
Learning from the Implicit Functional Hierarchy in an Analog Netlist

Helmut Graeb, Markus Leibl

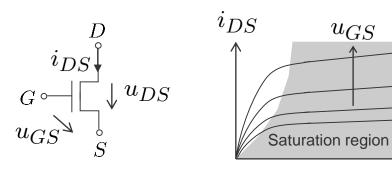
Technical University of Munich

TUM School of Computation, Information and Technology

Chair of Electronic Design Automation

Content

- Constraints/rules from hierarchical structure (sizing)
- Constraints/rules from netlist and signal flow (placement) [slide 14, video minute 18:45]
- Constraints/rules/functions from hierarchical function (modeling) [slide 22, video minute 27:40]



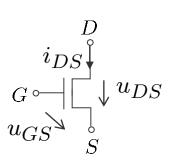
Content

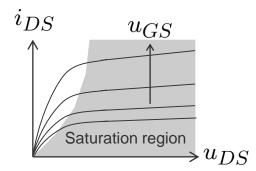
- Constraints/rules from hierarchical structure (sizing)
- Constraints/rules from netlist and signal flow (placement)
- Constraints/rules/functions from hierarchical function (modeling)

Sizing Constraints – Transistor (1)

Voltage-controlled current source:

$$i_{DS} = K \cdot \frac{W}{L} \cdot (u_{GS} - U_{th})^2 \cdot (1 + \lambda \cdot u_{DS})$$


Keep transistor in saturation:


$$u_{DS} - (u_{GS} - U_{th}) \ge U_{satmin}$$
, $u_{GS} - U_{th} \ge 0$, $u_{DS} \ge 0$

 $> u_{DS}$

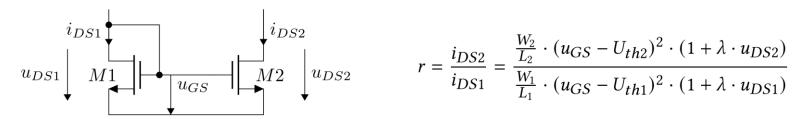
Sizing Constraints – Transistor (2)

Voltage-controlled current source:

$$i_{DS} = K \cdot \frac{W}{L} \cdot (u_{GS} - U_{th})^2 \cdot (1 + \lambda \cdot u_{DS})$$

Minimize variance of drain-source current due to manufacture variation:

$$\sigma_{iDS}^{2} = \sum_{X=K,W,L,U_{th}} \left(\frac{\partial i_{DS}}{\partial X}\right)^{2} \cdot \sigma_{X}^{2}$$

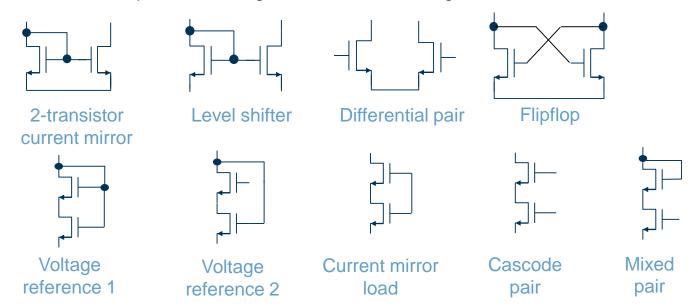

$$\left(\frac{\sigma_{K}}{K}\right)^{2} = \frac{A_{K}}{W \cdot L} \qquad \sigma_{Vth}^{2} = \frac{A_{Vth}}{W \cdot L}$$

$$\sigma_{iDS}^2 = \sum_{X=K,W,L,U_{th}} \left(\frac{\partial i_{DS}}{\partial X}\right)^2 \cdot \sigma_X^2 \qquad \longrightarrow \qquad \frac{\sigma_{iDS}^2}{i_{DS}^2} = \frac{A_K}{W \cdot L} + \frac{\sigma_W^2}{W^2} + \frac{\sigma_L^2}{L^2} + \frac{4}{(u_{GS} - U_{th})^2} \cdot \frac{A_{Uth}}{W \cdot L}$$

$$W \cdot L \ge A_{minA}$$
, $W \ge W_{minA}$, $L \ge L_{minA}$

Sizing Constraints – Current Mirror

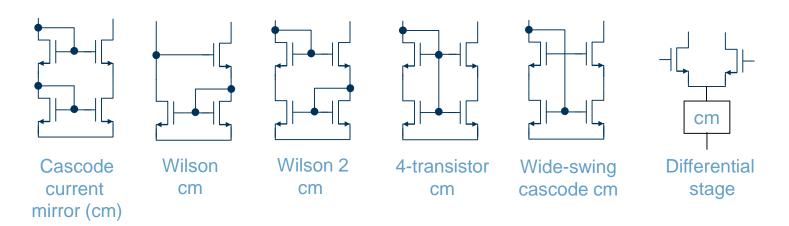
$$r = \frac{i_{DS2}}{i_{DS1}} = \frac{\frac{W_2}{L_2} \cdot (u_{GS} - U_{th2})^2 \cdot (1 + \lambda \cdot u_{DS2})}{\frac{W_1}{L_1} \cdot (u_{GS} - U_{th1})^2 \cdot (1 + \lambda \cdot u_{DS1})}$$

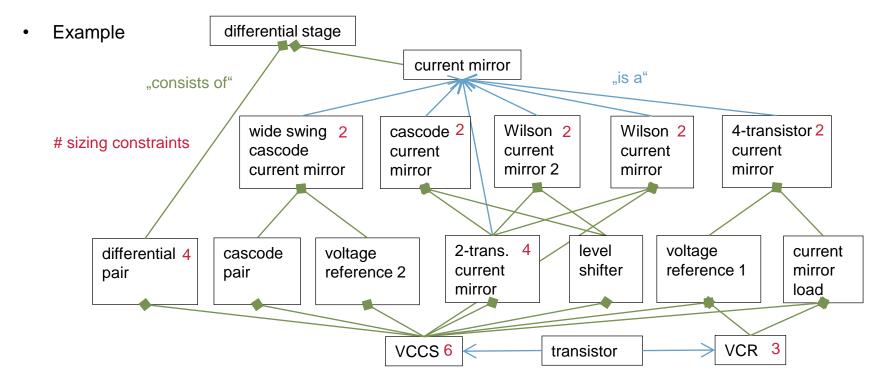

- Prepare regular layout (fingers, interdigitated/common centroid):
- Reduce impact of local manufacturing variation:
- Reduce impact of channel length modulation in circuit:

$$L_1 = L_2 , \quad W_2 = r \cdot W_1$$
 $\|u_{GS} - U_{th1,2}\| \ge U_{GSmin}$ $\|U_{DS2} - U_{DS1}\| \le \Delta U_{DSmax}$

Structural Blocks – Transistor Pairs

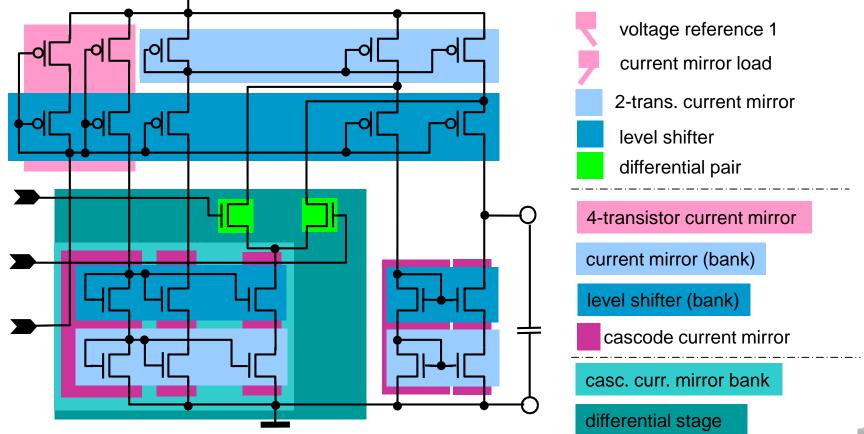
- 203 variants (Bell number)
- Few transistor pairs with design-relevant function, e.g.,




Structural Blocks – Transistor Groups

• E.g., current mirrors with 3 or 4 transistors, differential stage,

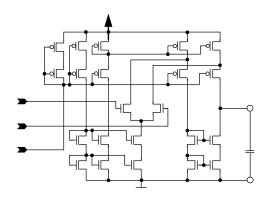
Hierarchical Library of Structural Blocks

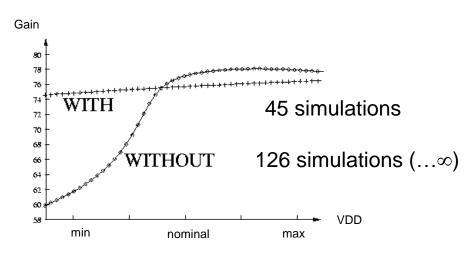


Structural Analysis of a Netlist

Hierarchical library of Hierarchical library of Netlist structural blocks sizing rules Structural analysis: search for sub-graph isomorphisms (bottom up) Instantiation of sizing rules (top down)

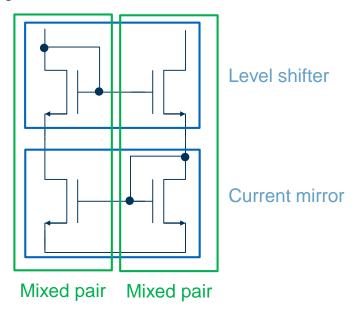
Structural Analysis – Example





Influence of Sizing Constraints on Sizing Process

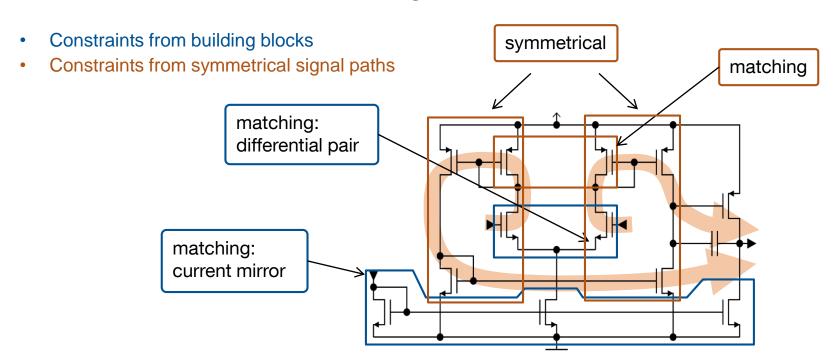
Typical example



- Better efficiency and convergence of sizing process
- Higher circuit robustness

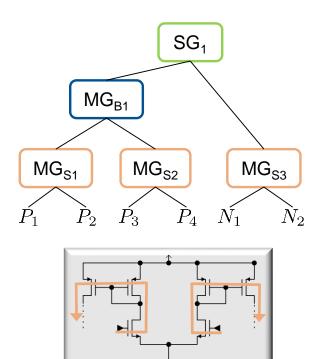
It Is Not That Easy

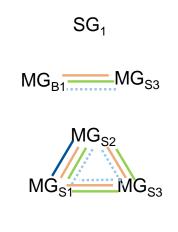
- Arbitration of transistor groups: "If a transistor is part of group A, it is not part of group B."
- Several ways of composition, e.g., Wilson 2 current mirror:

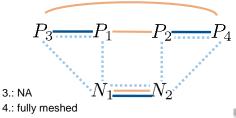


Content

- Constraints/rules from hierarchical structure (sizing)
- Constraints/rules from netlist and signal flow (placement)
- Constraints/rules/functions from hierarchical function (modeling)

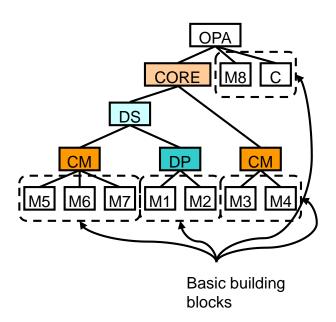

Constraints Across Building Blocks

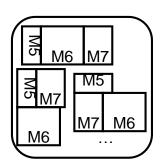


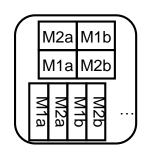


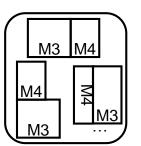
Placement Plan Construction from Constraint Hierarchy

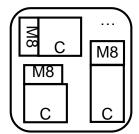
- Priority:
 - Matching constraints —— (symmetry path)
 - Matching constraints (building blocks)
 - 3. Proximity constraints (building blocks)
 - 4. Symmetry constraints —
 - 5. Proximity constraints (netlist)
- MG_{S/B}: Matching group (symmetry/building blocks)
- SG: Symmetry group
- PG_N: Proximity group (netlist)

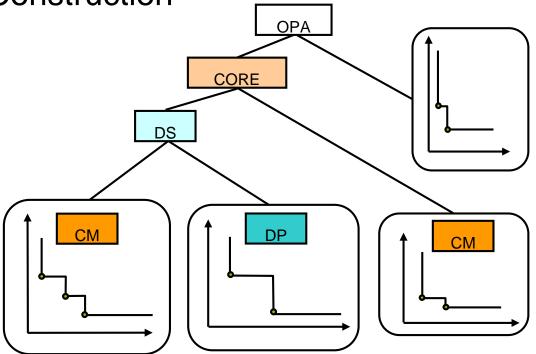


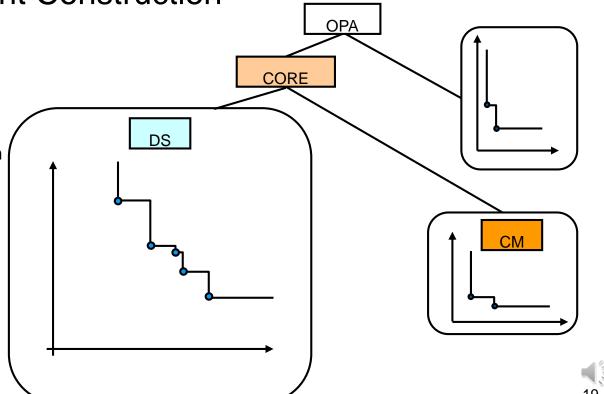




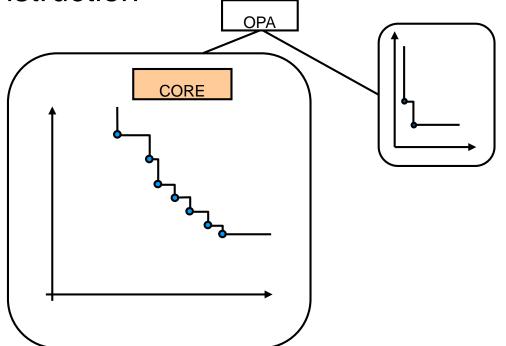



Placement: Enumerate Basic Building Blocks

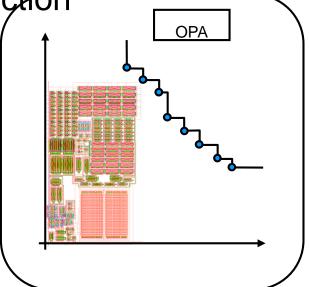




- Code placements as B* trees in enhanced shape functions
- Enhanced shape functions are added horizontally/vertically
- Bottom up along placement plan
- White space is utilized
- Constraints are provably kept

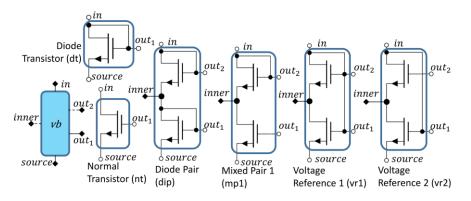


- Code placements as B* trees in enhanced shape functions
- Enhanced shape functions are added horizontally/vertically
- Bottom up along placement plan
- White space is utilized
- Constraints are provably kept



- Code placements as B* trees in enhanced shape functions
- Enhanced shape functions are added horizontally/vertically
- Bottom up along placement plan
- White space is utilized
- Constraints are provably kept

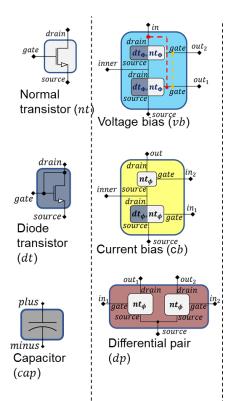
- Code placements as B* trees in enhanced shape functions
- Enhanced shape functions are added horizontally/vertically
- Bottom up along placement plan
- White space is utilized
- Constraints are provably kept

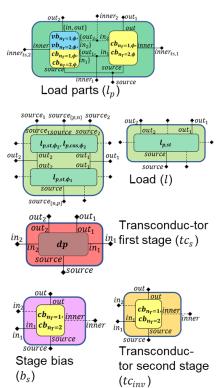


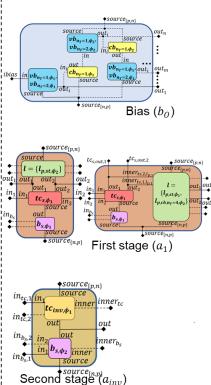
Content

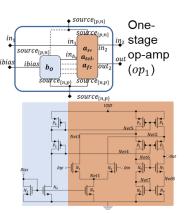
- Constraints/rules from hierarchical structure (sizing)
- Constraints/rules from netlist and signal flow (placement)
- Constraints/rules/functions from hierarchical function (modeling)

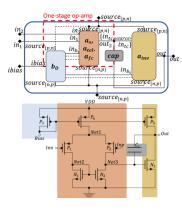
Beyond Structural Blocks: Functional Blocks




- Example voltage bias (vb)
- Converts current into node in into voltage at node out1 or at nodes out1 and out2
- E.g., part of current mirror


- Blocks representing a certain analog function within analog circuit
- Number of pins may vary depending on structural implementation by transistor netlist
- One functional block refers to several structural implementations
- One structural implementation refers to several functional blocks

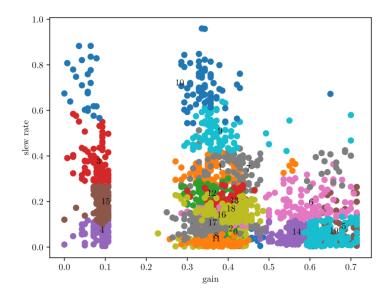

Functional Block Library



Hierarchical Performance and Constraint Library

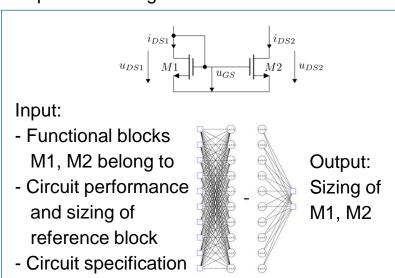
	Symmetry constraints	Behavioral constraints	Intermediate performance equations	Op-amp performance equations
Devices			Saturation vds Net capacitance	Area Quiescent power
Structures	Current mirror constraints	Current mirror behavior		
Amplification stage subblocks	Load Non-inverting transconductor	Complementary transconductor	Transconductance Output conductance	
Amplification stages	Inverting stages	Output voltage offset	Stage output resistance Stage open-loop gain Stage non-dominant poles Stage zeroes	Common-mode input voltage Output voltage Common-mode rejection ratio Unity-gain bandwidth
Op-amp			Dominant pole Positive zero	Open-loop gain Slew rate Phase margin

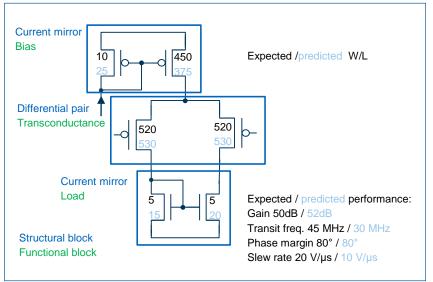
Design – Clustering and Modeling with Neural Networks


Performance	Minimum	Maximum
gain	40 dB	140dB
slew rate	$2 \frac{V}{\mu s}$ 55°	$217 \frac{V}{\mu s}$ 90°
phase margin	55°	90°
transit frequency	3MHz	173MHz

- >500 opamp structures
- ~20 different structural building blocks: transistor pairs, current mirror types, analog inverters
- Functional block characterization: load, transconductance, bias, opamp stage
- >150 sizings for various specs for each opamp structure
- Overall ~100,000 designs with these details: structure, hierarchy of building blocks, functional blocks, sizing, performance

Neural-network Driven Topology Selection


- Build neural network, e.g., for ~20 clusters of performance subranges, mapping performance on topology
- Speed up topology selection by applying this neural network (reduced set of potential topologies compared to enumeration)
- Precision > 70%, recall > 70%



Neural-network Driven Circuit Sizing

- Determine a neural network for each functional block that maps circuit specification on sizing of block
- Independent sizing of functional blocks of a circuit, e.g.,

Conclusion

- Hierarchical libraries of building blocks
- Associated generic sets of constraints, rules and functions
- Set-up of constraints, rules and functions crucial for synthesis, sizing and layout

Thanks to TUM Contributors to Constraint Methods

- Maximilian Neuner*
- Inga Abel
- Michael Zwerger
- Michael Eick
- Martin Strasser
- Tobias Massier
- Robert Schwencker
- Stephan Zizala
- Josef Eckmüller

(ordering according to (*expected) PhD graduation starting from most recent)

References

Structural analysis

- (1) Helmut Graeb. 2020. Mathematical Methods of Circuit Design. https://mediatum.ub.tum.de/doc/1086708/1086708.pdf.
- (2) Helmut Graeb, Stephan Zizala, Josef Eckmueller, Kurt Antreich. 2001. The sizing rules method for analog integrated circuit design. ACM/IEEE Int. Conf. Computer-Aided Design (ICCAD), https://ieeexplore.ieee.org/document/968645.
- (3) Tobias Massier, Helmut Graeb, Ulf Schlichtmann. 2008. The Sizing Rules Method for CMOS and Bipolar Analog Integrated Circuit Synthesis. *IEEE Trans. Computer-Aided Design* (TCAD), https://ieeexplore.ieee.org/document/4670074.
- (4) M. Eick, H. Graeb, Towards Automatic Structural Analysis of Mixed-Signal Circuits, In: Analog/RF and Mixed-Signal Circuit Systematic Design, M. Fakhfakh, E. Tlelo-Cuautle, R. Castro-Lopez (Eds.), Springer, 2013. https://link.springer.com/chapter/10.1007/978-3-642-36329-0_1

Sizing

- (1) Robert Schwencker, Josef Eckmueller, Helmut Graeb, Kurt Antreich. 1999. Automating the sizing of analog CMOS circuits by consideration of structural constraints. *Design, Automation and Test in Europe Conference*, https://ieeexplore.ieee.org/document/761141.
- (2) M. Eick, H. Graeb, MARS: Matching-driven analog sizing, IEEE Transactions on Computer-Aided Design of Integrated Circuits (TCAD), 2012. https://ieeexplore.ieee.org/document/6238393

Layout

- (1) Michael Eick, Martin Strasser, Kun Lu, Ulf Schlichtmann, Helmut Graeb. 2011. Comprehensive Generation of Hierarchical Placement Rules for Analog Integrated Circuits. *IEEE Trans. Computer-Aided Design (TCAD)*, https://ieeexplore.ieee.org/document/5689366.
- (2) Martin Strasser, Michael Eick, Helmut Graeb, Ulf Schlichtmann. 2011. Deterministic Analog Placement by Enhanced Shape Functions. In: *Analog Layout Synthesis A Survey of Topological Approaches, Springer*, https://link.springer.com/chapter/10.1007%2F978-1-4419-6932-3.
- (3) Martin Strasser, Michael Eick, Helmut Graeb, Ulf Schlichtmann, Frank Johannes. 2008. Deterministic Analog Circuit Placement using Hierarchically Bounded Enumeration and Enhanced Shape Functions, ACM/IEEE Int. Conf. Computer-Aided Design (ICCAD), https://ieeexplore.ieee.org/document/4681591.

Power-down synthesis

 Michael Zwerger, Maximilian Neuner, Helmut Graeb. 2017. Analog Power-Down Synthesis, IEEE Trans. Computer-Aided Design of Integrated Circuits (TCAD), https://ieeexplore.ieee.org/document/7922518.

Opamp synthesis

- (1) Inga Abel, Maximilian Neuner, Helmut Graeb: A Functional Block Decomposition Method for Automatic Op-Amp Design, Integration the VLSI journal, 2022. https://www.sciencedirect.com/science/article/abs/pii/S0167926022000438. arxiv.org: https://arxiv.org/abs/2012.09051, 2020.
- (2) Inga Abel, Helmut Graeb, FUBOCO: Structure Synthesis of Basic Op-Amps by FUnctional BlOck Composition, ACM Trans. Design Automation of Electronic Systems (TODAES), 2022. https://dl.acm.org/doi/abs/10.1145/3522738. arxiv.org: https://arxiv.org/abs/2101.07517, 2021.
- (3) Inga Abel, Maximilian Neuner, Helmut Graeb, A Hierarchical Performance Equation Library for Basic Op-Amp Design, IEEE Transactions on Computer-Aided Design of Integrated Circuits (TCAD), 2022. https://ieeexplore.ieee.org/document/9502924. arxiv.org: https://ieeexplore.ieee.org/document/9502924. arxiv.org: https://arxiv.org/abs/2012.09088, 2020.