cing solution quality.
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Iterative refinement with SSM

• Need to invert  each time we update  (Newtons Method) - Expensive!


• Can show that a solution lies in a low-dim subspace spanned by 8 vectors:


• 


• Can generate a sequence of candidate solutions by iteratively solving the 
graph embedding problem in this (tiny) subspace. Very efficient!


• , 

L X

𝒮 = span(PXt, Zt, v, LPXt + E0)

L𝒮 → V⊤LV V = col(𝒮)
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Gradient
Small eigenvector of L

Current iterate Newton

Hager, Minimizing a Quadratic over a Sphere, 2001

Fixed pins



• Significant improvements up to 
(4%) on adaptec1 in post-
detailed placement wire length


• runtime details


• Structure of the solution to direct 
HPWL-minimization problem is 
“preserved” best

Results

Placement Initialization via Sequential Subspace Optimization with Sphere Constraints

Algorithm 2 SQP
Input: Partial Laplacian !, linear objective term ⇢0, intermediate
soluton - , intermediate Lagrangian multipliers ⇤
Output: 9 � C⌘ columns of Newton updates—� 9 ,/ 9

1: function SQP(!,⇤,⇢0,- , E)
2: ,  eigvals(⇤)
3: !%-  ! (- � E (E>- ))
4: %!%-  !%- � E (E>!%- )
5: ⇢  �⇢0 � (!%- +-!)
6: !,9  ! +,9 �

7: �9  (->!�1,9
- )�1!�1,9

⇢

8: )  �-�9 + ⇢
9: '�(  ) � () E)E>
10: / 9  !�1,9

'�( � E (E>!�1,9
'�()

11: return / 9 ,�9

12: end function

Table 1: Design characteristics.

Design #Free cells #Fixed pins #Nets Max Deg Avg Deg
adaptec1 211: 29: 221: 340 4.2
adaptec2 255: 21: 266: 153 3.9
adaptec3 452: 25: 467: 82 4.0
adaptec4 496: 29: 516: 171 3.7
bigblue1 278: 11: 284: 74 4.1
bigblue2 558: 141: 577: 260 3.5
bigblue3 558: 37: 1123: 91 3.4
bigblue4 2177: 170: 2230: 129 3.7

4.1 Experimental Setup
Algorithm parameters. To produce graph-layouts of IC netlists
we adopt a hybrid net model [21]—a combination of the clique
and star models. Each net is converted to a star or clique-graph
depending on the size of the net—i.e. nets with three or fewer pins
are modeled as cliques, and nets with four or more pins are modeled
as stars, with an associated free pseudo-pin variable introduced. To
set E , we consider the surface area of cells, scaled such that the
distribution is centered about 1 and normalized to sum to 1. The 28
are determined according to the free layout space.
Implementation details. We implemented our algorithms in
Python using the JAX framework [3]. In particular, we exploit
JAX’s capability to vectorize batched computation and compila-
tion to XLA via the jit decorator. In other words, XLA facilitates
hardware acceleration without returning to a Python interpreter.

4.2 Results
Numerical results.We applied our method to eight benchmarks
from the ISPD’05 contest suite [19] and measured the cumulative
HPWL post-legalization. Numerical results are provided in Table 2.
We �nd that origin initializations consistently under-perform the
other three methods, and that our method consistently results
in superior HPWL—up to 4% compared to the random and min-
wirelength heuristics. We observe the largest gains are achieved by
the initial projected eigenvectors. When SSM is applied, a signi�-
cant, although smaller, improvement is achieved compared to the

random and min-wirelength heuristic initializations. As expected,
larger improvements in global placement runtime are achieved with
a solution that is closer to optimal (GP runtime). In Table 3, we

(a) (b)

(c) (d)
Figure 4: Adaptec3 layout. (a): Projected eigenvectors for seed
layout. (b—d) Intermediate and �nal DREAMPLACE results.

demonstrate that the directly minimizing HPWL yields still further
improvements. We note that reweighted methods are typically slow
to converge [9]. As a consequence, instead of running our algorithm
to convergence, we set a hard limit of 100 reweighting steps.
Preservation of initial structure through global placement.
In Fig 4, we plot intermediate iterations of the global placer which
serves demonstrate that the global placement algorithm preserves
the global and local structure induced by the seed layout. Inspired
by metrics proposed in Fogaça et al. [10], we propose to evaluate
this hypothesis by conducting a two-sample permutation test. We
formulate the null (�0) and alternative (�0) hypotheses below:
�0: no e�ect of the initialization on the �nal layout
�0 : there is an e�ect
Intuitively, under the null hypothesis, the cells component to any
initial spatial partitioning (e.g. an arbitrary node’s neighbors) would
separate during the global placement process, and a new partition-
ing after global placement would yield very di�erent groups of
cells. A natural test-statistic follows. We consider a partitioning
computed based on the initial layout—e.g. we apply :-medoids2. Af-
ter global placement, we re-partition the �nal layout using :-means.
For each centroid 2 of an initial partition %2 , we �nd 2’s associated
partition % 02 in the �nal layout. The test statistic with respect to 2 is

I2 =
|%2 \ % 02 |
|%2 | + |% 02 |

2:-means assigns centers to arbitrary coordinates, :-medoids assigns centers to cells.

Anon.

Table 2: HPWL and runtime of placement and legalization.We report the percent improvement over random init. in parenthesis.

Design Random Min-wirelength Projected Eigenvectors Projected Eigenvectors + SSM
HPWL GP runtime (s) HPWL GP runtime (s) HPWL GP runtime (s) Init. runtime (m) HPWL GP runtime (s) Init. runtime (m)

adaptec1 73.24 84.39 73.23 74.31 70.36 (3.9%) 63.86 1.56 70.34 (3.96%) 62.42 43.92
adaptec2 82.51 189.46 82.24 172.91 81.68 (1.0%) 164.37 1.47 81.21 (1.58%) 162.49 37.61
adaptec3 194.12 314.54 193.87 309.88 189.13 (2.5%) 313.29 3.02 187.95 (3.18%) 314.01 96.31
adaptec4 174.43 371.72 174.16 354.16 171.73 (1.5%) 372.14 2.81 171.62 (1.61%) 361.37 79.91
bigblue1 89.43 112.64 89.43 107.56 87.32 (2.3%) 94.11 2.07 87.04 (2.67%) 94.23 76.19
bigblue2 136.69 387.94 136.69 361.75 132.49 (3.0%) 327.14 2.51 131.37 (3.89%) 321.86 89.27
bigblue3 303.99 1064.63 303.99 1047.66 298.47 (1.8%) 847.03 6.15 297.31 (2.20%) 849.23 184.39
bigblue4 743.75 1534.11 743.75 1500.70 726.71 (2.2%) 1372.49 25.66 724.78 (2.55%) 1293.10 537.21

Table 3: HPWL and runtime of placement and legalization for
Prob. 3 (min-squared objective) and Prob. 3 (HPWL objective)

Design Squared-wirelength Direct HPWL
HPWL I HPWL I

adaptec1 70.34 0.131 ± 0.046 70.07 0.139 ± 0.052
adaptec2 81.21 0.069 ± 0.031 81.13 0.073 ± 0.038
adaptec3 187.95 0.072 ± 0.041 187.27 0.076 ± 0.043
adaptec4 171.62 0.126 ± 0.057 170.39 0.131 ± 0.061
bigblue1 87.04 0.063 ± 0.039 85.9 0.067 ± 0.041
bigblue2 131.37 0.079 ± 0.037 130.04 0.081 ± 0.044
bigblue3 297.31 0.074 ± 0.041 296.11 0.074 ± 0.043
bigblue4 724.78 0.081 ± 0.053 724.39 0.081 ± 0.054

We consider the mean over all 2: 1
:
Õ
82 [: ] I28 as the test statistic.

Intuitively, the null-distribution is centered about zero (samples in
the initial partition %2 characterized by 2 may end up arbitrarily
far from 2 after global placement). Likewise, the ideal test-static
corresponds to 0.5 (%2 = % 02 , partitions don’t change after global
placement). In Table 3, we report the z-scores associated with each
design (since we �nd ?-values are trivial). We simulate the null-
distribution associated with each testcase 1000 times to compute
?struct, the percentage of simulations which result in a test statistic
equal to or larger than the test statistic recovered based on our
initialization. We �nd signi�cance at the 0.01-level for all designs,
with the null-distribution very close to zero (e.g. Īnull = 0.00579
with standard deviation < 10�5 for adaptec3).

5 CONCLUSION AND FUTUREWORK
Wehave presented a novel formulation to initialize global placement
engines by solving a quadratically constrained quadratic program.
Despite the nonconvexity of the constraints, we present an algo-
rithm to e�ciently solve the associated optimization algorithm and
extend it to facilitate direct minimization of HPWL. In an extensive
study on 8 VLSI designs, we have demonstrated that our method
signi�cantly outperforms relevant methods with respect to post-
detailed placement layout quality. Furthermore, we have proposed a
novel statistical test for the quality of initialization for global place-
ment. Future work includes the exploration of new optimization
problems that incorporate congestion minimization and improving
the rate of convergence of iterative reweighting.
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Intuitively, the null-distribution is centered about zero (samples in
the initial partition %2 characterized by 2 may end up arbitrarily
far from 2 after global placement). Likewise, the ideal test-static
corresponds to 0.5 (%2 = % 02 , partitions don’t change after global
placement). In Table 3, we report the z-scores associated with each
design (since we �nd ?-values are trivial). We simulate the null-
distribution associated with each testcase 1000 times to compute
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equal to or larger than the test statistic recovered based on our
initialization. We �nd signi�cance at the 0.01-level for all designs,
with the null-distribution very close to zero (e.g. Īnull = 0.00579
with standard deviation < 10�5 for adaptec3).

5 CONCLUSION AND FUTURE WORK
Wehave presented a novel formulation to initialize global placement
engines by solving a quadratically constrained quadratic program.
Despite the nonconvexity of the constraints, we present an algo-
rithm to e�ciently solve the associated optimization algorithm and
extend it to facilitate direct minimization of HPWL. In an extensive
study on 8 VLSI designs, we have demonstrated that our method
signi�cantly outperforms relevant methods with respect to post-
detailed placement layout quality. Furthermore, we have proposed a
novel statistical test for the quality of initialization for global place-
ment. Future work includes the exploration of new optimization
problems that incorporate congestion minimization and improving
the rate of convergence of iterative reweighting.
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Conclusions and future work

• Initialization can significantly help placement engines based on first-order 
methods


• Scalability and implementation is critical for huge cases


• More practical considerations for chip placement applications in the wild


• Timing via reweighing


• Local congestion and “over clustering”


• Slow convergence of alternating minimization (reweighing for HPWL 
minimization)
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Appendix

Addressing “HPWL-minimization”


• VLSI engineers: HPWL as a surrogate for wire length


• HPWL = reformulate as a linear  minimization problem 




• The solution to this problem can be recovered by solving a sequence of reweighted quadratic programs


1. For each , solve inner problem with respect to .


2. For each , solve outer problem with respect to  (likewise for ).

ℓ1

min ∑
i,j∈ℰ

2( |xi − xj | + |yi − yj | ) ≤ min
ui,j>0

max
vi,j>0 ∑

i,j∈ℰ

(ui,j |xi − xj |
2 +

1
ui,j

+ vi,j |yi − yj |
2 +

1
vi,j

)

u, v ≥ 0 (x, y)

(x, y) u, v : ui,j = |xi − xj |
−1 v

Alpert et al., Faster minimization of linear wirelength for global placement, 1998
9
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Appendix
Computation of the SQP descent directions and eigenvectors of PAP

Placement Initialization via Sequential Subspace Optimization with Sphere Constraints

P���������� 1 (P���������). Let -1 be an intermediate solution
and ⇠1 := ->1 -1 and ⇠ � 0.

The projection of -1, [-1]+ := argmin
-

{� (- ) = | |- � -1 | |2�
= tr(⇠) + tr(⇠1) � 2maxh- ,-1i}

s.t. ->- = ⇠ . Take the SVD of ⇠1/2⇠1/2
1 ,* ⌃+> = ⇠1/2⇠1/2

1 .
Then the minimizer - = [-1]+ is given by

- = -1⇠
�1/2
1 *+>⇠1/2 (7)

The following proposition implies an orthogonal transformation (i.e.
a rotation / re�ection) which preserves the eigenvector structure
while minimizing the wirelength between �xed pins and free cells.

P���������� 2 (N������� �������� ������ �� - ). Note that the
�rst term of � satis�es the invariance tr(->%!%- ) = tr(-̃>%!%-̃ ),
where -̃ = -& for any orthogonal matrix& 2 R2⇥2.- is a local min-
imizer if �->⇢0 < 0 and symmetric. Compute the SVD of ->⇢0 =
*⇢⇡⇢+>⇢ . Let & = �*⇢+>⇢ . Then, tr((-&)>⇢0) = �tr(⇡⇢ )  0.

(a) (b)

(c) (d)
Figure 3: Eigenvector method and projection. (a): Eigenvec-
tors of !, ignorant of �xed nodes (denoted in red) (b): Eigen-
vectors of reduced Laplacian! (c): Eigenvectors of!, projected
according to Prop 1 (note the axis scale). (d): Orthogonal trans-
form applied to projected eigenvectors according to Prop 2.

3.2 A Sequential Quadratic Programming
method

Although set of projected eigenvectors of %!% correspond to one
candidate solution, they are by no means a global, or even local,

solution to Prob. 4. In this section, we introduce a method to itera-
tively improve these eigenvectors. Assume that ⇠ = � . We de�ne
the Lagrangian of Prob. 4 by introducing multipliers ⇤ 2 R2⇥2.

L(- ,⇤) = h- , %!%- + 2⇢0i + h⇤,->- �⇠i (8)

The derivative of the Lagrangian characterizes the �rst order con-
dition (FOC) satis�ed by an optimal - :

%!%- = �⇢0 � -⇤, ->- = ⇠ (9)

To �nd a solution, we derive Newton directions for ⇤ and - . i.e. we
update-  - +U/ and ⇤ ⇤+U� according to the linearization
of the FOC:

(%!%/ + /⇤) + -� = ⇢ := �⇢0 � (%!%- + -⇤)
->/ = 0

P���������� 3 (N����� D��������). Assume ⇤ symmetric and
%/ = / , i.e., E>/ = E>- = [0, 0]. The solution (/ ,�) is

(�) 9 = (-) (! +,9 � )�1- )�1-) (! +,9 � )�1⇢ 9 (10)

/ 9 = % (! +,9 � )�1%{�- (�) 9 + ⇢ 9 } (11)

where, is given by the eigenvector decomposition of⇤:⇤ = *,* �1,
, = diag(,1,,2) for two eigenvalues,1,,2 of ⇤.

Applying the projection operation []+ onto the manifold ->- = ⇠ ,
we generate {- = -: ,: = 1, 2, 3, . . .} -:+1 = [-: + U/ ]+ where U
is chosen to decrease the cost.

3.3 Sequential subspace optimization
Despite the sparsity of ! and e�cacy of !* decomposition for ma-
trix inverse-vector multiplication, computing the inverse of ! +,9 �
in Eq. 10 and Eq. 11 may be computationally expensive for large
benchmarks. We introduce a Sequential Subspace Method (SSM) to
address the scalability of SQP. Let - be the matrix of eigenvectors
of ! corresponding to the matrix, . Repeat the following two steps:

(1) Compute the newton direction / = (&% (!,⇤, ⇢0,- ) as de-
�ned in Eq. 11. Let+ be the orthogonal matrices, consisting
of columns in ( , where

( = B?0=(%- ,/ , E, !%- + ⇢0) .
(2) SSM generates an approximation of (- ,⇤) and approxima-

tion of the smallest pair of eigenvalues f /eigenvectors E of
! in the subspace ( ,

[- ,⇤, E,f] = ((" (!, ⇢0, ()
consider the approximation - = +-̃ for some -̃ . Compute

min
-

�( := min
-̃

� (-̃ ;⌫,+>⇢0)

We can consider E = + Ẽ to be a matrix consisting of esti-
mates of the eigenvectors of !, if Ẽ corresponds to a pair of
eigenvectors of ⌫ associate with its smallest two nontrivial
eigenvalues.

The matrix + can be interpreted as a graph coarsening transform,
and its inverse as a graph lifting transform—by reducing the size
of the graph, we achieve signi�cant improvements in scalability
without sacri�cing solution quality.
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