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Custom Circuits are Everywhere

⧫ Analog/mixed-signal (AMS) circuits

› Internet of Things (IoT), autonomous vehicles

› Every sensor-related application

⧫ Sensitive digital circuits

› High speed/performance SerDes

⧫ Interconnect circuits

› Electro-optical links
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Custom layout is a bottleneck in chip design!!

Advanced computing Healthcare
Communication

[Source: IBM]



Challenges of Custom Routing

⧫ Sensitive nature

› Suspectable to parasitics

⧫ Complicated design rules

⧫ Layout constraints

› Geometrical/Electrical constraints

⧫ No common evaluation metrics 

⧫ Design conventions and aesthetic 

engineering
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Should these two 

wires be symmetric?

Should this wire be placed on 

Metal4?
It looks better to 

put this wire here

[Source: Razavi, Design of Analog IC]

Aesthetic is often a surrogate for correctness 
[Rutenbar, 2016]



Existing Custom Routing Algorithms

⧫ Template-based routing [Crossley+,ICCAD’13],…

⧫ Simulation-based routing [Choudhury+, DAC’90],…

⧫ Constrained routing

› Symmetry constraints: [Xiao+,ICCAD’10], [Chen+, ICCAD’20], …

› Topology-matching constraints: [Yan+, ICCAD’08], [Ou+, TCAD’14], …

› Exact-matching constraints: [Ozdal+, ICCAD’12], …
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Designed for specific use cases

• Some are applied in planar technology nodes or PCB

• Hard to cover all kinds of designs

• Cannot be easily modified and extended for future needs

We want a constraint with good 

flexibility and descriptiveness



Path-Matching Constraints

⧫ A path is a pin-to-pin connection within a net

⧫ A path-matching constraint consists of several paths to be matched

› Paths can be in the same net or different nets

› Match the resistance of paths in the same constraint

⧫ Can describe widely used geometrical constraints (e.g., symmetry, exact-

matching)
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Constraint: Match (t1 → t2), (t4 → t5)

2 paths, 1 matching group

t1

t2

t3

t4

t5

t6

Make the two path resistances 

as close as possible



Solving Path-Matching Constraints

⧫ Hard problem

› No trivial heuristic algorithms

› Different path-matching constraints can be dependent
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Net A Net B Net C

Matching the red paths could affect the matching of yellow paths

RL!!
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Rip-Up and Re-Route

⧫ Widely adopted in modern routers to handle congestion

› Basic rip-up and re-route

» Remove all violated nets (inefficient and hard to converge)

› Negotiation-based rip-up and re-route (NRR)

» Maintain history costs on routing grid edges

Example: L-shape routing with history

[Source: Liu+, TCAD’12, NCTU-GR]
10



Routing Topology Adjustment

⧫ Use a revised history cost method to encourage new routing topologies

Traditional method Our method

Increase history cost in 

congested region

Increase history cost 

in routed region

Higher chances to 

change net topology 

in sparse designs!!
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Routing Topology Adjustment
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1 

2 3 

4 

Rip-up segment 4
Refine Reconnect

5

Repeat the process to reach the desired routing topology

history
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Heterogeneous Graph Representation

⧫ Routing solutions are transformed into heterogeneous graphs

› Nodes: segment nodes, path nodes, constraint nodes

› Edges: seg-seg edges, seg-path edges, path-cstr edges, cstr-seg edges
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Nets A, B, C Constraints

- 𝑐1: match paths (𝑡1
1→ 𝑡2

1), (𝑡1
1 → 𝑡3

1), 𝑡1
2 → 𝑡2

2

- 𝑐2: match paths (𝑡1
2→ 𝑡3

2), (𝑡1
3→ 𝑡2

3)

2 constraints

5 paths

𝑨

𝑩

𝑪
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Graph Node Features
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Feature Description Dimension

Norm. bottom-left coordinate (x, y) 2

Norm. top-right coordinate (x, y) 2

Norm. length 1

Norm. layer index (lower layer for vias) 1

Norm. design rule violation count 1

Norm. neighboring history costs 11

Boolean indicator for via 1

Boolean indicator for terminal segment 1

Segment nodes Path nodes

Feature Description Dimension

Norm. segment count 1

Norm. length 1

Norm. via count 1

Norm. path resistance 1

Constraint nodes

Feature Description Dimension

Norm. maximum difference of path resistances 1

Norm. average of path resistances 1

Norm. std. of path resistances 1

target segment

Query box



RL Guided Custom Detailed Routing Framework

21



Actions

⧫ Choose a segment to remove

⧫ Or do nothing (stop the Markov process)
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DONE!!
Sequence length matters!!

- Too short: optimized solutions not yet reached

- Too long: accumulated history costs block

the agent from getting good solutions



Policy/Value Network Architecture
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Segment 

embeddings

ℎ1

ℎ2

ℎ𝑘

ℎ1

ℎ2

ℎ𝑘

ℎ𝑎𝑣𝑔
Predicted 

state reward

Expected returns 

of actions

RL training 

with PPO

Action mask: filter out vias



Reward Function

⧫ Objectives

› Total wirelength

› Total via count

› Total design rule violations

› Avg. (peak-to-peak path resistance difference) of all path-matching constraints
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𝑤𝑤𝑙(previous WL – current WL)

+𝑤𝑣𝑖𝑎(previous VIA – current VIA)

+𝑤𝑑𝑟𝑣(previous DRV – current DRV)

+𝑤𝑝𝑡𝑝(previous PTP – current PTP)

Wirelength improvement of the action

Via improvement of the action

DRV improvement of the action

Matching improvement of the action



RL Guided Custom Detailed Routing Framework
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RL-Based Rip-Up and Re-Route

⧫ Integrated with trained RL policies 

› Start with randomly routed solutions

› Optimize routing patterns for each match 

group sequentially

» RL agent decides which segment to remove, or 

stops the process

› Reset the history costs and repeat the 

procedure to further optimize solutions
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DONE!!
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Experiment Settings

⧫ Comparison of layouts

› Manual

› AutoCRAFT [Chen+, ISPD’22]

› RL (this work)

⧫ Same placement for each test circuit

⧫ Additional net symmetry constraints are specified for AutoCRAFT’s

custom router

28



16:1 Multiplexing Buffer (BUF)

⧫ Designed to drive a large capacitive load with the ability to select between 

16 input signals (IN<15:0>) using 4-bit control (ctrl<>)

› 42 cells, 66 nets, 228 pins

› 6 path-matching constraints, 30 paths

› Manual placement
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Post-Layout Performance of BUF
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Stage
Insertion Delay (ps) Rise/Fall Time (ps)

Manual AutoCRAFT RL Manual AutoCRAFT RL

1
AVG

STD

11.9

0.33

10.1

0.25

10.2

0.23

10.3 / 10.5

0.27 / 0.29

9.2 / 9.4

0.22 / 0.24

9.3 / 9.5

0.25 / 0.25

2
AVG

STD

11.9

0.15

11.0

0.17

11.1

0.15

10.2 / 11.4

0.14 / 0.14

9.5 / 10.7

0.16 / 0.19

10.6 / 10.8

0.12 / 0.12

3
AVG

STD

12.1

0.08

11.3

0.08

11.6

0.06

10.5 / 10.5

0.08 / 0.06

9.9 / 9.9

0.05 / 0.06

10.0 / 10.1

0.02 / 0.00

4
AVG

STD

11.2

0.01

10.4

0.01

10.9

0.00

9.1 / 9.7

-

8.4 / 9.0

-

8.9 / 9.5

-

Tot.
AVG

STD

77.7

0.53

72.7

0.42

74.1

0.34

-

-

-

-

-

-

AutoCRAFT generates routing with shorter WL, while RL generates a more balanced layout

Metric AutoCRAFT RL

WL (μm) 96.6 102.0

VIA 265 272

DRV 0 0

PTP (Ω) 64.6 22.3

Runtime (s) 0.40 3.70

PTP path resistance difference reflects in STD of insertion delay and rise/fall time



4-Stage Ring Oscillator (OSC)

⧫ Generates 10.3GHz complimentary in-phase (ck000/ck180) and quadrature-

phase (ck090/ck270) clocks with a 750mV supply voltage

› 21 cells, 16 nets, 102 pins

› 6 path-matching constraints, 14 paths

› Manual placement
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Post-Layout Performance of OSC
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Manual AutoCRAFT RL

Freq

(GHz)
10.27 10.75 10.68

Duty Cycle

ck000 49.0% 50.3% 50.2%

ck090 49.1% 50.3% 50.3%

ck180 48.9% 50.1% 50.2%

ck270 49.2% 50.1% 50.1%

Avg 49.1% 50.2% 50.2%

STD 0.10% 0.11% 0.09%

Quadrature Phase Distortion

ck090 0.28% -0.17% 0.15%

ck180 0.00% -0.03% -0.13%

ck270 0.33% 0.27% 0.05%

Avg 0.20% 0.16% 0.11%

STD 0.15% 0.10% 0.04%

RL-generated layout is more balanced

Metric AutoCRAFT RL

WL (μm) 21.3 21.0

VIA 88 90

DRV 5 0

PTP (Ω) 130.4 23.9

Runtime 

(s)
0.40 18.38



6-Bit Phase Interpolator (PI)

⧫ The 6-bit phase interpolator adjusts the output clock phase in 1.33ps 

increments (60 phase steps) by interpolating between 4-phase input clocks 

(ck000, ck090, ck180, ck270) at 12.5GHz

› 124 cells, 122 nets, 620 pins

› 19 path-matching constraints, 56 paths

› Manual placement

33



Post-Layout Performance of PI
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Metric AutoCRAFT RL

WL (μm) 380.7 385.8

VIA 779 790

DRV 1 0

PTP (Ω) 111.6 38.2

Runtime 

(s)
123.94 132.27

AutoCRAFT (w/o sym)

AutoCRAFT (w/ sym)

RL

Manual

Integral non-linearity (INL) v.s. phase code



Policy Generalization

⧫ Compare the training of PI with two different settings

› Pre-train an RL policy using BUF and OSC, and do fine-tuning with PI

› Train PI only from scratch
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Policy Generalization

⧫ Take the trained policies at different time stamps and integrate to the RL-

based rip-up and re-route optimization procedure
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Pre-trained models can be generalized to unseen circuits in some degree!!
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Conclusion and Future Work

⧫ RL-based custom detailed routing framework

› Efficient heterogeneous graphs for routing solutions

› Revised history cost accumulation scheme to encourage routing solution diversity

› Path-matching constraint handling

› Flexible framework that can extend to new objectives by adjusting the reward function

› Generalizable RL policies for new/unseen circuits

⧫ Future direction

› Support more complicated custom routing strategies

» Parallel routes, rings, … 

38



Thank you!

Q&A
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