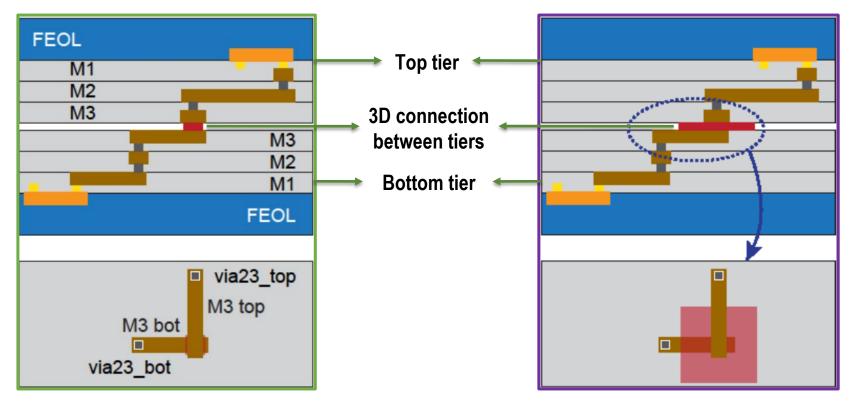

On Legalization of Die Bonding Bumps and Pads for 3D ICs


Sai Pentapati, Yen-Hsiang Huang, Anthony Agnesina, Moritz Brunion*, Sung Kyu Lim Georgia Institute of Technology
*University of Bremen
ISPD 2023

Outline

- Problem Introduction
- Problem Analysis
- Proposed Solution(s)
- Types of Overlap Removal
- Results

Problem Introduction Routing in 3D ICs

 The pitch of 3D via is hugely important in determining the type of 3D connection

A fine pitch 3D via with similar pitch as the other vias in the technology

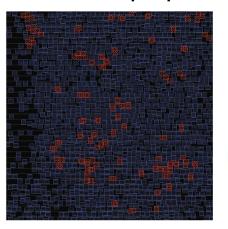
A large 3D connecting via - Resembling a typical hybrid bonded

- Routing in 3D ICs is done similar to a 2D routing
 - Entire metal stack is considered at once
 - 3D connection usually treated as a simple 2D via
 - Improves the routing efficiency when there are no DRCs due to
 3D pitch
- Adopted in flows such as Macro-3D, Pin-3D for 3D IC designing

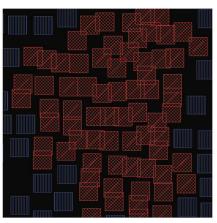
- Routing is always done in 2 stages to reduce complexity and run-time
- Global Routing
 - Splits floorplan into grids
 - Virtually maps nets to grids considering congestion and routability
- Detail Routing
 - Physical routing within the routing grids
 - Adds vias for jumping between layers
- Problem for hybrid bonded 3D ICs
 - Large via size adds significant routing changes during detail routing

3D Via overlaps - 3D Flow/design type

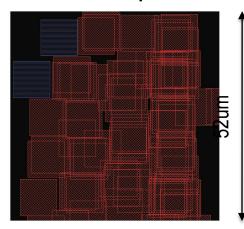
Macro-3D Flow Memory-on-Logic			
3D Pitch (um)	# Overlaps	% Occupancy	
1	0	0.3	
2	2	1.1	
5	1410	7.2	
10	11080	28.2	


Pin-3D Flow Logic-on-Logic			
3D Pitch (um)	# Overlaps	% Occupancy	
0.1	0	0.3	
0.2	0	1.3	
0.5	0	8.9	
1.0	5315	32.2	

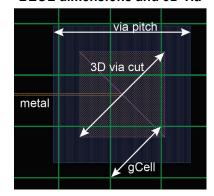
- As via size increases, overlaps occur with both 3D flows
- Note that these flows are not interchangeable
 - Macro-3D: Suited for memory-on-logic designs
 - Pin-3D: Suited for logic-on-logic designs


Analysis

3D Via overlaps - Via pitch


1um F2F bond pad pitch

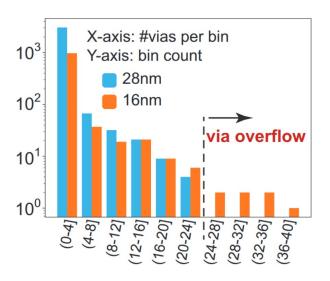
5um F2F pitch


10um F2F pitch

BEOL Dimensions		
Tech node 28nm		
M6 pitch	0.10	
Via pitch to M6	0.10	

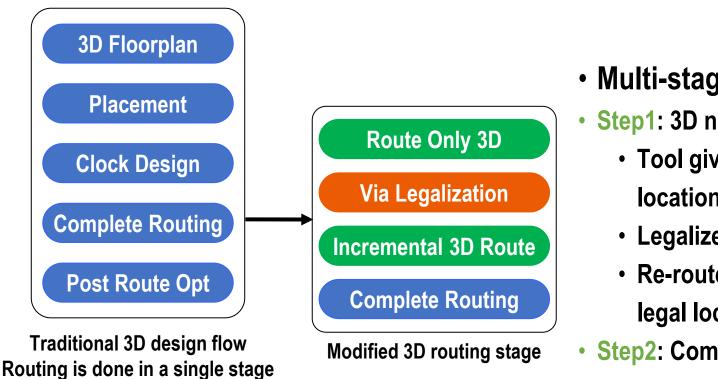
- Vias scaled to show spacing violations
 - In red: vias with spacing and/or short violations
 - In blue: Legal Vias
- Increased pitch size => worse via overlaps

Pictorial comparison of the BEOL dimensions and 3D via


A 5um 3D pitch is larger than the gCell (global routing grid) used by the tool

Analysis

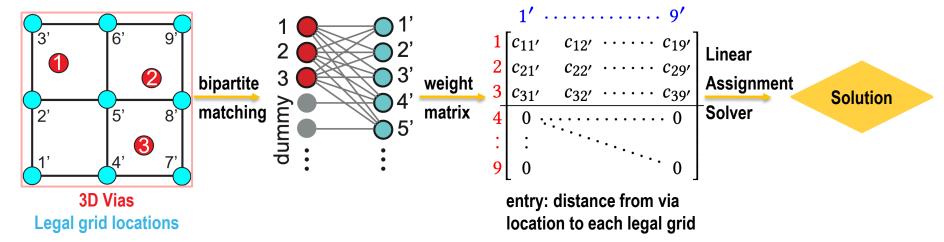
3D Via overlaps - Technology node


- As technology node advances
 - BEOL dimensions shrink
 - 3D via pitch independent of 2D node scaling
 - Overlap issue worsens

BEOL Dimensions and 3D Via			
Tech Node	28nm	16nm	
Mx pitch	0.10	0.08	
Via pitch to Mx	0.10	0.08	
3D Via pitch	5.00	5.00	
gCell width	1.48	1.08	

Histogram of 5um F2F bumps in 28nm and 16nm technologies

Proposed Solution 3D Routing Flow


- Multi-stage 3D routing
- Step1: 3D net routing
 - Tool gives initial via location (with overlaps)
 - Legalize overlaps
 - Re-route 3D nets with legal locations
- Step2: Complete routing
- Two via legalization solutions are introduced:
 - Bipartite Matching based legalization
 - Force based legalization

Existing Flows Tcl based add-ons Python/C++ scripts

Proposed Solution

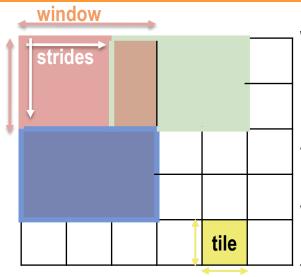
Bi-partite matching based legalization

Formulating a Bi-partite Matching problem from via assignment

#Legal grid locations can be too large

Optimal assignment is solved using Shortest Augmenting Path Algorithm

Complexity:


Time: O(max(#Vias, #Grid Points)3)

Space: (#Vias) × (#Grid Points) × 8 (8bytes needed to store float64)

Space requirement can easily exceed RAM capability for modern machines

Proposed Solution

Reducing design complexity: Tiling floorplan

Window-based 2D floorplan grids.

Floorplan split into multiple tiles. Each tile is considered a single unit (1x1)

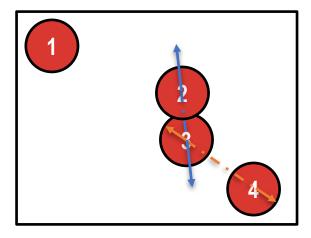
Multiple grid points (legal via locations) within a tile

Tiles are grouped into a window (2x3, here)

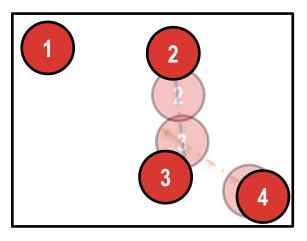
Via assignment problem is solved optimally within each window

The overlap between windows helps for any vias to move between windows

Windowing parameters	Range	Defaults
Tile width	[5p _x , 100p _x]	30p _x
Tile height	[5p _y , 100p _y]	30p _y
Window size (x)	[3t _w , 10t _w]	3t _w
Window size (y)	[3t _h , 10t _h]	3t _h
Horizontal stride	[1t _w , 3t _w]	2t _w
Vertical stride	[1t _h , 3t _h]	2t _h

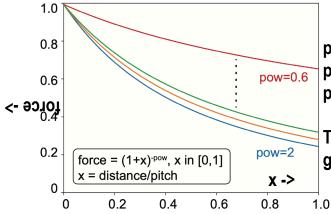

 p_x is the 3D via pitch along x p_y is the 3D via pitch along y

By default, each tile has a 30x30 grid for legal via locations


Parameters are tuned within the range using Bayesian Optimization

Proposed Solution

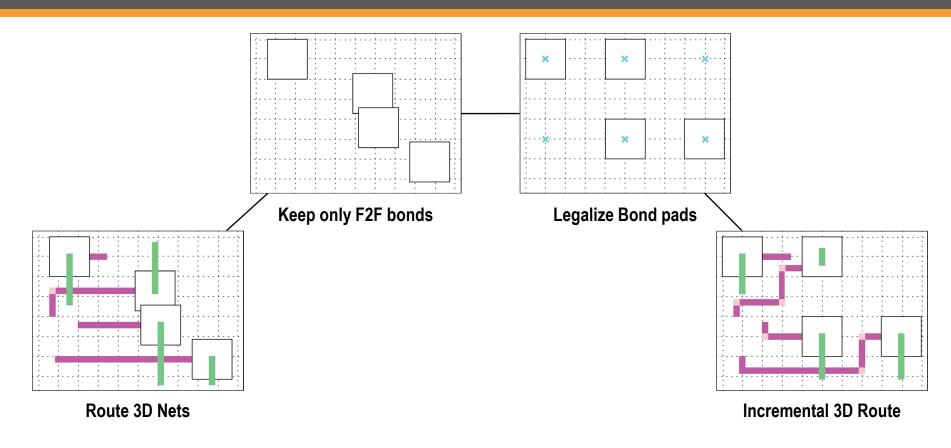
Force based legalization



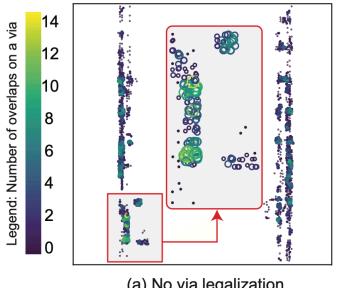
Repulsive forces added on each pair of overlapping vias – removes overlaps vias 2, 3 have overlap violations vias 3, 4 have spacing violations

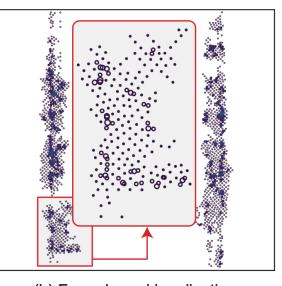
Vias moved in discrete steps α Applied force

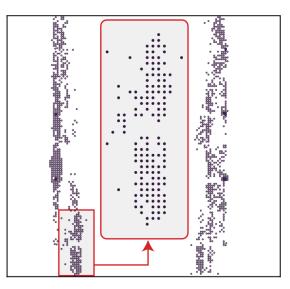
Additional force added towards initial via centers – reclaims unnecessary displacement



pow=2: Forces are more affected by closely placed vias


pow=0.6: Farther vias have a larger impact


The pow parameter is changed from 2->0.6 gradually to make the forces more global.


Modified routing flow for 3D nets

Comparing Via Placement Results

(a) No via legalization

(b) Force-based legalization

(c) Matching-based legalization

Results: Hybrid Bonded 3D (5um pitch)

Application Processor 1	Default	Force	Bipartite
Frequency (GHz)	1.25	1.25	1.25
WL (m)	11.62	11.76	11.75
WNS (ns)	-0.119	-0.091	-0.094
TNS (ns)	-202.1	-113.7	-120.4
Power (mW)	677.0	678.7	678.5
#Vias	5014	3246	3246
#Violations	3538	0	0
max displ. (um)	_	29.9	31.6
avg displ. (um)	-	5.3	3.0

The default router creates a large number of violations

The modified routing flow limits vias on non-3D nets

Both methods work well for hybrid bonded 3D

Parameter tuned bipartite matching works better than force based in terms of displacement of vias

Results: Micro-bump 3D (20um pitch)

Application Processor 4	Greedy	Bipartite
Frequency (GHz)	1.25	1.25
WL (m)	11.56	11.41
WNS (ns)	-0.118	-0.014
TNS (ns)	-25.15	-5.04
Power (mW)	796.6	794.4
#Vias	2957	2957
#Violations	0	0
max displ. (um)	601.0	385.1
avg displ. (um)	127.5	68.1

Micro-bump 3D has pre-placed bumps that are legal by construction

No violations in the default method: Greedy-based via assignment

Bipartite matching improves the overall design quality for micro-bumping

Results: Monolithic 3D (1um pitch)

Application Processor 1	Default	Force	Bipartite
Frequency (GHz)	1.50	1.50	1.50
WL (m)	3.64	3.71	3.70
WNS (ns)	-0.019	-0.014	-0.023
TNS (ns)	-0.450	-1.057	-2.220
Power (mW)	350.5	351.5	350.7
#Vias	58039	53416	53347
#Violations	5315	554	582
max displ. (um)	_	5.9	4.5
avg displ. (um)	-	0.6	0.5

The dense placement of vias in monolithic 3D and large interconnectivity not suitable for via legalization

A more advanced 3D router is required to handle such dense 3D connectivity

Summary

- Automatic 3D via / bond-pad placement using EDA tools creates routing violations
- Proposed 2 solutions for removing overlaps with bi-partite matching based solution, and a force legalizer method
- Both the solutions are applicable for a wide range of 3D pitch values: 5um, 20um pitch tested
- Fixing violations early improves routing and timing in hybrid bonded 3D ICs
- Monolithic 3D IC requires changes to the routing algorithm