FastPass: Fast Pin Access Analysis with
Incremental SAT Solving

Fangzhou Wang, Jinwei Liu, and Evangeline F.Y. Young

CSE Dept., The Chinese University of Hong Kong

March 27, 2023

AT LKXE

The Chinese University of Hong Kong

Outline

1/24

Introduction

Preliminary

Algorithms

Experimental Results

Future Works

Outline

Introduction

2/24

Introduction

Pin access is one of the most complicated sub-problems in VLSI routing.

» The pin shapes are complex polygons comprised of multiple rectangles.
» Over millions of pins might need to be analyzed simultaneously.
» The pin access solution of one pin should avoid causing violations with existing metals.

» The pin access solutions of different pins might interfere with each other.

2/24

Introduction

Here is an example pin access solution for a single cell instance.

Pin metal on M1

——— Track on M2

Track on M1

Viametal on M1 [[X]] Via metal on M2

3/24

Outline

Preliminary

4/24

Problem Formulation

The Pin Access Problem:
Given a design (with tracks, cell instances, nets, etc.), find a routing scheme such that

each net pin is connected to a nearby grid point using routes (containing wires and vias),
such that no routes will cause design rule violations with fixed metals or each other.

4/24

Design Rule Violations

=
— - 5 E—

(d) (e) (f) (9

Pin metal on M1 Via metal on M1 M Via metal on M2 DRC violation

Design Rule Check. (a) A PRL spacing violation between a routed via’s metal and the fixed metal of a
different pin. (b) A PRL spacing violation between a routed via’s metal and the metal of the pin it attempts to
access. (c) DRC violations between two routed vias’ metals. (d) The maximal rectangles decomposed from

fig. 1d.

5/24

Instance Patterns

[
|
f
|
|
-
|
|
|
|
|

(@) (b) (©)

Track on M1 ——— Track on M2 First vertical track Pin metal on M1

Instance Patterns. (a) An instance of the same instance pattern as the rightmost instance in Figure 1a. (b)
An instance of a different instance pattern due to different orientation. (c) An instance of a different instance
pattern due to different track offset.

6/24

Outline

Algorithms

7/24

Overview

Pattern-Based
Analysis

Inter-Instance
Analysis

Incremental
SAT Solving

7/24

| Generate Routes for Each Pin |

¥

| Filter Routes with Violations |

¥

| Identify Intra-Instance Conflicts |

| Filter Routes with Violations |

]

| Identify Inter-Instance Conflicts |

| SAT Solving with Preferred Routes }\
no

yes

Extend Preferred Route Candidates

DRC-Clean PA Scheme

Candidate Routes Generation

We define a candidate route for a pin p as a potential set of routing segments that can
connect p to a grid point on M2.
To generate route candidates for each pin:

> We first find a set of access grid points for each pin.

> For each access grid point, we will generate two kinds of routes using each via type.

8/24

Candidate Routes Generation

Two kinds of routes:

| | | I |

| | | | |

1 1 t | |

t 1 l | |]

| | | | |

X X X | | g

| | | | |

| | | % |):(

| | V3l 1 I

| | * |

| | | | |

(a) (b) ()
Track on M1 ——— Track on M2 Pin metal on M1 Via metal on M1

DZ] Viametalon M2 X Candidate grid point Wireon M1 [___| Wire on M2

Candidate Routes Generation. (a) Pin access grid points. (b) Pin access route with an on-grid via. (c) Pin
access route with an off-grid via.

9/24

Instance Pattern-Based Analysis

Goals:

» Filter routes that cause violations with the fixed metals inside the cell instance.

> Construct intra-instance conflict graph between routes.

10/24

Instance Pattern-Based Analysis

Algorithm Intra-Instance Design Rule Checking

1: Sort all routed rectangles in non-decreasing order of x: ry, ra, ... 1.

2: Sort all fixed rectangles in non-decreasing order of ux:
Ri, Ry, ... Ry.

A0, 1

4: fori=1,2,...,ndo

5: Shift the active region for routed rectangle r;

]] T]]
| | | | |
1 1 f 1 1
| | | l l
		[

6 while R; has overlap with the active region do
7. A+ A+ {Rj}
Intra-instance Design Rule 8 Jitl
Checking. 9: for each fixed rectangle R’ € A do
10: if R’ falls to the left of the active region then
11: A+ A—{R}
12 else

13: Check violations between r; and R’

11/24

Inter-Instance Analysis

Goals:

> Filter routes that cause violations with fixed metals in the neighboring cell instances.

» Construct inter-instance conflict graph between routes in different instances.

12/24

Inter-Instance Analysis

T
|
f
|
|
|
|
|
|
|
|

T
|
I
!
|
|
t
|
|
|
|

T
|
f
!
|
|
|
|
|
|
|

]
|
|
|
|
|
|
|
|
|
|

]
|
1
|
|
|
|
|
|
|
|

Inter-Instance Design Rule Checking

13/24

A route near the boundary of an instance only needs to be
checked with the fixed metals and routes within a small
active region (as colored yellow) near the boundary of its
neighboring instance.

Inter-Instance Analysis

| | | | |
t o | t i =t I |
| A | A A tY,l tA,l
| | | | |
| | |
¥ tyz [0 ta2
| | | | | |
| | |]
H B B I ty3 @ X tsa
t t | 1 1 1 L
] | | | | | |]
(@) (b)
1 1 2 2 3 3 —_
tya—tar —trn—ths —tya T tap tya—taa
1 1 2 2 3 3 —_
tyo —ta, —tyo—thr —tyo—ta> by —taz
| | | I
1 1 2 2 3 3
tys—tg1 —ty3—tg1 —tyz—lga tys—tp1
(c) (d)
Track on M1 ——— Track on M2 Pin metal on M1 g Single via route
— Intra-instance conflict ~ — Inter-instance conflict

Conflict Graph. (a) Three identical cell instances in a row. (b) Possible routes for the pins in the instance. (c)
Complete conflict graph. (d) Intra-instance conflict graph.

14/24

Route Selection by Increment SAT Solving

Goals:

» Select a route for each pin such that no route will have conflicts with another route or an
existing fixed metal.

> If possible, optimize certain metrics such as the number of out-of-guide routes, HPWL, etc.

15/24

Boolean Formulation

P=AN Vs

pi€P ti;€T;

C= /\ (ﬁ Siy g \/ﬁsiz,jz)'

(lilxil ,linz)EE

16/24

Notations:

» P: the set of all pins.

> T;: the set of candidate routes for pin p;.
> i the j candidate route for pin p;.

> s;,: if route 1;; is selected.

> E: the set of all conflict edges.

Incremental SAT Solving

To prioritize the use of the candidate routes that have a better chance to give a better
routing solution, we define the cost tuple cost(1;) = (c1, ¢2).

1, ifap(t;;) is out-of-guide,
cC1 =
0, otherwise,

¢y = L1Dist(ap(t;;), net(p;).center),

17/24

(@)

Incremental SAT Solving

> We start the SAT solving with only
the best route enabled for each
pin (by using assumptions to [Conflict Graph } [P'e:z:e;:ue;?’re}
disable other routes).

<
> If the solver reports SAT, we can
Stop the process and convert the l SAT Solving with Preferred Routes }‘\\

assignment to an optimized pin \
Incremental no N
access scheme. SAT Solving Extend Preferred Route Candidates

yes
DRC-Clean PA Scheme ‘

» Otherwise, we will enable one |
more candidate route for each pin
that caused UNSAT.

18/24

Outline

Experimental Results

19/24

Experimental Results

Table: Benchmark and Runtime Statistics

Benchmarks Tech # Cell # Instance #Pins # Candidate # Conflict TOPT FastPass Speedup
(nm) | Instances | Patterns Routes Edges Time (s) | Time (s)

ispd18_test1 45 8,879 182 | 17,202 90,601 4,928 6.3 0.2 38.3x
ispd18_test2 45 35,913 222 | 158,741 788,660 44,399 10.6 1.0 10.7x
ispd18_test3 45 35,973 227 | 159,579 798,128 44,348 13.6 1.0 14.1x
ispd18_test4 32 72,094 2,725 | 318,121 4,258,475 106,053 117.7 5.4 21.8x
ispd18_test5 32 71,954 2,733 | 318,059 3,492,551 7,554,606 125.7 7.6 16.6x
ispd18_test6 32 107,919 2,886 | 475,429 5,140,864 | 11,072,916 146.2 10.2 14.3x
ispd18_test7 32 179,865 148 | 793,129 8,442,950 | 16,884,133 98.3 121 8.1x
ispd18_test8 32 191,987 150 | 793,129 8,443,220 | 16,902,913 115.4 12.6 9.1x
ispd18_test9 32 192,911 136 | 791,761 8,416,299 | 16,907,027 72.9 125 5.9x
ispd18_test10 | 32 290,386 144 | 811,761 8,625,282 | 17,393,590 106.0 13.7 7.7x

Avg. - - - - - - 81.3 7.6 14.7x

'Kahng, Andrew B., Lutong Wang, and Bangqi Xu. "The tao of PAO: Anatomy of a pin access oracle for
detailed routing.” 2020 57th ACM/IEEE Design Automation Conference (DAC). IEEE, 2020.

19/24

Effectiveness of Incremental SAT Solving

20/24

Table: Route Selection Results with/without Incremental SAT Solving.

Benchmarks TOP SAT-Unsorted SAT-Sorted Incremental SAT
#OFG* HPWL #OFG * HPWL #OFG * HPWL #OFG * HPWL
ispd18_test1 860 62,754 860 62,772 33 61,532 8 61,507
ispd18_test2 7,188 | 1,338,360 8,888 | 1,338,622 1,010 | 1,322,727 688 | 1,322,142
ispd18_test3 6,992 | 1,457,780 7,606 | 1,458,023 1,595 | 1,442,733 1,092 | 1,442,262
ispd18_test4 50,207 | 2,158,830 | 38,004 | 2,158,717 2,132 | 2,124,095 1,810 | 2,123,646
ispd18_test5 46,445 | 2,164,850 | 46,148 | 2,164,636 3,389 | 2,132,656 2,093 | 2,131,595
ispd18_test6 73,750 | 2,942,230 | 73,964 | 2,942,051 5,422 | 2,894,805 3,483 | 2,893,202
ispd18_test7 107,177 | 5,054,720 | 97,597 | 5,054,326 2,806 | 4,970,566 1,444 | 4,968,595
ispd18_test8 108,038 | 5,076,690 | 98,554 | 5,076,310 2,874 | 4,992,606 1,434 | 4,990,678
ispd18_test9 130,448 | 4,495,240 | 122,556 | 4,494,891 4,088 | 4,411,584 2,637 | 4,409,740
ispd18_test10 | 136,333 | 5,621,630 | 127,737 | 5,621,370 4,433 | 5,537,226 2,785 | 5,535,221
geomean ratio | 32.386 1.016 | 31.433 1.016 1.739 1.000 1.000 1.000

* OFG: Out-of-guide access grid points. The unit for HPWL is um.

Runtime Decomposition

21/24

Runtime(s)

140

120

100

80

60

40

20

TOP Prep. |
TOP Solve

B FastPass Prep. B
FastPass Solve

e T U T e el |

1 2 3 4 5 [§ 7 8 9 10
Benchmark (ispd18_test{})

Runtime decomposition of TOP and FastPass.

For Advanced Nodes

Track on M1

,,,,,,,,,,,,,,,,,,,,,,,,,,,, > we synthesize an open-source processor IP
,,,,, - - | Treckenm2 core mor1kx(80K instances, 515 instance
,,,,,,,,,,,,,,,,,,,,,,,,,,,, patterns) with the ASAP 7nm library.

Pin metal on M1

» With simple adaptation, it takes FastPass
4.1 seconds to generate DRC-clean pin
access result.

____________________________ [IZ[’ Single via route

Pin access result for an AOI221 cell in mor1kx

22/24

Outline

Future Works

23/24

Future Works

> We are trying to integrate the pin access analysis framework into a detailed router to further
validate its effectiveness.

» We are also working on a dynamic pin access analysis flow based on FastPass, which is
capable of making adjustments after seeing the actual routing result.

23/24

Thank You

	Main Talk
	Introduction
	Preliminary
	Algorithms
	Experimental Results
	Future Works

