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Motivation

ITRS Roadmap (2015)
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Additional Trends:

• Rising number of nets

• Higher complexity of migration 
mechanisms:

–Temperature dependency
–Interconnect scaling → surface 

effects

• AC nets are increasingly 
affected by migration-induced 
degradation

Technology scaling
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How have these issues been 
addressed?

• New interconnect materials

• Layout design with EM 
countermeasures

• Novel (stress-based) migration 
models → especially for PDNs

Today

Technology scaling



Combined Modeling of Electromigration, Thermal and Stress Migration in AC Interconnect Lines Slide 5

• Atomic motion driven by an electric current

• Cathode: tensile stress (voids)

• Anode: compressive stress (hillocks)

• Counteracting force: stress migration (SM, driven by stress gradients)

Electromigration
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Thermal Migration

• Atomic motion driven by temperature gradients due to
–Joule heating
–Devices with high power dissipation

• Often neglected compared to EM, but gains significance
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Stress Evolution

• Combined EM, TM, and SM cause stress profile within an interconnect

• Stress evolution is described by the Korhonen equation (originally EM and SM, 
expanded by TM)

• Stress distribution eventually reaches a steady state (for constant current density and 
temperature profile)

• Minimum/maximum occurring stress: decisive parameters for migration robustness

SM EM TM
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Migration in AC Nets

Signal lines are stressed with alternating currents due to

• (static) leakage power

• (dynamic) switching power
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EM: Effect of 
self-healing
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Migration in AC Nets
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Combined AC-EM, TM, and SM

• Self-healing is imperfect and can be modeled by a factor r (≈0.7-0.9)

• Joule heating and TM are independent from current direction
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FEM Models: General Concept

• Temperature rise is caused by Joule heating (no external heat sources)

• Self-healing is modeled by reducing the effective charge number Z in the diffusion 
equation of EM
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FEM Models: Results

• TM consideration results in 
non-linear stress profile

• Cathode: reduced tensile stress

• Anode: increased compressive 
stress

• Stress maximum is not located 
at the cathode, but shifted 
toward the middle of the wire

EM, SM, TM

EM, SM

𝜎max

Cathode

Anode
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FEM Models: Results

• Impact of TM varies depending on the values of Z (effective charge number) and Q 
(heat of transport)

Stronger 
EM

Stronger 
TM

Ratio of 
TM/EM
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FEM Models: Results

• Dotted lines: stress profile with 
consideration of temperature-
dependent resistivity

• Impact is dependent from 
material parameters

• Always increases stress

EM, SM, TM

EM, SM

Joule 
heating

Increased 
specific 

resistivity
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FEM Models: Verification

Comparison with analytical models by Chen 
(2020)

• Good agreement for long wires

• Relative error gets bigger for shorter wires 
due to simplifications made in the 
analytical models

–Tensile stress is underestimated
–Compressive stress is overestimated

• New equation for location of stress 
maximum derived

–Precise results for short wires (stress is still 
underestimated)
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FEM Models: Outlook
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for migration robustness
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FEM Analytical Models
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FEM Models: Outlook

More precise modeling will require experimental validation

• FEM models can act as design guidelines

• Material parameters need to by specified by technology characterization

• Temperature profile of wires within a realistic chip context needs to be obtained

AC nets need to be designed in a migration-robust manner

• Full-chip FEM verification will be too time-consuming 

• FEM models can be used to derive routing constraints and migration-inhibiting 
measures
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Summary

https://github.com/IFTE-EDA/MigrationFEM

In this work, we developed:

• FEM models (Ansys® APDL) available on GitHub
–Simulation of straight wires and more complex 

interconnect structures
–Analysis of the impact of material parameters and 

temperature on AC-EM and TM

• An analytical model to
–Find location of stress maximum
–Calculate temperature along a wire considering 

temperature-dependent resistivity

https://github.com/IFTE-EDA/MigrationFEM


Thank you for your attention!
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