
FastPass: Fast Pin Access Analysis with
Incremental SAT Solving

Fangzhou Wang, Jinwei Liu, and Evangeline F.Y. Young

CSE Dept., The Chinese University of Hong Kong

March 27, 2023

Outline

Introduction

Preliminary

Algorithms

Experimental Results

Future Works

1 / 24

Outline

Introduction

Preliminary

Algorithms

Experimental Results

Future Works

2 / 24

Introduction

Pin access is one of the most complicated sub-problems in VLSI routing.

▶ The pin shapes are complex polygons comprised of multiple rectangles.
▶ Over millions of pins might need to be analyzed simultaneously.
▶ The pin access solution of one pin should avoid causing violations with existing metals.
▶ The pin access solutions of different pins might interfere with each other.

2 / 24

Introduction

Here is an example pin access solution for a single cell instance.

(a) (b)

Track on M1 Track on M2 Pin metal on M1

Via metal on M1 Via metal on M2

3 / 24

Outline

Introduction

Preliminary

Algorithms

Experimental Results

Future Works

4 / 24

Problem Formulation

The Pin Access Problem:

Given a design (with tracks, cell instances, nets, etc.), find a routing scheme such that
each net pin is connected to a nearby grid point using routes (containing wires and vias),
such that no routes will cause design rule violations with fixed metals or each other.

4 / 24

Design Rule Violations

(d) (e) (f) (g)

Via metal on M1 Via metal on M2Pin metal on M1 DRC violation

Design Rule Check. (a) A PRL spacing violation between a routed via’s metal and the fixed metal of a
different pin. (b) A PRL spacing violation between a routed via’s metal and the metal of the pin it attempts to
access. (c) DRC violations between two routed vias’ metals. (d) The maximal rectangles decomposed from
fig. 1d.

5 / 24

Instance Patterns

(a) (b) (c)

Track on M1 Track on M2 Pin metal on M1First vertical track

Instance Patterns. (a) An instance of the same instance pattern as the rightmost instance in Figure 1a. (b)
An instance of a different instance pattern due to different orientation. (c) An instance of a different instance
pattern due to different track offset.

6 / 24

Outline

Introduction

Preliminary

Algorithms

Experimental Results

Future Works

7 / 24

Overview

Generate Routes for Each Pin

Filter Routes with Violations

Identify Intra-Instance Conflicts

Filter Routes with Violations

Identify Inter-Instance Conflicts

SAT Solving with Preferred Routes

DRC-Clean PA Scheme

SAT Extend Preferred Route Candidates

Inter-Instance

Analysis

Pattern-Based

Analysis

Incremental

SAT Solving

yes

no

7 / 24

Candidate Routes Generation

We define a candidate route for a pin p as a potential set of routing segments that can
connect p to a grid point on M2.
To generate route candidates for each pin:

▶ We first find a set of access grid points for each pin.
▶ For each access grid point, we will generate two kinds of routes using each via type.

8 / 24

Candidate Routes Generation
Two kinds of routes:

(a) (b) (c)

Track on M1 Track on M2 Via metal on M1

Via metal on M2

Pin metal on M1

Candidate grid point Wire on M1 Wire on M2

Candidate Routes Generation. (a) Pin access grid points. (b) Pin access route with an on-grid via. (c) Pin
access route with an off-grid via.

9 / 24

Instance Pattern-Based Analysis

Goals:

▶ Filter routes that cause violations with the fixed metals inside the cell instance.
▶ Construct intra-instance conflict graph between routes.

10 / 24

Instance Pattern-Based Analysis

Intra-instance Design Rule
Checking.

Algorithm Intra-Instance Design Rule Checking

1: Sort all routed rectangles in non-decreasing order of x: r1, r2, ... rn.
2: Sort all fixed rectangles in non-decreasing order of x:

R1, R2, ... RN .
3: A← ∅, j ← 1
4: for i = 1, 2, ..., n do
5: Shift the active region for routed rectangle ri
6: while Rj has overlap with the active region do
7: A← A + {Rj}
8: j ← j + 1
9: for each fixed rectangle R′ ∈ A do

10: if R′ falls to the left of the active region then
11: A← A− {R′}
12: else
13: Check violations between ri and R′

11 / 24

Inter-Instance Analysis

Goals:

▶ Filter routes that cause violations with fixed metals in the neighboring cell instances.
▶ Construct inter-instance conflict graph between routes in different instances.

12 / 24

Inter-Instance Analysis

Inter-Instance Design Rule Checking

A route near the boundary of an instance only needs to be
checked with the fixed metals and routes within a small
active region (as colored yellow) near the boundary of its
neighboring instance.

13 / 24

Inter-Instance Analysis

(a) (b)

(c) (d)
Track on M1 Track on M2 Single via routePin metal on M1

Intra-instance conflict Inter-instance conflict

Conflict Graph. (a) Three identical cell instances in a row. (b) Possible routes for the pins in the instance. (c)
Complete conflict graph. (d) Intra-instance conflict graph.

14 / 24

Route Selection by Increment SAT Solving

Goals:

▶ Select a route for each pin such that no route will have conflicts with another route or an
existing fixed metal.

▶ If possible, optimize certain metrics such as the number of out-of-guide routes, HPWL, etc.

15 / 24

Boolean Formulation

P ≡
∧

pi∈P

∨
ti,j∈Ti

si,j,

C ≡
∧

(ti1,j1 ,ti2,j2)∈E

(¬ si1,j1 ∨ ¬ si2,j2).

Notations:

▶ P: the set of all pins.
▶ Ti: the set of candidate routes for pin pi.
▶ ti,j: the jth candidate route for pin pi.
▶ si,j: if route ti,j is selected.
▶ E: the set of all conflict edges.

16 / 24

Incremental SAT Solving

To prioritize the use of the candidate routes that have a better chance to give a better
routing solution, we define the cost tuple cost(ti,j) = ⟨c1, c2⟩.

c1 =

{
1, if ap(ti,j) is out-of-guide,
0, otherwise,

(1)

c2 = L1Dist
(
ap(ti,j), net(pi).center

)
, (2)

17 / 24

Incremental SAT Solving

▶ We start the SAT solving with only
the best route enabled for each
pin (by using assumptions to
disable other routes).

▶ If the solver reports SAT, we can
stop the process and convert the
assignment to an optimized pin
access scheme.

▶ Otherwise, we will enable one
more candidate route for each pin
that caused UNSAT.

SAT Solving with Preferred Routes

DRC-Clean PA Scheme

SAT Extend Preferred Route CandidatesIncremental
SAT Solving

yes

no

Conflict Graph Preference Score
for Routes

18 / 24

Outline

Introduction

Preliminary

Algorithms

Experimental Results

Future Works

19 / 24

Experimental Results

Table: Benchmark and Runtime Statistics

Benchmarks Tech
(nm)

Cell
Instances

Instance
Patterns # Pins # Candidate

Routes
Conflict

Edges
TOP1

Time (s)
FastPass
Time (s) Speedup

ispd18 test1 45 8,879 182 17,202 90,601 4,928 6.3 0.2 38.3×
ispd18 test2 45 35,913 222 158,741 788,660 44,399 10.6 1.0 10.7×
ispd18 test3 45 35,973 227 159,579 798,128 44,348 13.6 1.0 14.1×
ispd18 test4 32 72,094 2,725 318,121 4,258,475 106,053 117.7 5.4 21.8×
ispd18 test5 32 71,954 2,733 318,059 3,492,551 7,554,606 125.7 7.6 16.6×
ispd18 test6 32 107,919 2,886 475,429 5,140,864 11,072,916 146.2 10.2 14.3×
ispd18 test7 32 179,865 148 793,129 8,442,950 16,884,133 98.3 12.1 8.1×
ispd18 test8 32 191,987 150 793,129 8,443,220 16,902,913 115.4 12.6 9.1×
ispd18 test9 32 192,911 136 791,761 8,416,299 16,907,027 72.9 12.5 5.9×
ispd18 test10 32 290,386 144 811,761 8,625,282 17,393,590 106.0 13.7 7.7×

Avg. - - - - - - 81.3 7.6 14.7×

1Kahng, Andrew B., Lutong Wang, and Bangqi Xu. ”The tao of PAO: Anatomy of a pin access oracle for
detailed routing.” 2020 57th ACM/IEEE Design Automation Conference (DAC). IEEE, 2020.

19 / 24

Effectiveness of Incremental SAT Solving

Table: Route Selection Results with/without Incremental SAT Solving.

Benchmarks TOP SAT-Unsorted SAT-Sorted Incremental SAT
OFG * HPWL # OFG * HPWL # OFG * HPWL # OFG * HPWL

ispd18 test1 860 62,754 860 62,772 33 61,532 8 61,507
ispd18 test2 7,188 1,338,360 8,888 1,338,622 1,010 1,322,727 688 1,322,142
ispd18 test3 6,992 1,457,780 7,606 1,458,023 1,595 1,442,733 1,092 1,442,262
ispd18 test4 50,207 2,158,830 38,004 2,158,717 2,132 2,124,095 1,810 2,123,646
ispd18 test5 46,445 2,164,850 46,148 2,164,636 3,389 2,132,656 2,093 2,131,595
ispd18 test6 73,750 2,942,230 73,964 2,942,051 5,422 2,894,805 3,483 2,893,202
ispd18 test7 107,177 5,054,720 97,597 5,054,326 2,806 4,970,566 1,444 4,968,595
ispd18 test8 108,038 5,076,690 98,554 5,076,310 2,874 4,992,606 1,434 4,990,678
ispd18 test9 130,448 4,495,240 122,556 4,494,891 4,088 4,411,584 2,637 4,409,740
ispd18 test10 136,333 5,621,630 127,737 5,621,370 4,433 5,537,226 2,785 5,535,221
geomean ratio 32.386 1.016 31.433 1.016 1.739 1.000 1.000 1.000

* OFG: Out-of-guide access grid points. The unit for HPWL is µm.

20 / 24

Runtime Decomposition

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

Benchmark (ispd18 test{})

R
u
n
ti
m
e(
s)

TOP Prep.
TOP Solve

FastPass Prep.
FastPass Solve

Runtime decomposition of TOP and FastPass.

21 / 24

For Advanced Nodes

Track on M1

Track on M2

Pin metal on M1

Single via route

Pin access result for an AOI221 cell in mor1kx

▶ we synthesize an open-source processor IP
core mor1kx(80K instances, 515 instance
patterns) with the ASAP 7nm library.

▶ With simple adaptation, it takes FastPass
4.1 seconds to generate DRC-clean pin
access result.

22 / 24

Outline

Introduction

Preliminary

Algorithms

Experimental Results

Future Works

23 / 24

Future Works

▶ We are trying to integrate the pin access analysis framework into a detailed router to further
validate its effectiveness.

▶ We are also working on a dynamic pin access analysis flow based on FastPass, which is
capable of making adjustments after seeing the actual routing result.

23 / 24

Thank You

24 / 24

	Main Talk
	Introduction
	Preliminary
	Algorithms
	Experimental Results
	Future Works

