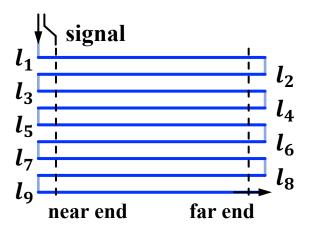


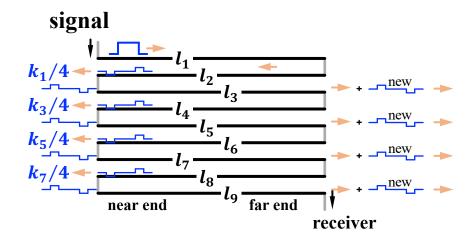
FXT-Route: Efficient High-Performance PCB Routing with Crosstalk Reduction Using Spiral Delay Lines

Meng Lian, Yushen Zhang, Mengchu Li, Tsun-Ming Tseng, and Ulf Schlichtmann Technical University of Munich, Munich, Germany



Outline

- Delay matching
- Crosstalk noise
 - Serpentine delay line
 - Spiral delay line
- Our method
 - The along-the-edge routing
 - Spiral pattern synthesis
- Experimental results
 - Routing area reduction
 - Crosstalk reduction

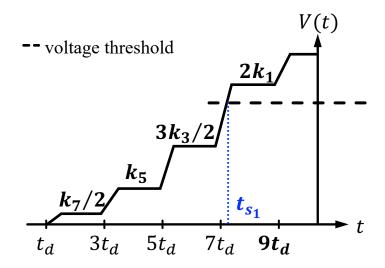

Delay matching

- Balance the delay of time-critical signals
- Serpentine delay lines
 - Speed-up effect
- Crosstalk alleviate
 - enlarge the wire segment separation

Crosstalk noise – Serpentine delay line

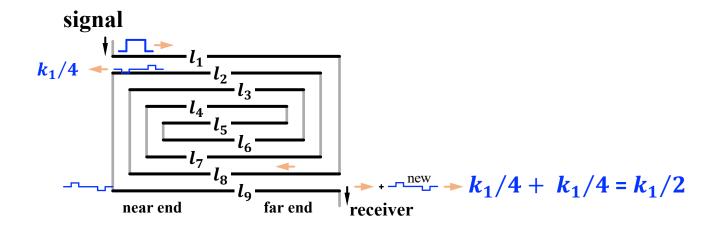
- Crosstalk magnitude: $\frac{k_{|m-n|}}{4}$ [1,2]
- t_d indicates the time for a signal to travel along one wire segment

Crosstalk noise — Serpentine delay line


Time diagram

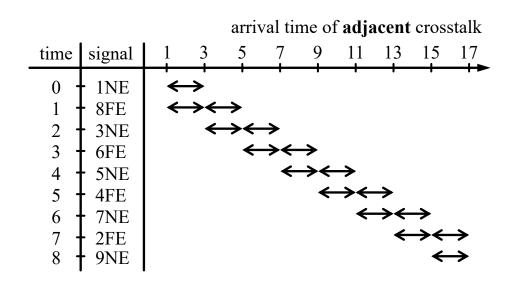
• Crosstalk ∝ 1/wire separation

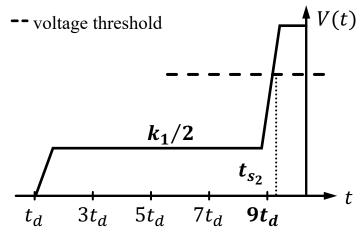
arrival time of adjacent crosstalk


time	signal	1	3	5	7	9	11	
0 · · · · · · · · · · · · · · · · · · ·	1NE 2FE 3NE 4FE 5NE 6FE 7NE 8FE 9NE	•	•	•	* * * * * * * * * *	- 	····	

Receiving waveform

Crosstalk noise — Spiral delay line

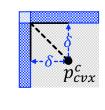

- Crosstalk magnitude: $\frac{k_{|m-n|}}{4}$ [1,2]
- t_d indicates the time for a signal to travel along one wire segment

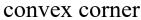


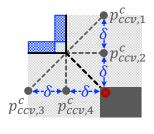
Crosstalk noise — Spiral delay line

Time diagram

Receiving waveform

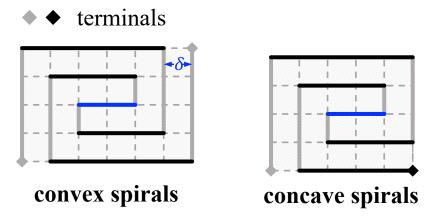



Our method


- Generate one wire at a time
- The along-the-edge routing
- Spiral pattern synthesis

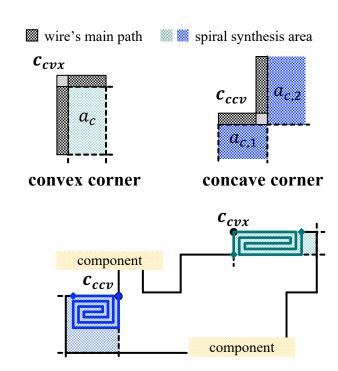
Our method — The along-the-edge routing

- Starting from the *edge*
 - maximally reserving the *center*
- Mixed-integer linear programming (MILP)
- Determine wire's main path
 - alongside the free space boundary
- Minimally acceptable unit length $\boldsymbol{\delta}$
- Bending point candidate



concave corner

- boundary
- free routing area
- candidate
- wire segment


Our method — Spiral pattern synthesis

- Compensate for the required wire length
- Spiral pattern
 - *convex* and *concave* spirals

Our method – Spiral pattern synthesis

- Compensate for the required wire length
- Spiral pattern
 - *convex* and *concave* spirals
- Synthesizing spirals with prioritization
 - *convex* and *concave* corners
 - weight coefficient $\in [0,1]$
- Quadratic programming (QP)

Experimental results — Routing area reduction

case	n_w^{-1}	l_{tot}^2	time ³ (s)	$a_{\Delta}^{4}(\%)$	$\widehat{a}_{\Delta}^{5}(\%)$	$R_a^{6}(\%)$
1	12	448	5	71.82	14.99	66.86
2	16	2856	8	43.52	17.10	31.88
3	16	3046	10	42.20	14.12	32.92
4	16	5332	32	36.57	12.90	27.17
5	20	3802	26	32.50	16.77	18.91
6	36	19393	950	22.83	13.30	10.99

1.the number of wires, 2. the total required wire length, 3. the runtime, 4. and 5. the free space ratio of the original and minimized routing area, respectively, 6. the percentage routing area reduction

•
$$\delta = 1$$

• Free space ratios:
$$a_{\Delta} = 1 - \frac{l_{tot}}{\text{original area}}$$
; $\hat{a}_{\Delta} = 1 - \frac{l_{tot}}{\text{minimized area}}$

•
$$R_a = \frac{\text{original area} - \text{minimized area}}{\text{original area}}$$

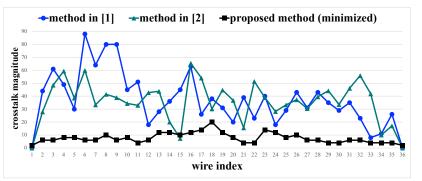
Experimental results – case 6

Original result The state-ofthe-art

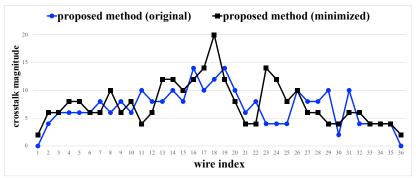
Routing in the *original* area

Routing in the *minimized* area

source:


[1] Tan Yan and Martin D. F. Wong. **BSG-Route: A Length-Constrained Routing Scheme for General Planar Topology**. IEEE TCAD, 2009. [2]Tsun-Ming Tseng et al. **ILP-Based Alleviation of Dense Meander Segments With Prioritized Shifting and Progressive Fixing in PCB Routing**, IEEE TCAD, 2015.

Experimental results – Crosstalk reduction


• k_d : the coupling coefficient for the nearend crosstalk induced within two parallel wire segments separated by d.

•
$$V_{\text{serpentine}} = (n-1) \cdot \frac{k_d}{4}$$

•
$$V_{\text{spiral}} = \frac{k_d}{2}$$

		V _{max}	V _{avg}
method in		88.00	36.94
method in		65.43	35.66
muonosod mothod in	original area	14.00	6.94
proposed method in	minimized area	20.00	7.61

source: