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BACKGROUND & MOTIVATION



STANDARD CELL LAYOUT AUTOMATION

Std cells are building blocks of digital design layout: AND, NOR, Flip-Flop, Adder, etc
Layout mostly by hand today, long design turn around time for the library ( a few months)

Standard cell automatic layouts - Fast design turn around time, More custom cell design, Design
Technology Co-Optimization
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Schematic Simplified Grid-based layout diagram (Sticks)



ROUTABILITY CHALLENGES

Std cell height scaling is essential to advance the technology for Power, Performance, Area, and
Cost (PPAC).

Routability challenges
Limited in-cell routing resource: less horizontal routing tracks (i.e., < 5 RTs)

Increasing number and complexity of design rules + strict patterning rules
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Standard Cell Scaling Roadmap from IMEC

An example of routability issue in the advanced node of a flip-
flop layout design

Source: https://www.imec-int.com/en/imec-magazine/imec-magazine-november-2018/the-supervia-a-promising-scaling-booster-for-the-sub-3nm-technology-node
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RELATED WORKS & CONTRIBUTIONS



RELATED WORKS

Sequential standard cell synthesis approach [1], [2], [5], and [6]
Performs the placement step first and then the routing step

Placement: heuristic based methods, exhaustive search based methods, mathematical programming based
methods, and simulated annealing technique.

Routing: channel routing, SAT, and Mixed-Integer Linear Programming(MILP) based routing methods.

Recently, Ren et al. [1] used the simulated annealing technique to generate optimal transistor placement,
leveraged genetic algorithms for routing, and applied reinforcement learning to fix the design rule violation.

Still struggling to generate routable placements for routing in the advanced nodes.

Simultaneously standard cell synthesis approach [7], [8], [9], and [10]

Encoding the design rules in the engine and generate routable standard cell layouts using Satisfiability-
modulo theory (SMT).

Scalability is worse on large and complex standard cell designs (i.e., more than 50 devices).



CONTRIBUTIONS

Propose a novel Pin Density Aware (PDA) congestion metric to capture the routability of local areas.

-> Achieves correlations of 0.9543 and 0.8364 with the average routing congestion and the area of golden
unrouted probability distribution, respectively.

Develop a novel lattice graph routability modeling approach to capture the routability of local
areas, routability impacts between local areas, and global net connections.

-> Achieves correlations of 0.9608 and 0.8536 with the average routing congestion and the area of golden
unrouted probability distribution, respectively.

Propose a dynamic standard cell external pin allocation methodology.
-> [mprove routability and design rule fixing in the routing phase.

Achieves cell layouts with smaller area than the existing industrial standard cell library for 13.9% of
over 1000 cells.



PRELIMINARY: NVCELL [1]



NVCELL PLACEMENT

Simulated Annealing based algorithm for placement: Swap, Move, Flip

Heuristic based congestion estimation

Simple model-based routability model (1D conv model and max pool embeddings)

Input features:

Predict: [routable, routablebutwithDRCs, notroutable] for each placement

PMOS sequence: 3, 4, NA, 1,
NMOS sequence: 1, 3, 2, 5,
PIN sequence: A, NA, B, C,

N o e AN - N =

A B C
Swap, move, and flip of placement sequence

NET A
NET B
NET C

NET D -

Max congestion: 4

Heuristic based congestion estimation



NVCELL ROUTING

Leverage maze routing to generate routing candidates
—> solve the connectivity problem

Leverage RL to fix DRC of the routing candidates
- solve the DRC problem

Leverage genetic algorithm to minimize unroutable nets and DRC numbers

- solve the optimization problem

Genetic Maze Routed Fix DRC

Algorithm Routing design with RL
DRCs

DRC free route



ROUTABILITY-DRIVEN STANDARD CELL
AUTOMATION FRAMEWORK



FRAMEWORK OVERVIEW

Schematic of Cell Logics (.sp)
(Netlist Information)

Layout Specification
(Cell Architecture)

NVCell 2: Routability-Driven Standard Cell Design Automation

PDA Metric
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Multi-Objective Optimization:
Area, Wirelength, Routability
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Standard Cell Layouts
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Lattice Graph Routability Model

N Net3 Net2
Circuit Net

External Pin Layer
lattice grid (i.e., M1)

FEOL lattice grid

D: Source/Drain Diffusion; G: Gate

Dynamic External Pin Allocation

EX:External Net

Unidirection Connected edges to EX
super node.

M1




PIN DENSITY AWARE METRIC

Calculate the window-based pin density considering diffusion sharing/break, PN gate, source and
drain connections.

Nw _
Cell-level metric: P, = Topk(2i=11VPDA‘)

Power and Ground nets do Shared diffusion across P and N FET

not require contact access. areas only need 1 contact access.
* Active Device.

VDD

035 Vi 010
Black Text: Net name on
the gate terminal (i.e., $1).
9
Blue Text: Net name on the
0o ln o1s I o 010 diffusion area (i.e., NET010)
——a—a | B

L/
LocalArea 1 lLocal Area 1

GND

Shared diffusion net and doesn’t need to
connect to other columns in the cell doesn’t
need contact access.

# Required Contact Access in the Local Area 1 =6 (i.e., I1, 10, I3, NET010, S0, NET035 nets)
# Crossing Nets = 0
Pin Density Aware Congestion at Local Area1=6+0=6

# Required Contact Access in the Local Area 2 = 6 (i.e., I1, 10, I3, NET010, NET017, NET015 nets)
# Crossing Nets = 2 (i.e., NET035, S0 nets)

Pin Density Aware Congestion at Local Area2=6+2=8




LATTICE GRAPH ROUTABILITY MODEL OVERVIEW

« Given: Circuit, transistor placement, and M1 Pin Placement Information

* Predict: Demanded routing resource and routability probability of each column
Vreg - demanded routing resource (hori/vertical) at each column. dim = 1 x cell columns

Vroutr - routability probability at each column. dim =1 x cell columns

Model Output: Routability

Probability and Horizontal
Congestion Prediction

Lattice Graph Routability Model
Model Input: Lattice Graph from given transistor placement Preg: Predicted horizontal congestion

. . of each column
Circuit Net

Nil ’N et3 Net2

Optional: External P Layer lattice grid (1.e., M1)
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Y rout: Predicted routability probability
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Graph Neural Net

Routability Probability

Cell Column



INPUT FEATURES

Circuit Nets #pins, spanV, spanH Direct pin assignment, grid link
within net bbox
FEOL Lattice Grid Type of the lattice (G/D), #M0 Type of the neighbors
Access points, #Required contacts (common/split G/D, Diff to Gate)
External Pin Layer Lattice Grid Type (i.e., 1/0 Pin), #MO0 via Type of the connection (M1 grid
connection to FEOL grid)

Note: #pins, # MO Access points, and # Required contacts are dynamic based on diffusion sharing/break and PN nets.

] ] Net2
Circuit Net

External Pin Layer
lattice grid (i.e., M1)

FEOL lattice grid

D G D G D G D G D

D: Source/Drain Diffusion; G: Gate



TRAINING LATTICE GRAPH ROUTABILITY MODEL

« Regression Loss Function:

Lreg — _%Z(YTeg — yreg)z

» Routability Probability Loss Function:

Yrout

y Yrour = Softmax(Yyout), ?rout = Softmax(Yyrout)

Model Output: Routability

Lyour = Dk1 (Yroutllyrout) Yroutlog

out

Probability and Horizontal
Congestion Prediction

Lattice Graph Routability Model
Model Input: Lattice Graph from given transistor placement Freg: Predicted horizontal congestion

. . of each column
Circuit Net

. ) 4 -

Optional: External PinLayer lattice grid (i.e., M1)
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ROUTABILITY PROBABILITY

|ldentify the cell columns which caused unrouted net (i.e., pin access and routing resource)
Consider the surrounding congestion level and routing behavior of the columns with unrouted net
Gaussian function (Spatial) x congestion ratio curve (Routing env)

Convolve with gaussian filter with half poly pitch sigma to smooth
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CELL-LEVEL ROUTABILITY METRIC

Vreg: Predicted column based congestion

Yrout: Predicted column based unrouted net probability

Xpin: Pin density vector from given placement

PinAccess Score = Topk(xpin * ﬁmut) /k

Congestion Score = Topk(Vreg * Vrout)/K
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k: number of columns for routability metric calculation How hard is the transistor How hard is the net

Congestion

pin be accessed? crossing the region?
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ROUTABILITY-DRIVEN PLACEMENT WITH MULTI-
OBJECTIVE OPTIMIZATION

Routability-Driven Placement Objectives

Minimize w,CW + w,, WL + W,q4Pcers + WpreaReen

Multi-objective BOHB [3, 4] - Multiobjective Bayesian optimization algorithm (MOTPE) + Hyperband

samples
o paretos
Algorithm 1 Optimal Weight Configuration Candidate Selection ® candidates
Algonthm — .
Inpur: The dara of Multi-Cjective BOEE (49 JH0] rans, 1. The metric axes for paneto 480 T o
extraciion (Le., W, dres, W L, efe ) with priorify 460 -
Chutput: The optimal weight confipuration candidates, D7 . tW|440 4
11 T° = Extract Pareto(D, axes); 20+ |°
2140 D% £ B then t= Find the optimal candidates. 400 o
3 return 127 |
4] end if 380
51 = B; 0
0 for are € ares do - Extract parcto of cach axze in the azes.
7. D =D+ Extract Pareto{D, aze); 3 34 33
5. end for drcs 4 5 36 32
I cur_azes = |J; 37 \N'\dt\'\
Iy 1° — 1
11} for aze & axzes do & Find opimal candidate based on the pnonty of cach axe.
12 cur_ares.append(aze); Ta M .
13 D" = Extract Pareto(D”, cur_azes); An example Of a th Flop DeS]gn
|4 end for Baseline width=42

153 return 27

MOBOHB final metrics: width=33 (reduced 21.4%), twl=376

Note: Only show the routable designs in order to display the figure in scale



DYNAMIC EXTERNAL PIN ALLOATION

* Router decides the external pin location instead of placer -> Improve the routability and DRC fixing

Construct an artificial virtual point, v2"", of external nets. (Line 2)

Establish the connection from grids on pin metal layers (i.e., M1) to v2". (Line 3 - 5)
Add the vP" to the routing terminal set. (Line 7 - 10)

Perform standard routing algorithms (i.e., Maze routing). (Line 11)

D WN -

Algorithm 1 Dynamic External Pin Allocation

> Input: EX: external nets; G(V, E): 3-dimensional routing graph.

I: forn € EX do > Create virtual nodes for external nets
Add vj'";

forov € me;a yers do > Create edges between the vertices on the pin layers (i.e., M1)

Unidirectional connected edges
to virtual nodes of external nets.

Create a virtual edge from v to vp'";

end for
end for
: forn € EX do > Add virtual nodes to routing terminals

Get the routing terminal set of n, Tj;
9: Tn - Ugfr + ]}I!

10: end for
11: Perform standard routing algorithms (i.e., Maze router) to route terminals of each net; Virtual nodes of external Grid nodes on external pin
nets layers

PN B




Experimental Results



DESIGNS FOR EXPERIMENTS

Experiment | (Routability Metric Accuracy Study): Validate the proposed routability metrics.

Experiment Il (Routability Experiment): Study the routability improvement of PDA metric,
lattice graph routability model, and dynamic pin allocation.

Experiment lll (Multi-Objective Optimization): Perform MOBOHB on cell area, total
wirelength, and routability to generate optimized cell layouts

Standard Cell Design Statistics Type of Standard Cell Designs
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Statistics of 94 complex hard-to-route cells benchmark



EXP I: STRONG CORRELATION WITH GOLDEN CONGESTION

Extract the golden congestion from the 2240 routed cell layouts

Cell-level PDA metric (i.e., P,..;;) achieves 0.9477/0.9543 correlations to Max/Avg congestion

R..;; achieves 0.9696/0.9608 correlations to Max/Avg congestion
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EXP I: HIGH CORRELATION WITH AREA OF UNROUTED
PROBABILITY DISTRIBUTION

PinAccess Score = Topk(xpm * yrout) [k

Congestion Score = TopKk(Vreg * Vrout) /K

Reen =@cess @@stion@

How hard is the transistor How hard is the net

pin be accessed? crossing the region?
“ Num Unrouted Prob. Area
(Exclude routed designs)
Max Cong. 0.7922
Avg Cong. 0.8030
P.oip 0.8364
R o1 0.8536

Max Congestion vs Unrouted Cols/Prob.

Iden Cong. vs Num unrouted

Avg Congestion vs Unrouted Cols/Prob.
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Number of Cells
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EXP ll: ROUTABILITY EXPERIMENT

Design Types of Routable Cell Layout Statistics
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NVCell [1]
PDA Metric
Lattice Graph Rout. Model
Dynamic Pin Allocation
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Design Types of LVS/DRC Clean Cell Layout Statistics

ENVCell [1] ®PDA Metric
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CLKComb

14.9%
33.2%
92.5%
98.9%

M Lattice Graph Routability Model

B Dynamic Pin Allocation
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CLKLatch

Comb
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27.7%
63.8%
87.2%
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EXP lll: MULTI-OBJECTIVE OPTIMIZATION

Optimize the cell area, routability, and total wirelength together.

Compared to lattice graph routability model, MOBOHB achieves
Area Comparison with Existing Library

The number of smaller cell layouts: 18.05% impr.
Smaller Cell Area: 13.9%

The number of larger cell layouts: 54.30% reduction :% Egg;cce;'”'“;reja e
94 hard-to-route cell benchmark. f‘j I 1
el .E.
21 smaller cell width/ 35 same cell width/ 26 larger cell width in Cell Complexity
total 82 LVS/DRC clean cells. _
B Smaller W Same M Larger
Overall, 13.9% smaller and 4.3% larger cell layouts over 1000 13.9% smaller/ 4.3% Larger (> 1000 cells)

standard cells in the existing industrial cell library.



CONCLUSIONS & FUTURE WORKS



CONCLUSIONS & FUTURE WORKS

We propose a routability-driven standard cell synthesis framework using a novel pin density aware
congestion metric, lattice graph routability modelling approach, and dynamic external pin

allocation methodology to generate optimized layouts to improve the routability of standard cell
designs in advanced nodes.

Improve the routable and LVS/DRC clean cell layouts by 84.0% and 87.2%, respectively, compared to
NVCell [1] using the 94 complex and hard to route standard cells.

Able to generate smaller cell layouts for 13.9% of cells compared to an existing industrial standard
cell library over 1000 cells through the MOBOHB process.

Future Works include
Extend current approach for multi-height cell architecture

Utilize reinforcement learning technique to improve the performance of standard cell automation.
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