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Content

« Constraints/rules from hierarchical structure (sizing)
» Constraints/rules from netlist and signal flow (placement) [slide 14, video minute 18:45]
» Constraints/rules/functions from hierarchical function (modeling) [slide 22, video minute 27:40]



Content

« Constraints/rules from hierarchical structure (sizing)



Sizing Constraints — Transistor (1)
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Sizing Constraints — Transistor (2)

D 'DS UGS
DS Voltage-controlled current source:
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Minimize variance of drain-source current due to manufacture variation:
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Sizing Constraints — Current Mirror
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Prepare regular layout (fingers, interdigitated/common centroid):

Reduce impact of local manufacturing variation:

L1=L2, W2=F-W1

lugs = Ushi2ll = UGSmin

Reduce impact of channel length modulation in circuit:

IWps2 — Upsill < AUpsmax




Structural Blocks — Transistor Pairs

« 203 variants (Bell number)
» Few transistor pairs with design-relevant function, e.g.,

e e 0 X

2-transistor Level shifter Differential pair Flipflop
current mirror
5% D -
I - -
Voltage Voltage Current mirror Cascode Mixed

reference 1 reference 2 load pair pair



Structural Blocks — Transistor Groups

E.g., current mirrors with 3 or 4 transistors, differential stage,

2 b 62 ¢lo [
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Hierarchical Library of Structural Blocks

Example

,consists of"

# sizing constraints
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Structural Analysis of a Netlist

Netlist

™

Hierarchical library of
structural blocks

Hierarchical library of
sizing rules

V

1

Structural analysis: search for sub-graph isomorphisms

(bottom up)

U

Instantiation of sizing rules (top down)
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Structural An

—O

30 equations + 160 inequalities — 190 sizing rules

O

voltage reference 1

current mirror load

2-trans. current mirror

. level shifter

4-transistor current mirror

current mirror (bank)



Influence of Sizing Constraints on Sizing Process

* Typical example

Gain
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Better efficiency and convergence of sizing process
Higher circuit robustness
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It Is Not That Easy

« Arbitration of transistor groups: “If a transistor is part of group A, it is not part of group B.”
« Several ways of composition, e.g., Wilson 2 current mirror:

| Level shifter

] I Current mirror

Mixed pair Mixed pair




Content

» Constraints/rules from netlist and signal flow (placement)
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Constraints Across Building Blocks

Constraints from building blocks
Constraints from symmetrical signal paths

matching:

differential pair [~

matching

matching:
current mirror

symmetrical
SN
——h //

“
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TUTI

Placement Plan Construction from Constraint Hierarchy

Priority:
1. Matching constraints
(symmetry path)

2. Matching constraints ——
(building blocks)

3. Proximity constraints
(building blocks)

4. Symmetry constraints

5. Proximity constraints
(netlist)

MGgg: Matching group
(symmetry/building blocks)

SG: Symmetry group
PG,: Proximity group (netlist)

SG,
MGg; MGg, MGg,
SN N
Pl P2 P3 P4 Nl N2
p—— -
Lo L.
r 0
: o » :
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SG,
MGBl MGSB

GSZ

MGg; " MGeg,

Py

P1 PQ

3.2 NA
4.: fully meshed

N1—=N,
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Placement: Enumerate Basic Building Blocks
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Bottom-up Placement Construction

* Code placements as B* trees in
enhanced shape functions

» Enhanced shape functions are
added horizontally/vertically

« Bottom up along placement plan

* White space is utilized

« Constraints are provably kept

OPA

,///,
CORE

DS

CM

CM
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Bottom-up Placement Construction

* Code placements as B* trees in
enhanced shape functions
» Enhanced shape functions are

OPA

CORE

added horizontally/vertically
« Bottom up along placement plan
* White space is utilized
« Constraints are provably kept

DS

CM
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Bottom-up Placement Construction

* Code placements as B* trees in

OPA

enhanced shape functions /

= )~

» Enhanced shape functions are
added horizontally/vertically

« Bottom up along placement plan

* White space is utilized

« Constraints are provably kept

A

|
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Bottom-up Placement Constru?Pion \
OPA

Code placements as B* trees in
enhanced shape functions
Enhanced shape functions are
added horizontally/vertically
Bottom up along placement plan
White space is utilized
Constraints are provably kept

A

%
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Content

Constraints/rules/functions from hierarchical function (modeling)
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TUTI

Beyond Structural Blocks: Functional Blocks

in

Diode outy o in in g in o in
Transistor (dt)
out; out-. out; out;
ource B
in : .
tn inne inner inner inner
out, *—
) .
inner out
S w 1 uty out, out, uty
out,
source. b source bsource source & source & source
Norm.al Diode Pair Mixed Pair 1 Voltage Voltage
Transistor (nt) (gip) (mp1) Reference 1 {vrl) Reference 2 (vr2)

« Example voltage bias (vb)

« Converts current into node in into voltage at
node outl or at nodes outl and out?2

 E.g., part of current mirror

Blocks representing a certain analog function
within analog circuit

Number of pins may vary depending on structural
implementation by transistor netlist

One functional block refers to several structural
implementations

One structural implementation refers to several
functional blocks
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Functional Block Library
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Hierarchical Performance and Constraint Librar TUTI

Devices

Amplification
stage
subblocks

Amplification
stages

Current mirror
constraints

Load
Non-inverting
transconductor

Inverting stages

Symmetry Behavioral Intermediate :
: : : Op-amp performance equations
constraints constraints performance equations

Saturation vds Area
Net capacitance Quiescent power

Current mirror
behavior

Complementary »Transconductance
transconductor / Output Tonductance

Output voltage Stage output resistance
offset Stage open-loop gain

Common-mode input voltage
Output voltage

Stage non-dominant Common-mode rejection ratio
poles Unity-gain bandwidth

Stage zeroes

Dominant pole Open-loop gain

Positive zero Slew rate

Phase margin
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TUTI

Design — Clustering and Modeling with Neural Networks

Performance Minimum Maximum
gain 40dB 140dB

Vv vV
slewrate 2 s 217 s
phase margin 55° 90°

transit frequency 3 MHz 173 MHz

« >500 opamp structures

« ~20 different structural building blocks : transistor pairs, current mirror types, analog inverters

» Functional block characterization: load, transconductance, bias, opamp stage

« >150 sizings for various specs for each opamp structure

« Overall ~100,000 designs with these details: structure, hierarchy of building blocks, functional blocks,
sizing, performance
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Neural-network Driven Topology Selection

* Build neural network, e.g., for ~20 clusters of
performance subranges, mapping performance on
topology

« Speed up topology selection by applying this neural
network (reduced set of potential topologies
compared to enumeration)

* Precision > 70%, recall > 70%

1.0

0.8

0.2 1

0.0 1




Neural-network Driven Circuit Sizing

Determine a neural network for each functional block that maps circuit specification on sizing of block

Independent sizing of functional blocks of a circuit, e.g.,

TUTI

Ui)b‘ll M1 I e I M2 luvsz
Input:
- Functional blocks \2
M1, M2 belong to Output:

- Circuit performance
and sizing of
reference block

- Circuit specification

Sizing of
M1, M2

Current mirror
Bias

2P

. 450

Differential pair f

Transconductance —O{

=

Current mirror
Load

Structural block
Functional block

’_{5

Expected / Wi/L
Expected / performance:
Gain 50dB /

Transit freq. 45 MHz /
Phase margin 80° /
Slew rate 20 V/us /
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Conclusion

Hierarchical libraries of building blocks
Associated generic sets of constraints, rules and functions
Set-up of constraints, rules and functions crucial for synthesis, sizing and layout
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