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Outline

m New approach to EM assessment based on IR drop analysis

m Modeling EM stress evolution in interconnect trees and voiding models

m Experimental validation of temperature-aware EM model with grid-like structure

m Validation of EM assessment flow with real silicon power/ground grid degradation data

m Conclusions



Traditional Circuit-Level EM Assessment

m Decompose an interconnect layout into individual
segments.

m Calculate MTTF for each segment

m The expected lifetime of the overall system is
determined from the failure probability of the
individual wire segments

m Motivation for new development: traditional EM
design rules are mostly conservative and can result
in grid overdesign

m Correct EM prediction model is required for
development of power grid fixing capabilities
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Novel approach to EM analysis of p/g grids

m Damage of a single link doesn’t imply the grid failure: the
redundant paths provide voltage supply to the circuits

m Redundancy allows the electric current to redistribute when
the EM induced void causes a local resistance increase

m Grid fails when voltage variation, caused by EM induced
increase of resistances, exceeds a designer specified
threshold at any node

m The proposed EM assessment methodology is based on
analysis of IR drop evolution in the interconnect

Via stacks to connect
M2 with M5

B. Li, et al., IRPS 2018
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Stress build-up in interconnect trees

m Interconnect tree (IT): the connected metal segments
within one layer, confined by the liners

m Korhonen’s model is applicable for each branch of the
tree:

)
do  BQ 0 do _ q'p . D. =D exp(——
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m Atomic flux continuity in each junction links per-branch
stress equations:
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Simulation of EM-induced voltage evolution

m Voiding criteria: stress exceeds critical value

Voided branch:

f AR(t) _ (p”ner P jl (t) L Void under downstream via:
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m Initial node voltages U: solve the matrix equation G x U=I.. G - conductance matrix, I —
vector of current sources (constant)

m Modified voltages U, 4: from the matrix equation (G-AG) XU, .,=I; (S.Chatterjee, M.Fawaz,
and F.N.Najm, ICCAD, 2013)



Temperature-aware EM assessment flow

Input: Grid layout, Power info

<

Resistorsnetiist | Temperature m Resistors netlist and calculated T(x,y) - input
Node voltages distribution for EM StreSS S|mUIat|0n
Construct interconnect trees
1T m Voltage increase above a threshold — defines
Monte-Carl le (critical At A_fai
stresses and diffusivities). time-to-failure (TTF)

<

—-| Calculate stresses; detect voiding o ]
T m Monte-Carlo loop for statistical analysis (due to

Get resistance changes; I’andom Val‘latlonS Of Ocrit and Da)
Update voltage drops (AV)

Updated currents

no AV > AV,, ?

no TTFs converge ?
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Model calibration: grid-like test structure

C. Zhou, et al., VLSI Symposium
2018; TDMR 2019

= Two metal layers (M3, M4)
m 3 terminal voltage supply; 10 mA source current

m Analysis with uniform and non-uniform
temperature distribution

®® 7  Many redundant paths exist for
anode-cathode current delivery
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Increase of anode-cathode voltage drop as a grid failure criterion

mt=0 o t=80000 sec

m Voltage drop evolution between o4 -,A i ! .B
anodes and cathode, AU(A-C) and go3 - -} 5 ,,.H:-
AU(B-C), characterizes the grid 202 I RTT DN ‘,.-n:_ P o
degradation S “C

m The criterion of grid failure
AU(anode-cathode)>0.4 V was

accepted
m Good fit between simulated and

measured kinetics of voltage drop
between both anodes and cathode
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TTF statistics for the grid at uniform temperature (T=350°C)

m Lognormal distribution for o, providing <o, >=300 MPa and stdev=60 MPa
m Normal distribution for diffusion activation energy: <Q>=0.95 eV, stdev=0.005 eV

m MTTF with uniform T is ~6-10% sec
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Effect of nhon-uniform temperature on TTF distribution

Non-uniform T
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m Increased voiding probability in vicinity of
anodes — due to atomic flux divergency
caused by VT

m MTTF shift to 10° sec — caused by
decreased temperature in the central
section, and by the changed voiding
locations



Model validation using on-chip power/ground test grid
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VDD port voltage evolution
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VDD port
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Simulated voltage evolution
(dashed lines) vs measured
data (bold lines) on VDD port

m VDD port voltage evolution characterizes overall grid
resistance increase

m Calibrated critical stress:
<0, >=160 MPa and stdev=50 MPa
m Diffusion activation energy: <Q>=0.93 eV, stdev=0.005 eV

Voiding statistics for one Monte-Carlo sample

Number of voids

V3: M3-M4 upstream vias 86
V3: M4-M3 downstream vias 29
V2: M2-M3 upstream vias 67/

V2: M3-M2 downstream vias 136



Analysis of the results: simulation vs measurement
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VDD nodes: simulated
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VSS nodes: simulated

20000 40000 60000 80000
time, sec

\V/SS nodes: measured

20000 40000 60000 80000
time, sec

m Gradual voltage increase in VDD
nodes: degradation of the net due to
voiding in upstream vias

m EM failure of VSS net is caused
mainly by undercutting the
downstream vias - resulted in abrupt
voltage changes



TTF distribution and MTTF for the power/ground grid

1.2

0.8 L
Gos . MTTF 50418 sec 50368 sec
0.4 *e

0.2 x . Stddev of TTF 9410 sec 5670 sec
0 oo ®
30000 40000 50000 60000 70000

TTF, sec
® simulated ¥ measured

m Good fit between simulated and measured MTTF and stddev of TTF

m Future work: get more experimental data and elaborate more accurate
procedure for model parameters calibration
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Conclusions

m EM assessment of the power grid includes numerical analysis of stress build-up in interconnect
trees and compact models for void evolution

m Temperature gradients are able to change voiding locations due to creation of atomic flux
divergency

m TTF of the grid is defined by EM-induced increase of voltage drop
m MTTF is determined by statistical distributions of critical stress and diffusivity

m Direct comparison of simulation results with measurements has demonstrated validity of the
developed assessment methodology
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