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• PCB Design is a Manual Process

o The solution space is large

• Large Training Sets Available

o Can be autonomously created

• Designs Mostly Share Common DNA

o Same parts, Same Manufacturing Facilities

• Competitive Disadvantage if Not using ML
o It works, let me prove it

• Cloud Scale Compute

Themes
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Design Spaces are Huge

10 47
10 170

Chess Go PCB Placement

10 262

• Complexity of search space is much larger than those of recent successes 
o No hope of using pure trial and error or machine learning

• Need algorithms that automatically learn heuristics to prune search space 
based off a set of designs or styles

* https://en.wikipedia.org/wiki/Game_complexity

https://en.wikipedia.org/wiki/Game_complexity
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Design is Difficult

• Computationally Intractable
o Placement is either ill-posed or NP-Hard

o Routing is NP-hard (even determining if 
there is a solution is difficult)

• Tradeoff between speed and quality 
of solutions 
o Exact solutions take time or are rigid

o Approximate solutions only generalize 
within distribution

o Have to design algorithms that are not 
general purpose, but flexible
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Large Scale Generative Design
Learning while you design and from experience

• We can create the “ImageNet” of PCB 
designs, pretrain large models for 
downstream use

• Can directly bake in priors about the 
domain
o No need for the model to explore regions 

of state space we know are useless

• Can combine online MCTS-style 
algorithms with datasets to get the 
best of both worlds
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What problems can machine learning solve?

• ML for prediction problems

• ML for design problems 

• ML at scale

metrics

actions

multi-objective
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Route Prediction Problems
Can we predict the disconnects before we route?

Router

Connections Routes
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Route Prediction Problems
Building a Dataset

Simple Test9

MFC_TI_Flyback_Rev2
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Route Prediction Problems
Can we predict the disconnects before we route?

Model

Score: 97% Complete

Connections

Scores/Predictions
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What problems can machine learning solve?

• ML for prediction problems

• ML for design problems 

• ML at scale

metrics

actions

multi-objective
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• General framework for making decisions

• Transfer knowledge from previous problems we have solved in the past

• Learn to solve certain classes of problems efficiently

Why Reinforcement Learning?

Agent

Problem Space

ActionsEvaluations
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• RL problems are typically cast as a Markov Decision Process

The Problem
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• RL problems are typically cast as a Markov Decision Process

The Problem

Markov : ActionThe current state is all the 

knowledge I need to make 

predictions about the next 

state.
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• RL problems are typically cast as a Markov Decision Process

The Problem

Decision :

Action

Which action should I take 

to get towards my goal 

state?

Markov : The current state is all the 

knowledge I need to make 

predictions about the next 

state.
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• RL problems are typically cast as a Markov Decision Process

The Problem
We can take advantage of this structure

Process :

ActionMarkov : The current state is all the 

knowledge I need to make 

predictions about the next 

state.

Decision : Which action should I take 

to get towards my goal 

state?

More than one action will be 

required to reach my goal.
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The Solution
Monte Carlo Tree Search

Search
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Search

The Solution
Monte Carlo Tree Search
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Search

The Solution
Monte Carlo Tree Search
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✓

🗴

Search

The Solution
Monte Carlo Tree Search

“… using physics-based 

analysis and high-level 

design goals.”
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✓

🗴

Learn

The Solution
Monte Carlo Tree Search

“… using physics-based 

analysis and high-level 

design goals.”
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MCTS for PCB Design
Feedback Loop
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MCTS In Practice
Refinement of Partial Boards

Placement Via Assignment MCTS

Build Partial Solution Refinement to 

Completion
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MCTS In Practice

Build Partial Solution Refinement to 

Completion
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MCTS In Practice
Search Tree

Best performing nodes in the tree

• MCTS adaptively 
chooses which 
search directions 
are worth 
pursuing

• It might find 
multiple 
solutions that are 
the same value
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MCTS In Practice
Benchmark Results

• Suite of approximately 30 
focus designs

• On average a design gets 
over 50% improvement over 
just routing

• Some designs can only 
reach route completion with 
MCTS-based feedback

• Next steps are to identify a 
more expressive actions 
space to help bring all 
designs to completion
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AlphaGO
Learning to search

https://www.nature.com/articles/nature24270
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AlphaGO meets Design
Policy Network

✓

🗴

Search

Which action 

to try?
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MCTS for PCB Design
Policy Network
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MCTS for PCB Design
Policy Network
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MCTS for PCB Design
Policy Network
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MCTS for PCB Design
Policy Network
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AlphaGO meets Design
Value Network

✓

🗴

Search

How valuable is 

this new state?
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MCTS for PCB Design
Value Network
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What problems can machine learning solve?

• ML for prediction problems

• ML for design problems 

• ML at scale

metrics

actions

multi-objective
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Lessons in Scaling Laws
Let’s dream a little bit

https://openai.com/dall-e-2/
https://dev.to/thenomadevel/w hat-is-github-copilot-will-it-take-your-jobs--33p5
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Large Scale Generative Design
Learning while you design and from experience

• We can create the “ImageNet” of PCB 
designs, pretrain large models for 
downstream use

• Can directly bake in priors about the 
domain
o No need for the model to explore regions 

of state space we know are useless

• Can combine online MCTS-style 
algorithms with datasets to get the 
best of both worlds
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