Joint Optimization of Sizing and Layout for AMS Designs: Challenges and Opportunities

Ahmet F. Budak, Keren Zhu, Hao Chen, Souradip Poddar, Linran Zhao, Yaoyao Jia, and **David Z. Pan**

Analog ICs: Introduction

- Sensor related applications and real-world interfaces require analog circuits
- Increasing market demand: Internet of Things (IoT), autonomous and electric vehicles, communication and 5G networks...

Joint Sizing & Layout

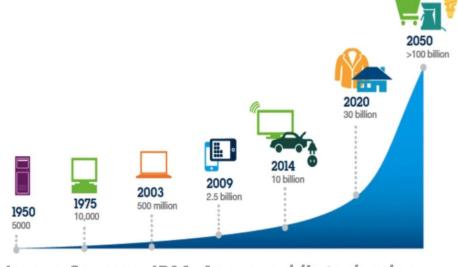
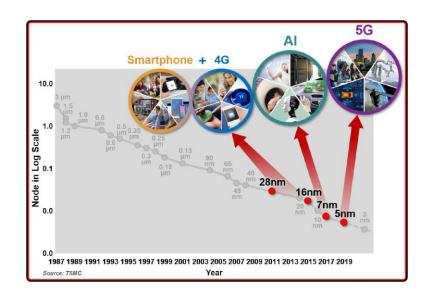
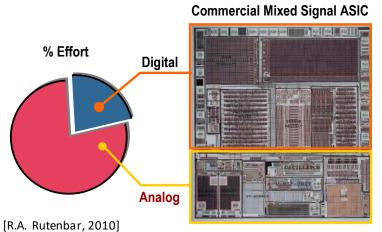
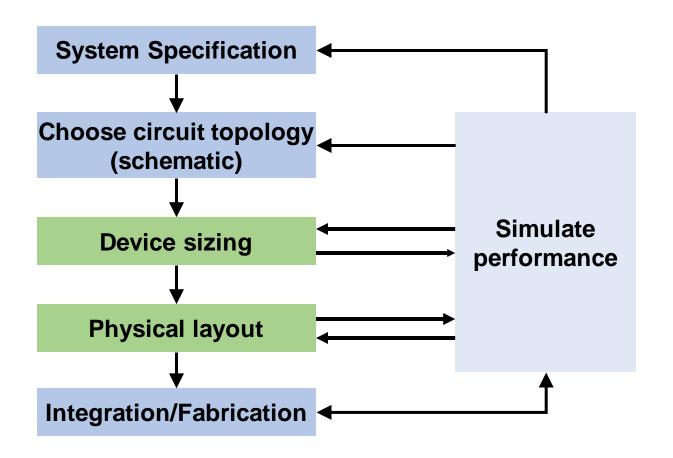




Image Sources: IBM, Ansys, public technology


Motivations for Analog Automation

- There exist repeating tasks:
 - Design is carried from one process fap to another
 - Same design needs to be altered for a new set of performance specifications
- Analog is here to stay:
 - Not all analog blocks can be converted to digital
 - Converting everything to digital and exploiting the existed automation is not a viable option
- Better community & computers

Analog Design Challenge

- Heavily manual and iterative process
- Simulations involved in every step, but they can be very costly
- Sizing/resizing and updated layout is required

Introduction

Joint Sizing & Layout

Analog Sizing Task

Specifications

minimize Power

s.t. DC Gain > 60 dB

CMRR > 80 dB

PSRR > 80 dB

Output Swing > 2.4 V

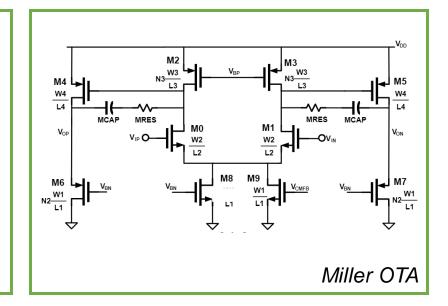
Output Noise $< 3 \times 10^{-4} \text{ V}_{rms}$

Phase Margin $> 60 \deg$

Unity Gain Frequency > 40 MHz

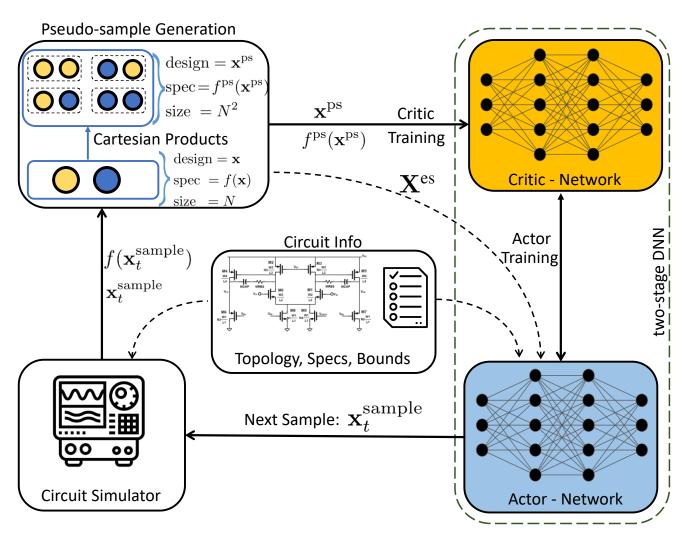
Settling Time $< 3 \times 10^{-8}$ s

Static error < 0.1


Introduction

Saturation Margin > 50 mV

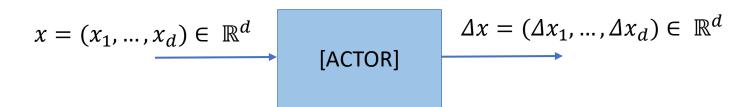
Design parameters & ranges


Parameters	LB	UB
L1 (μm)	0.18	2
L2 (μm)	0.18	2
:	:	i
W1 (μm)	0.22	150
W2(μm)	0.22	150
i	:	:
N3(integer)	1	20
N4(integer)	1	20

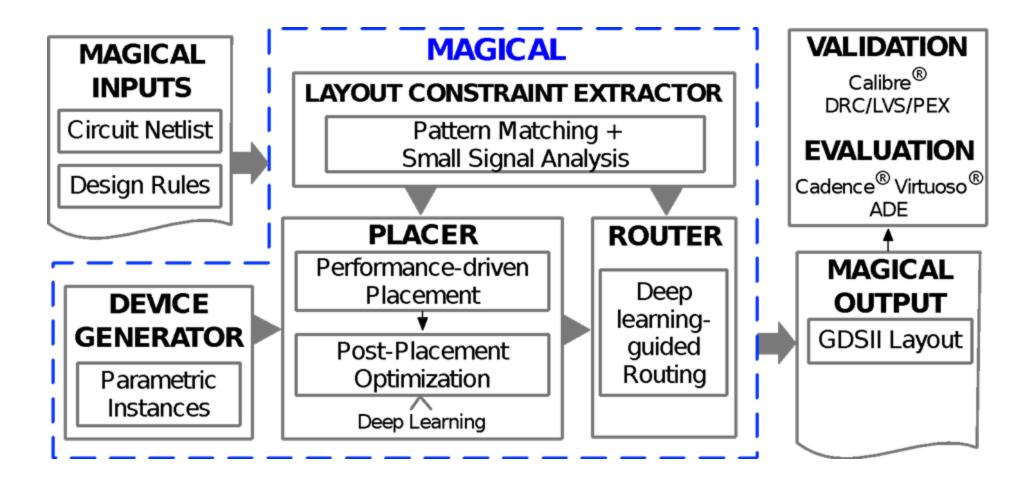
Topology

What is the optimal sizing?

Joint Sizing & Layout


- Pseudo-sample Generator: Increases the sampling data based on original sample's cartesian products
- Critic: Neural Network proxy for real circuit simulator
- Actor: Neural Network based design space exploration engine
- Circuit simulator: Real performance evaluator. Generates data for training and validates results

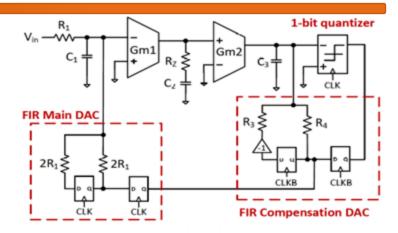
DNN-Opt: Networks

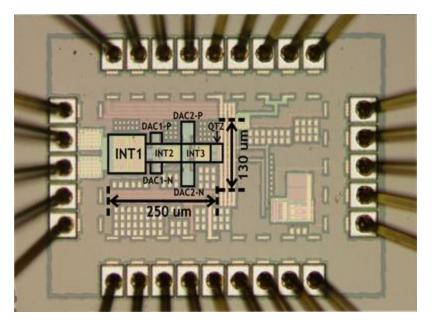

- Assume existence of a set of designs $\{x \in \mathbb{R}^d\}$ and their evaluations $\{f(x) \in \mathbb{R}^k\}$
- Train two networks: Actor & Critic Networks
 - One network to judge the performance of $(x, \Delta x)$ pairs.

One network to suggest an action given state x

MAGICAL: MAchine Generated IC Analog Layout

Open source MAGICAL (v1.0) release https://github.com/magical-eda/MAGICAL


[Chen+, IEEE D&T'21]

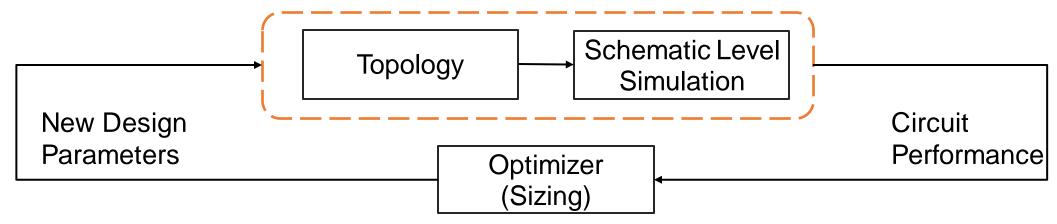

[Chen+, IEEE CICC'21

- 1GS/s 3rd-order high-performance continuous time ΔΣ modulator
- Include various sub-block types
 - Three integrators: one passive, two active
 - Two FIR-based feedback DACs
 - One comparator
 - + Digital logics
- TSMC 40nm

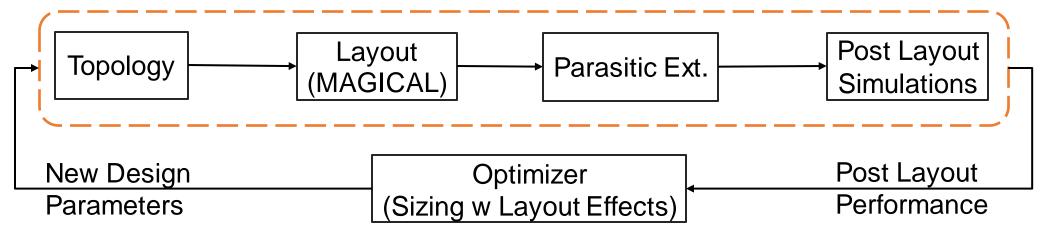
Introduction

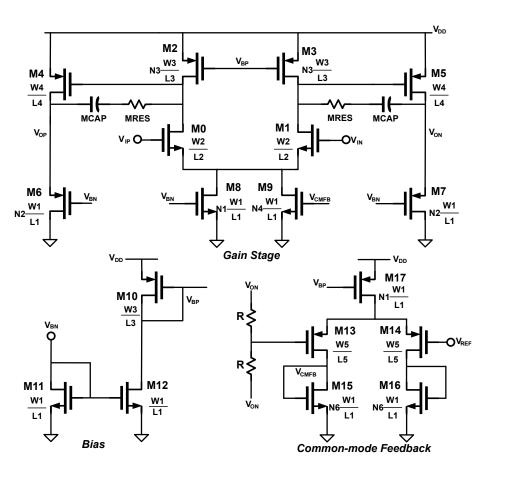
SOTA performance cf. the original manual design [IEEE SSC-L'20]

Joint Sizing & Layout


Joint Sizing & Layout: Motivations

Why layout and sizing should be considered together?


- Parasitics has large effect on the final performance
- Parasitics are only available after layout
- Performance after layout may largely deviate from schematic simulation results
- Considering layout effects during sizing is crucial


Joint Sizing & Layout: An Integrated Approach

Conventional Schematic Sizing Framework

Layout in the Loop Sizing Framework

Introduction

- Design: Two-Stage OTA in TSMC 40nm
- 17 design variables to be tuned
- Optimization Problem: 1 objective, 10 constraints

minimize Power

Joint Sizing & Layout

DC Gain > 45 dB CMRR > 55 dBPSRR > 55 dBOut. Swing > 1 VStatic error < %2

Settling Time < 100 ns Saturation Margins > 50 mVUnity Gain BW. > 40 MHz RMS Noise $< 400 \text{ uV}_{rms}$ Phase Margin > 60 deg.

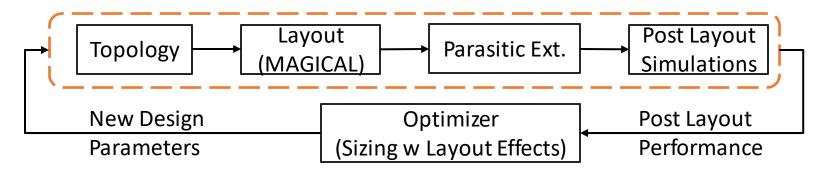
Quantitative analysis of performance degradation due to layout effects

We first run a layout agnostic optimization, i.e., sizing based on pre-layout performance

Schematic Optimized	Intent	DNN-Opt	Designer
Power (mW)	minimize	0.51	0.53
Output Swing (V)	≥ 1	0.99*	0.92
Gain (dB)	≥ 46	48.1	46.7
CMRR (dB)	≥ 55	66.1	56.2
PSRR (dB)	≥ 55	63.7	55.8
Phase Margin (deg)	≥ 57	62.1	57.2
RMS Noise (uV)	≤ 400	380	390
Rise Time (ns)	≤ 50	21.3	22.2
Static Error (%)	≤ 1.2	1.08	1.19
UGB (MHz)	≥ 85	85.9	85.0

Introduction

Generate Layout via MAGICAL

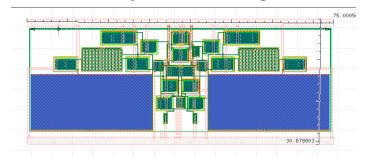

Obtain post-layout performance

Then we create the layout of optimized design and measure post-layout performance

Schematic Opt + Layout	Intent	DNN-Opt	Designer
Power (mW)	minimize	0.53	0.53
Output Swing (V)	≥ 1	0.96*	0.97*
Gain (dB)	≥ 45	17.9*	47.8
CMRR (dB)	≥ 55	25.6*	53.7*
PSRR (dB)	≥ 55	25.7*	55.6
Phase Margin (deg)	≥ 60	75.1	69.9
RMS Noise (uV)	≤ 400	370	370
Rise Time (ns)	≤ 100	23.0	110*
Static Error	≤ 2	1.07	2.52*
UGB (MHz)	≥ 40	41.6	42.0

- Gain, CMRR, and PSRR are severely reduced for DNN-Opt generated design after layout effects
- Output swing, Gain, CMRR, PSRR do not satisfy the design intent after layout
- Designer's design shows better resilience against the layout effects

Use Proposed Optimization Flow to Include Layout Effects

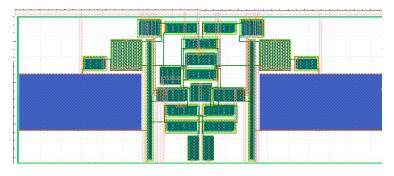


Joint Sizing & Layout

Post-Layout Optimized	Intent	DNN-Opt	Designer
Power (mW)	minimize	0.39	0.53
Output Swing (V)	≥ 1	1.11	0.97*
Gain (dB)	≥ 45	46.1	47.8
CMRR (dB)	≥ 55	56.7	53.7*
PSRR (dB)	≥ 55	58.9	55.6
Phase Margin (deg)	≥ 60	70.7	69.9
RMS Noise (uV)	≤ 400	370	370
Rise Time (ns)	≤ 100	26.9	110*
Static Error	≤ 2	1.2	2.52*
UGB (MHz)	≥ 40	31.3*	42.0

- Output swing, Gain, CMRR, PSRR are all restored and now satisfies design intent
- DNN-Opt solution only fails to meet one constraint (UGB) where designer's designs fails in four (output swing, CMRR, rise time, static error)
- Layout-in-the-loop sized solution overperforms the designer's solution in seven metrics and falls behind only in two metrics

MAGICAL Layout from Designer Schematic


- More compact
- Designer experience seems helpful to later-stage layout
- The total area is around $75\mu m \times 30\mu m$

MAGICAL Layout from DNN-Opt Schematic

- 47% larger than MAGICAL layout from designer schematic
- Key devices with abnormal sizes cause deviation in transconductance and output resistance when layout is include
 - → significant degradation in metrics such as gain, CMRR and PSRR
- The abnormal-sized devices may also increase parasitic capacitance and resistance, further degrading the UGB

Layout aware DNN-Opt with MAGICAL

- Best performance
- However, 60% larger area than that from designer schematic
 - There still exist abnormal-sized devices

A Case Study: Take-Aways

- Parasitics have large impacts on the analog IC performance
- Schematic-based sizing lacks in performance after layout effects are included
- If the optimizer is tuned to include layout effects, the post-layout performance can be improved significantly
- However, some large area penalty observed more research to be done, e.g., to add area as a constraint or objective in the formulation

Joint Sizing & Layout

Opportunities and Future Directions

Obtain Compact Layouts

Define layout quality in metrics, e.g. device areas, device aspect ratios, total layout area

Joint Sizing & Layout

Have layout metrics as part of the optimization problem → minimize area

Directly prune the design variables to prevent undesired layouts: bad aspect ratios, large devices

Opportunities and Future Directions

Schematic Post Layout Topology Parasitic Ext. Layout Simulation Simulation

- Towards Efficient Layout-Aware Analog Sizing:
 - Issue: Repeating the whole flow in an optimization loop is costly
 - Efficient: Use multi-fidelity models to by-pass costly simulations:
 - Run layout, parasitic ext., and post layout sim only seldomly for verification and guidance

Joint Sizing & Layout

Parasitic prediction from placement: no routing, and PEX

Opportunities and Future Directions

Topology

Schematic Simulation

Layout

Parasitic Ext.

Post Layout Simulation

- Towards Joint Analog Synthesis:
 - A longer-term goal
 - End-to-end analog "S&PR" (like RTL to GDSII for digital)
 - Analog circuit topology generation using ML

Future Directions

THANK YOU!