Advanced Design Methodologies for Directed Self-Assembly

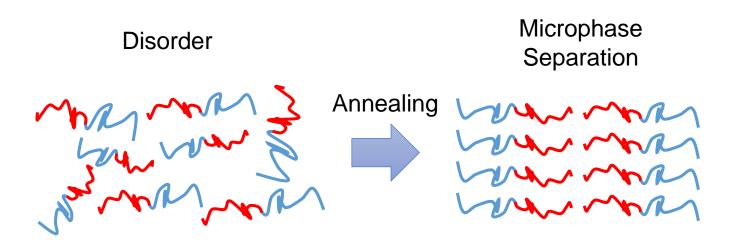
2023 International Symposium on Physical Design (ISPD)

Speaker: Shao-Yun Fang

The Electronic Design Automation Laboratory

Department of Electrical Engineering

National Taiwan University of Science and Technology, Taipei 106, Taiwan

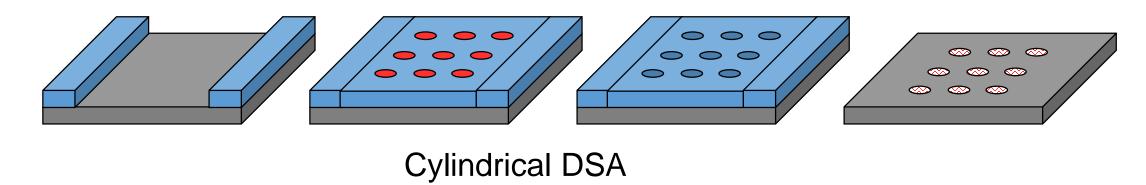

Block Copolymer Directed Self-Assembly

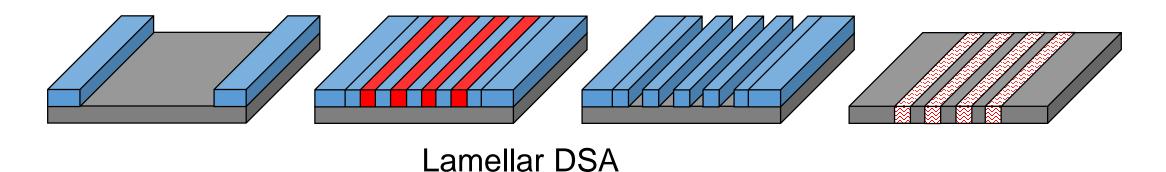
- Block copolymer (BCP) directed self-assembly (DSA) is one of Next Generation Lithography (NGL) technologies
 - Common material: PS-b-PMMA (polystyrene-block-polymethyl methacrylate)
 - A-type monomer
 - B-type monomer

Block Copolymer (BCP)

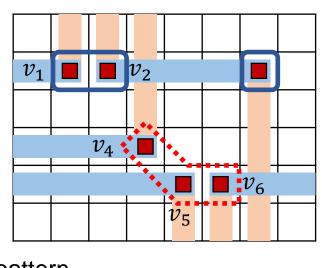
A-block

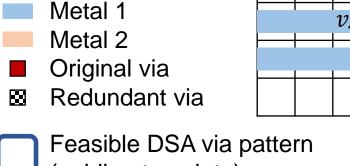
B-block

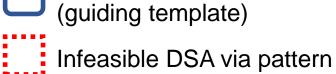

Different DSA Morphologies


- Different proportions of block components form different DSA morphologies
 - (a) Spherical (A << B)
 - (b) Cylinders (A < B)
 - (c) Lamellae (A ≈ B)

Guiding Templates in DSA

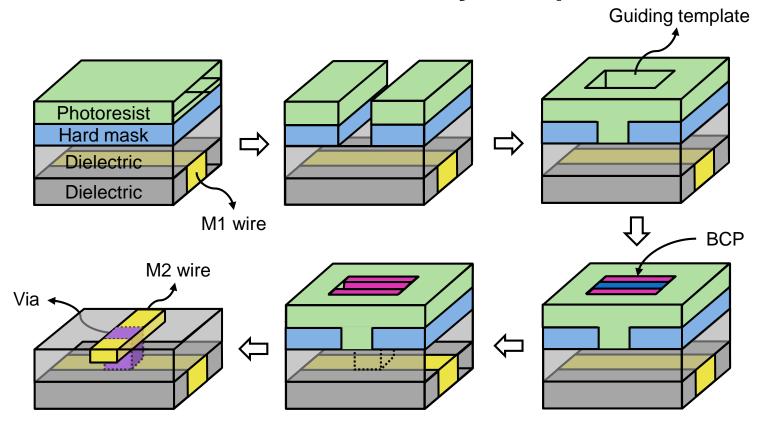

 Guiding patterns are used to provide additional driving forces to turn random fingerprints into highly orientated and aligned patterns





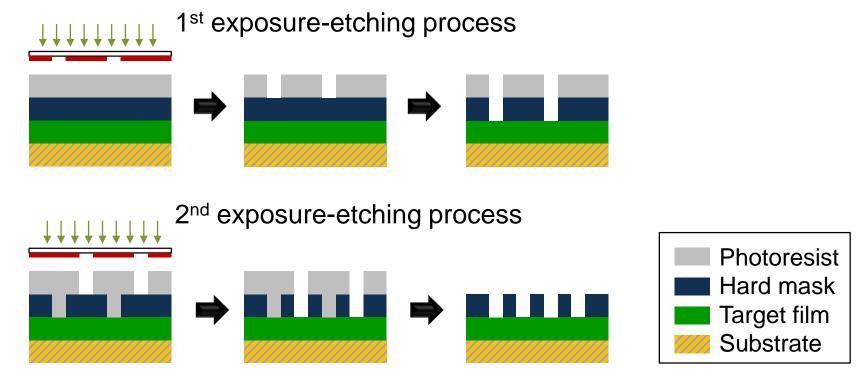
Via Fabrication with Cylindrical DSA

- Each via is generated with a single-hole or a multi-hole guiding template
- In a template, #holes ↑, shape complexity ↑ ⇒ overlay accuracy ↓



Common feasible via patterns in literature

Via Fabrication with Lamellar DSA


- Must be adopted with the self-aligned via (SAV) process
- Holes are generated at the intersections of templates and upper-layer wires
- Templates should not be too short for yield opt.

DSA with Multiple Patterning

- The resolution of guiding templates is limited by conventional optical lithography ⇒ use multiple patterning (MP)!!
- Litho-etch-litho-etch (LELE) multiple patterning lithography (MPL) has been widely used in industry

Existing Work on Cylindrical DSA

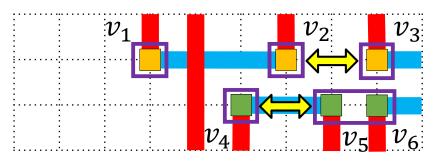
Post-layout template design and mask assignment

- Badr et al., "Mask assignment and synthesis of DSA-MP hybrid lithography for sub-7nm contacts/vias," DAC'15
- Kuang et al., "Simultaneous template optimization and mask assignment for DSA with multiple patterning," ASPDAC'16
- Xiao et al., "Contact layer decomposition to enable dsa with multi-patterning technique for standard cell based layout," ASPDAC'16

Template design considering multiple BCP materials

- Ou et al., "DTCO for DSA-MP hybrid lithography with double-BCP materials in Sub-7nm node," ICCD'16
- Wu and Fang, "Simultaneous template assignment and layout decomposition using multiple BCP materials in DSA-MP lithography," ICCAD'17
- Lin and Jiang, "Novel guiding template and mask assignment for DSA-MP hybrid lithography using multiple BCP materials," DAC'19

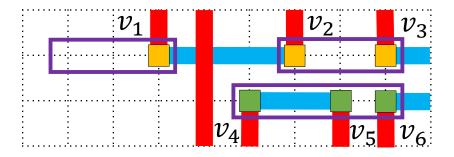
Cylindrical DSA-aware detailed routing


- Ou et al., "DSAR: DSA aware routing with simultaneous DSA guiding pattern and double patterning assignment," ISPD'17
- Yu and Chang, "DSA-friendly detailed routing considering double patterning and DSA template assignments,"
 DAC'18

Existing Work on Lamellar DSA

Post-layout template design and mask assignment

 Shih et al., "Guiding template design for lamellar DSA with multiple patterning and selfaligned via process," ICCAD'20


Cylindrical DSA with Mask conflicts

M1 routing wire

M2 routing wire

Lamellar DSA with no conflict

Guiding template

Conclusion and Future Research Directions

This presentation

- Introduce DSA as an advanced lithography technology
- Differentiate the processes of cylindrical DSA and lamellar DSA for via fabrication
- Briefly review the existing studies on the two technologies

Future research directions

- Physical design methodologies/rules to facilitate DSA-compliant layout synthesis
- Multi-row template adoption in lamellar DSA