cadence

Goal Driven PCB Synthesis Using Machl

Taylor Hogan Distinguished Engineer
March 27, 2023




Themes

* PCB Design is a Manual Process
- The solution space is large

 Large Training Sets Available
- Can be autonomously created

* Designs Mostly Share Common DNA
- Same parts, Same Manufacturing Facilities

» Competitive Disadvantage if Not using ML
- It works, let me prove it

* Cloud Scale Compute
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Design Spaces are Huge

« Complexity of search space is much larger than those of recent successes
- No hope of using pure trial and error or machine learning

* Need algorithms that automatically learn heuristics to prune search space

based off a set of designs or styles

* https://en.wikipedia.org/wiki/Game complexity
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https://en.wikipedia.org/wiki/Game_complexity

Design is Difficult

Computationally Intractable
- Placementis either ill-posed or NP-Hard g D::::::

- Routing is NP-hard (even determining if
there is a solution is difficult)

Tradeoff between speed and quality
of solutions
- EXxact solutions take time or are rigid

- Approximate solutions only generalize
within distribution

- Have to design algorithms that are not
general purpose, but flexible
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XAl

Artificial Intelligence to Reduce Time to Design PCBs — Google Coral Board

Human Placement Allegro X: Al Clustering

75 minutes
14% better wirelength A
Incremental setup time 15 mins = 19)
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What problems can machine learning solve?

« ML for prediction problems
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What problems can machine learning solve?
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Route Prediction Problems

Can we predict the disconnects before we route?

Connections

Routes
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Board 1 Board 2 Board3 Board4 Board 5 Board 6

ROUte PredICtIOH PrObIemS Training Set Size 12,136 12,362 12,320 20,878 12,761

Building a Dataset Test Set Size 2,062 4038 4168 3,102 3260 1,663

Simple

MFC_TI _Flyback Rev2
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simple_dataset distribution: 21289 samples testd dataset distribution: 12362 samples mfc_dataset distnibution: 20878 samples
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Route Prediction Problems

Can we predict the disconnects before we route?

Connections

Score: 97% Complete

Scores/Predictions
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What problems can machine learning solve?

« ML for prediction problems
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Why Reinforcement Learning?

« General framework for making decisions

« Transfer knowledge from previous problems we have solved in the past
« Learn to solve certain classes of problems efficiently

Evaluations

Problem Space

Actions

cadence



The Problem

* RL problems are typically cast as a Markov Decision Process
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The Problem

* RL problems are typically cast as a Markov Decision Process

Markov : The current state is all the
knowledge | need to make
predictions about the next
state.
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The Problem

* RL problems are typically cast as a Markov Decision Process

Markov :

Decision

The current state is all the
knowledge | need to make
predictions about the next
state.

:Which action should | take

to get towards my goal
state?
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The Problem

We can take advantage of this structure

* RL problems are typically cast as a Markov Decision Process

Markov : The current state is all the
knowledge | need to make
predictions about the next
State.

Decision :Which action should | take
to get towards my goal
state?

Process : More than one action will be
required to reach my goal.
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The Solution

Monte Carlo Tree Search
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The Solution

Monte Carlo Tree Search
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The Solution

Monte Carlo Tree Search
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The Solution

Monte Carlo Tree Search

111

... using physics-based
analysis and high-level
design goals.”
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The Solution

Monte Carlo Tree Search

“...using physics-based
analysis and high-level
design goals.”
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MCTS for PCB Design

Feedback Loop

Searc{ ‘
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MCTS In Practice

Refinement of Partial Boards

Placement ey 4 Via Assignment

e

Build Partial Solution Refinement to
Completion

cadence



MCTS In Practice

Refinement to

Build Partial Solution

Completion

®
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MCTS In Practice

Search Tree

 MCTS adaptively
chooses which
search directions
are worth
pursuing

* [t might find
multiple g i

solutions that are w\ &

the same value

Best performing nodes in the tree
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MCTS In Practice

Benchmark Results

« Suite of approximately 30
focus designs

« On average a design gets
over 50% improvement over
just routing

« Some designs can only
reach route completion with
MCTS-based feedback

* Next steps are to identify a
more expressive actions
space to help bring all
designs to completion
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AlphaGO Policy network Value network

Learning to search

+0: AlphaGo
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AlphaGO meets Design

Policy Network

Which action
to try?
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MCTS for PCB Design

Policy Network
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MCTS for PCB Design

Policy Network
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MCTS for PCB Design

Policy Network
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MCTS for PCB Design

Policy Network
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AlphaGO meets Design

Value Network
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How valuable is
this new state?
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MCTS for PCB Design

Value Network
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What problems can machine learning solve?

« ML for prediction problems
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Lessons in Scaling Laws

Let’s dream a little bit

DALL-E 2 can create original, realistic images and art from a
text description. It can combine concepts, attributes, and styles.

TEXT DESCRIPTION DALL-E2

An astronaut

riding a horse

in a photorealistic style

https://openai.com/dall-e-2/
https://dev.to/thenomadevel/w hat-is-github-copilot-will-it-take-your-jobs--33p5

send_tweet.py
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Artificial Intelligence to Reduce Time to Design PCBs — Google Coral Board

Human Placement Allegro X: Al Clustering
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75 minutes
14% better wirelength
Incremental setup time 15 mins

~ 3 days Placement
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https://www.cadence.com/go/trademarks
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