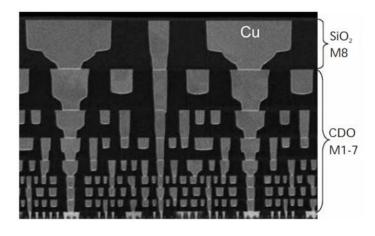


Challenges for Interconnect Reliability: From Element to System Level

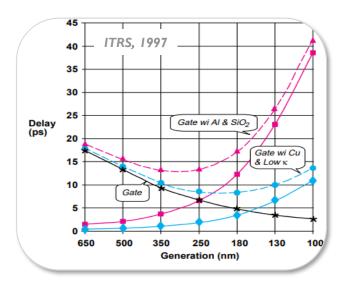

O. Varela Pedreira¹, H. Zahedmanesh¹, Y. Ding^{1,2}, I. Ciofi¹, K. Croes¹

imec, Leuven, Belgium

² Department of Materials Engineering, KU Leuven, Leuven, Belgium

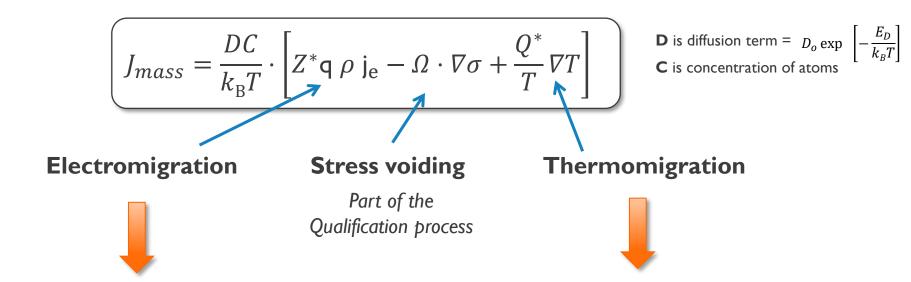
Introduction

- Interconnects: structures that connect electrically elements from an integrated circuit
- Function: transmit and distribute signals and power across the circuit
- Back-end stack is formed by:
 - Conductive metal lines to transport charges
 - Al, Cu,...
 - Dielectric to isolate metal lines
 - SiO₂, low-k's, airgap (ultimate solution)



SEM image of INTEL 45nm Cullow-k interconnect stack (Ingerly, D. et al., IEEE IITC 2008)

Introduction


- Interconnect scaling limits the circuit performance
 - Smaller Cu cross-sectional areas $\rightarrow \uparrow R_{line} \& \uparrow R_{via}$
 - Small spacing $\rightarrow \uparrow C$

- Impact of scaling in reliability
 - ↑ current densities → ↑ Joule Heating
 - ↓ EM lifetimes
 - ↓ TDDB lifetime

Interconnect scaling: Impact on reliability

Einstein equation for mass transport:

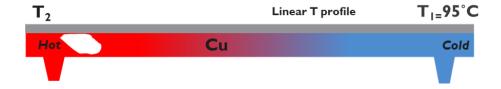
From single-link EM towards system level EM

Impact of thermal gradients on metal migration

Outline

- Impact of thermal gradients on metal migration
 - Motivation
 - Test structure
 - Model approach
 - Experimental approach & failure analysis
- System level Physics-based EM modelling
 - Motivation
 - Model description
 - Case study: Power delivery network (PDN)
- Conclusion

public


Outline

- Impact of thermal gradients on metal migration
 - Motivation
 - Test structure
 - Model approach
 - Experimental approach & failure analysis
- System level Physics-based EM modelling
 - Motivation
 - Model description
 - Case study: Power delivery network (PDN)
- Conclusion

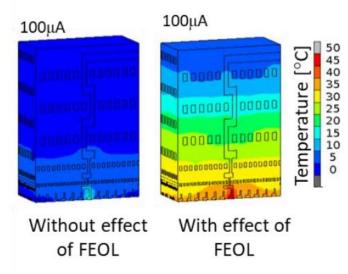
Motivation

Thermomigration

- Gradient in temperature acts as an external driving force for atom movement
 - Atoms preferentially move from hot regions to cold regions
 - Higher probability of dislocation for atoms in hot regions

 Result is net diffusion (mass transport) in the direction of the negative temperature gradients

$$F_{TEMP} = \frac{Q^*}{T} \nabla T$$

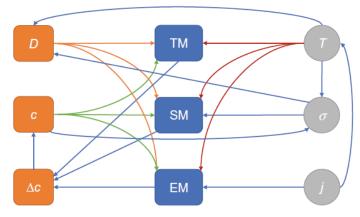

With Q^* the heat of transport (in k]/mol)

Motivation

Why are thermal gradients becoming relevant?

- Joule heating in scaled interconnects is enhanced by:
 - BEOL
 - Drastic increase of current density
 - Increase resistivity of used metals (Ru, Co, Cu)
 - Poor thermal conductivity for porous dielectrics (low-k)
 - FEOL:
 - Transistors are closer to BEOL
 - Higher clock frequencies generate hot spots

Temperature increase in the BEOL for overmolded package with natural convection (cooling):

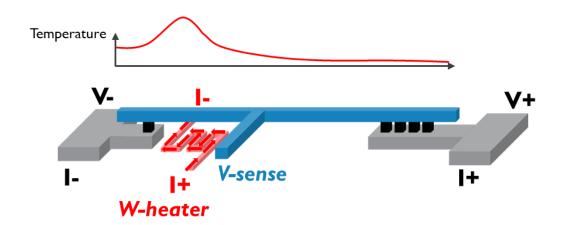


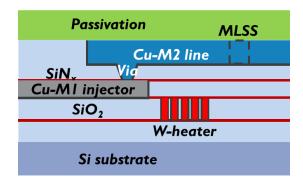
Lofrano M. et al., iTherm, 2022

Motivation

Why are thermal gradients becoming relevant?

Synergy between mechanisms

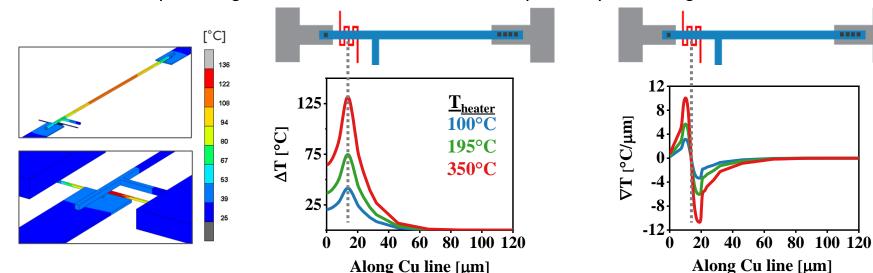



Lienig J., Thiele M., "Fundamentals of Electromigration-Aware Integrated Circuit Design", 2018

 Interaction and coupling between TM, SM and EM which would be further enhanced by temperature gradients

How to assess the impact of temperature gradients?

- Special test structure that allows void kinetics studies
 - W-heater allows to locally heat up a portion of the M2 level



How to assess the impact of temperature gradients?

Combined modelling approach

- I. Finite Element thermal model calibrated with Si data
 - Output
 - Joule heating: average temperature increase at the W-heater and Cu-line
 - Temperature gradient: calculation based on the temperature profile along the Cu-line

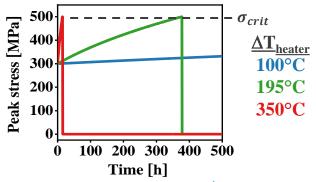
T_{heater}

100°C

195°C

350°C

How to assess the impact of temperature gradients?


Combined modelling approach

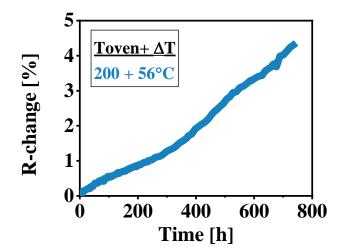
ID numerical TM model:

- Stress change in the interconnect under TM+SM
- Outputs:

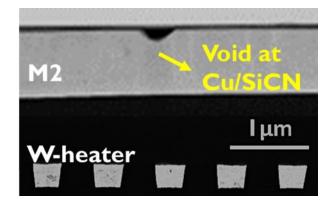
Model estimates the void location at the Cu line above the heater.

$$\frac{d\sigma}{dt} = \frac{d}{dx} \left(\frac{DB\Omega}{k_B T} \left(\frac{d\sigma}{dx} - \frac{Q^*}{\Omega T} \frac{dT}{dx} \right) \right)$$

Faster void formation for ↑ △T@ heater Ding Y. et al., Microelectronics Reliability 2022


12

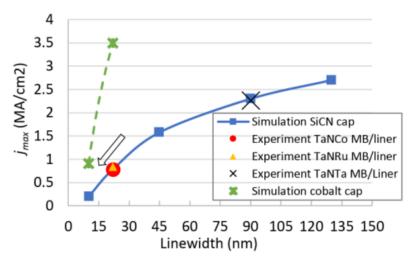
Zahedmanesh H. et al., Microelectron. Reliab., 2020


Experimental results

Ding Y. et al., IEEE IRPS 2023

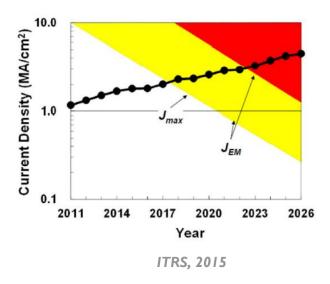
- Package level with:
 - $T_{oven} = 100, 150, 200 \, ^{\circ}C$
 - $\Delta T@M2 = 37-76$ °C
- Continuous R-change monitoring:

FIB/SEM images show voids at M2 on top of the heater → confirms model predictions


Outline

- Impact of thermal gradients on metal migration
 - Motivation
 - Test structure
 - Model approach
 - Experimental approach & failure analysis
- System level Physics-based EM modelling
 - Motivation
 - Model description
 - Case study: Power delivery network (PDN)
- Conclusion

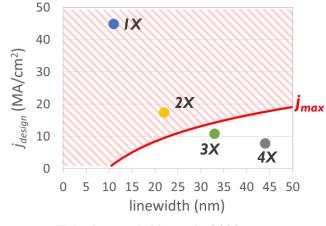
Metal reliability: impact of scaling


Electromigration

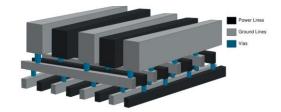
- Abrupt degradation of J_{MAX} with line width
 - J_{MAX} < IMA/cm^2 at 22nm CD

Zahedmanesh H. et al., IEEE IITC 2019

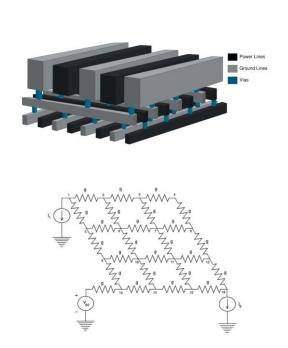
 On future nodes J_{MAX} is expected to exceed J_{FM}

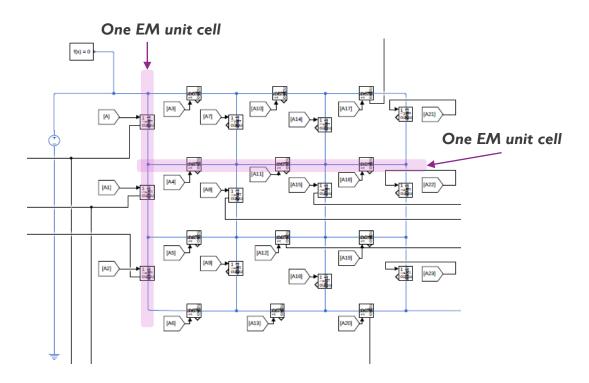


Metal reliability: impact of scaling


The inflection point of J_{MAX} and J_{design}

- The standard design approach for EM is based on $J_{\text{single-wire}} < J_{\text{MAX}}$ criterium
- Dilemma for EM predictions as single isolated interconnect EM tests may not be readily translated into metrics for interconnect network systems.

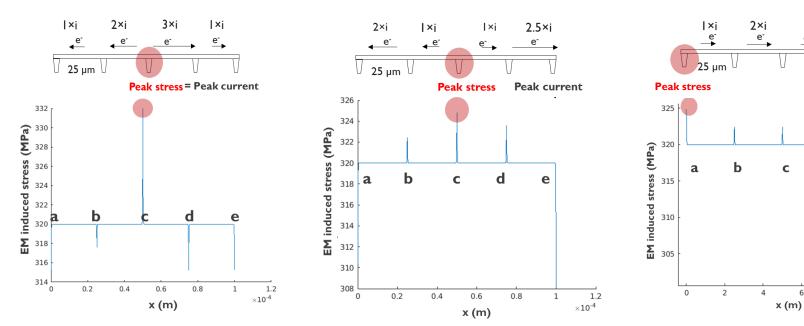

Zahedmanesh H. et al., 2023, in press



The linewidth of power delivery network needs to be at least 3-4x wider than the minimum linewidth to pass element level EM requirements with Cu metallization

→ Examine circuit operation and layout to determine if additional EM margins exist

Circuit discretization based on "EM unit cells"



- EM unit cells: single long interconnects with multiple tapping points.
- EM induced mass-transport is restricted to within a single EM unit cell.

I .

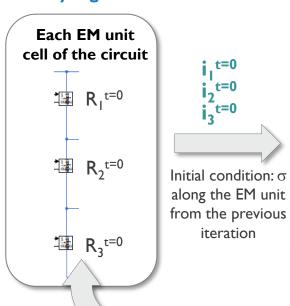
Stress-based or Current-based analysis?

Peak tensile stresses occur in different locations than peak current

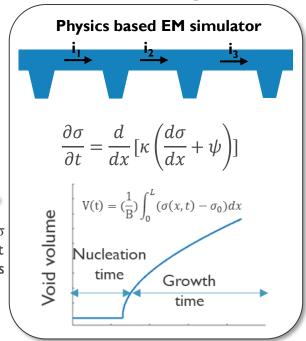
Peak tensile stress and peak current occurred in the same segment

Predicting failure locations based on peak tensile stresses is more accurate as stress is the driving force for void nucleation

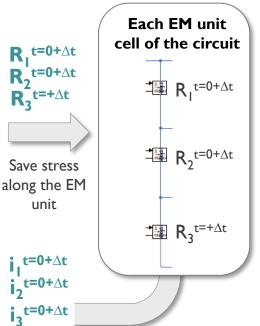
Peak current


8

10

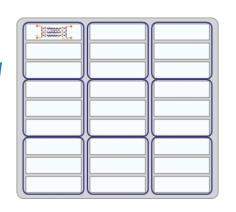

 $\times 10^{-5}$

Algorithmic approach

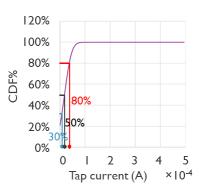

Solve electrical circuit and derive currents in every segment

Run Physics based EM model on every EM unit and obtain change of resistance

Solve electrical circuit and derive currents in every segment


Case study: Simulation of PDN design

PDN is constructed in a circuit analyzer



Impact of SC current heterogeneity across the core area

The simulated core area is divided into 9 subdomains

Distribution of tap currents at standard cell level obtained from EDA simulations

Higher heterogeneity of standard cell current across the simulated core area

Median current everywhere, homogeneous

50%	50%	50%
50%	50%	50%
50%	50%	50%

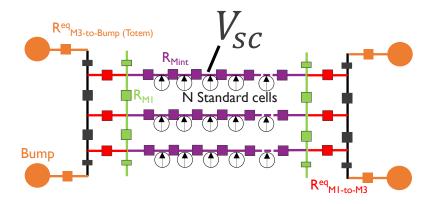
Low current almost everywhere

30%	30%	30%
30%	50%	30%
30%	30%	30%

Heterogeneous with one area of high current

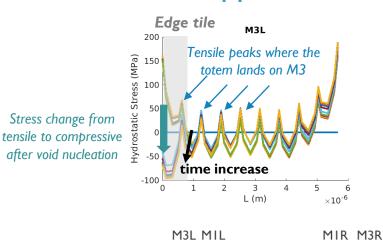
50%	30%	30%
30%	30%	80%
50%	30%	30%

Highly heterogeneous Many areas of high current

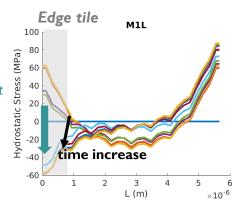

80%	80%	30%
30%	50%	30%
50%	80%	80%

Metric for evaluation of EM impact on system operation

The IR drops determined at the standard cell (SC) tapping points:

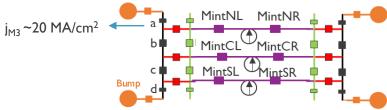

$$IR \ drop_{sc}(\%) = \left(\frac{2\Delta V_{sc}}{V_{dd} - V_t}\right) \times 100$$

- V_{sc} : IR drop at the standard cell
- $V_{dd} = 0.7 \text{V}$
- $V_t = 0.2V$ (threshold voltage)



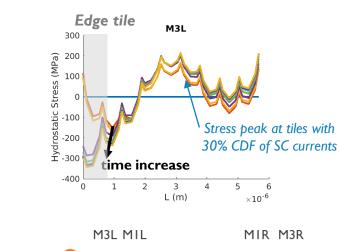
IR $drop_{sc}(\%)$ <10% to ensure optimal system operation and to prevent timing errors

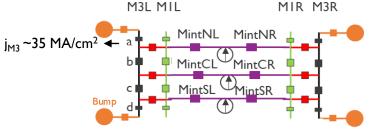
EM stress in copper MI and M3

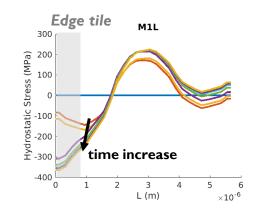


everywhere, homogeneous					
	50%	50%	50%		
	50%	50%	50%		

50% | 50% | 50%


Median current


Void location	Nucl. time (0.1 yr)
M3La	2.04
MILd	0.27
M3Ra	0.01



- Peak EM induced stresses occur at the edge tiles explaining the localization of the failures
- Voids nucleate early in segments with low critical stress (tail of σ_{crit} distribution)

EM stress in copper MI and M3

Void location	Nucl. time (0.1yr)
M3La	0.06
M3Ra	0.004

Highly heterogeneous Many areas of high current

80%	80%	30%
30%	50%	30%
50%	80%	80%

 Depending on standard-cell current distribution, stresses can become higher at locations with relatively lower standard-cell current and M1 stresses become comparable to M3.

Impact of metallization & SC current distribution across the PDN

Metallization scheme	MI to MI2: Copper Mint: Ruthenium	MI to MI2: Copper Mint: Ruthenium	MI to MI2: Copper Mint: Ruthenium	MI to MI2: Copper Mint: Ruthenium	MI to MI2: Copper Mint: Copper
Standard-cell (SC) current across simulated core area (CDF %)	Median current everywhere, homogeneous 50% 50% 50% 50% 50% 50% 50% 50% 50%	Low current almost everywhere 30% 30% 30% 30% 50% 30% 30% 30% 30%	Heterogeneous with one area of high SC current 50% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30% 30%	Highly heterogeneous with many areas of high SC current 80% 80% 30% 30% 50% 80% 80%	Median current everywhere, homogeneous 50% 50% 50% 50% 50% 50% 50% 50% 50%
Voided segments and time to nucleation MIL MIL MINTER MIR	Seg TTN (0.1 yr) M3La 2.04 M1Ld 0.27 M3Ra 0.01	Seg TTN (0.1 yr) M3Ra 0.6 M1Ld 0.3	Seg TTN (0.1 yr) M3Ra 0.11	Seg TTN (0.1 yr) M3La 0.06 M3Ra 0.004	Seg TTN (0.1 yr) M3La 14.37 M3Ra 0.01 M1Ld 0.29 MintNL 0.07
Max EM induced IR-drop (%) @ I 0yr	1.9%	0.26%	0.54%	3.0%	3.3%

- Direct correlation between SC current distribution and the EM induced IR-drop
- In all cases, multiple voided segments BUT no catastrophic failures and minimal EM impact on IR-drop at standard cell
- ~1.7x higher impact of PDN EM on IR-drop on PDNs with Cu Mint cf. Ru Mints rails

Outline

- Impact of thermal gradients on metal migration
 - Motivation
 - Test structure
 - Model approach
 - Experimental approach & failure analysis
- System level Physics-based EM modelling
 - Motivation
 - Model description
 - Case study: Power delivery network (PDN)
- Conclusion

public

Conclusion

Impact of thermal gradients on metal migration:

- Voiding due to temperature gradients may become dominant on advanced interconnects.
- Test structure that allows local heating to investigate the impact of TM (and potentially EM+TM)
- Combined modelling approach predicts:
 - Temperature gradient along the locally heated segment of the Cu interconnect
 - Increase tensile stress along the locally heated segment → Indication of void formation
- First experimental data confirms predictions of the model

Circuit level Electromigration analysis:

- A physics-based coupled Electrical-EM modelling framework is developed
- Metric for system performance based on IR drop \rightarrow indicates impact of EM on system deterioration
- Case study: PDN
 - Impact of current distribution: Heterogeneous current distribution can change location of EM hot spots
 - Impact of metallization: Ru rails reduced the impact of EM in PDN on IR-drop cf. Cu rails

Thank you for your attention

Contact email: <u>Olalla.VarelaPedreira@imec.be</u>

mec

embracing a better life