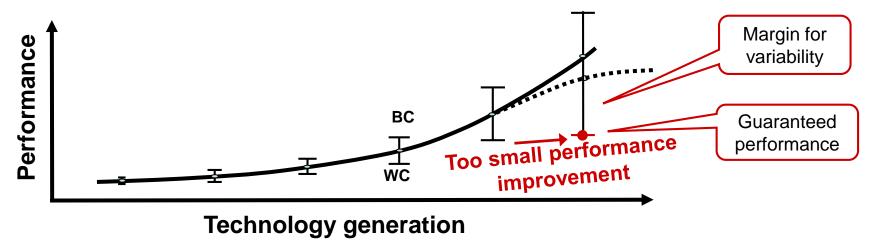


TAU 2013 Variation Aware Timing Analysis **Contest**

Debjit Sinha¹, Luís Guerra e Silva², Jia Wang³, Shesha Raghunathan⁴, Dileep Netrabile⁵, and Ahmed Shebaita⁶

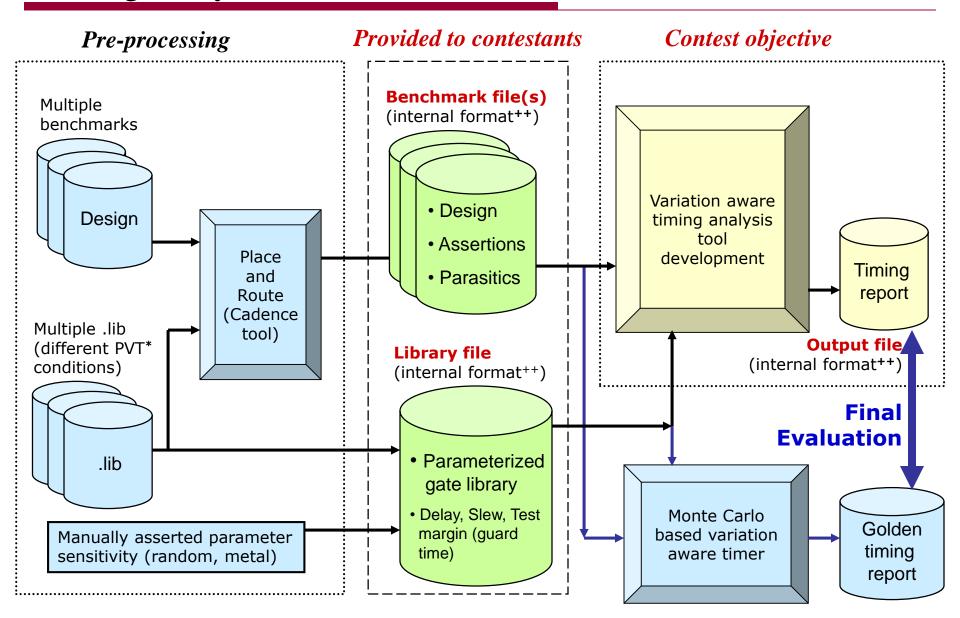
^{1;5}IBM Systems and Technology Group, ¹Hopewell Junction/⁵Essex Junction, USA ²INESC-ID / IST - TU Lisbon, Portugal ³Illinois Institute of Technology, Chicago, USA ⁴IBM Systems and Technology Group, Bangalore, India ⁶Synopsys, Sunnyvale, USA

TAU/ISPD joint session, Stateline, NV – March 26, 2013



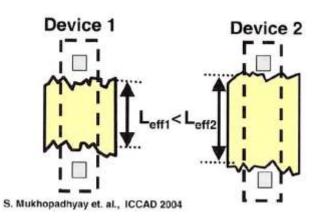
Variation aware timing

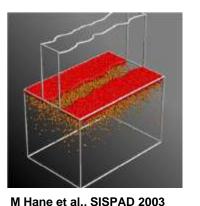
- Timing analysis key component of chip design closure flow
 - Pre/post route optimization, timing sign-off
- Increasing significance of variability

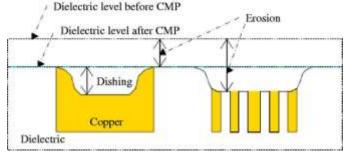

- Variability aware timing analysis essential
 - Growing chip sizes, complexity: Impacts timing analysis <u>run-time</u>
 - <u>Trade-offs</u> between modeling accuracy/complexity and run-time

TAU 2013 variation aware timing analysis contest

- <u>Goal</u>: Seek novel ideas for <u>fast</u>, <u>variation aware</u> timing analysis by means of the following
 - Increase awareness of variation aware timing analysis, provide insight into some challenging aspects
 - Encourage novel parallelization techniques (including multi-threading)
 - Facilitate creation of a publicly available variation aware timing analysis framework and benchmarks for research/future contests
- Trade-offs for timing model complexity
 - Wanted focus on <u>variation aware</u> timing, understanding <u>challenges</u> for variation aware timing, tool <u>performance</u>
 - Feedback from prior contest committee: Teams spend too much time on infrastructure (e.g., parsers, fixing library/benchmark file bugs)
 - Chose to <u>expand</u> on single corner timing analysis contest from




Timing analysis contest architecture

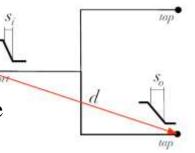


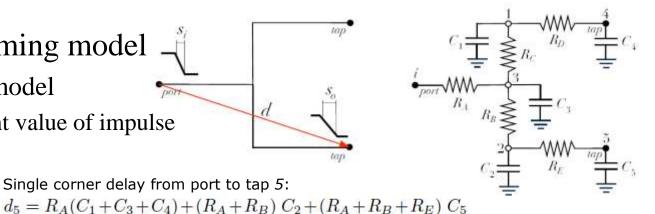
Sources of variability (Parameters)

- Six global (inter-chip) sources of variability
 - Environmental: Voltage (V), Temperature (T)
 - Front end of line process: Channel length (L), Device width (W),
 Voltage threshold (H)
 - Back end of line process: Metal (M)
 - All metal layers assumed perfectly correlated
- Random variability (**R**)
 - Intra-chip (across chip) systematic variability ignored

www.emeraldinsight.com

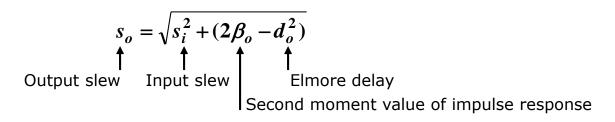
Variability modeling


• Parametric linear model*


$$\mu + a_v \Delta V + a_t \Delta T + a_l \Delta L + a_w \Delta W + a_h \Delta H + a_m \Delta M + a_r \Delta R$$

- Each parameter (ΔV , ΔT , ..., ΔR) assumed as <u>unit normal Gaussian</u>
- Each sensitivity $(a_v, a_v, ..., a_r)$ denotes <u>first-order per-sigma</u> sensitivity
- Parameter may vary between [-3, 3] sigmas
- Encouraged novel variability aware timing analysis techniques
 - Statistical timing [Fewer runs, pessimism relief for random variability, modeling inaccuracies/simplifications]
 - Multi-corner timing [Less complexity, faster analysis and potentially more accurate at each corner, large number of corners, pessimistic for random variability]
 - Monte Carlo based timing [Less complexity, most accurate, very long run-times]
 - Golden timer's approach: Used for accuracy evaluations only
 - Hybrid/novel approach for variability aware timing [?]

Interconnect (wire) modeling


- Interconnects modeled as resistance capacitance (RC) network
 - Single source (port), one or more sinks (taps)
 - No coupling capacitances, no grounded resistances
- Single corner timing model
 - Elmore delay model
 - First moment value of impulse response

- Multi step output slew computation
 - Combination of input (port) slew, delay, and second moment value of impulse response – Introduces <u>non-linearity</u> [Kashyap *et al.*, TCAD'04]

Single corner delay from port to tap 5:

Interconnect (wire) modeling considering variability

- Wire parasitics (RC values) <u>function of metal</u> parameter (ΔM)
 - Provided sigma (corner) specific scale factors for parasitics
 - Tap capacitance contribution from gate input pin <u>unaffected</u>
 - Parametric input slew
- Parametric wire delay and output-slew
 - First order sensitivity to metal and other parameters may be computed via model-fitting (e.g. finite-differencing) for a statistical timer
 - Complex parametric output slew computation

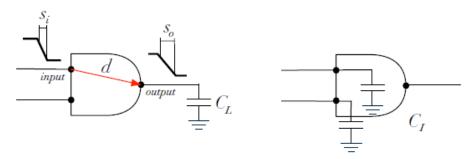
Corner delay at nominal metal corner (0 sigma):

$$d_5 = R_A(C_1 + C_3 + C_4) + (R_A + R_B) C_2 + (R_A + R_B + R_E) C_5$$

Corner delay at "thick" metal corner (σ sigma):

Tap gate pin cap

$$d_{5|\Delta M=\sigma} = m_R^{\sigma} R_A (m_C^{\sigma} [C_1 + C_3 + C_4 - C_{p,4}] + C_{p,4}) + \\ (m_R^{\sigma} [R_A + R_B + R_E]) (C_{p,5} + m_C^{\sigma} (C_5 - C_{p,5})) \\ + (m_R^{\sigma} [R_A + R_B]) m_C^{\sigma} C_2 \qquad \text{Corner specific scale factors}$$

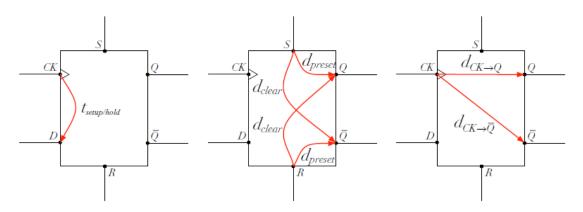

First order metal sensitivity:

$$\alpha_{m,5}^D = \frac{d_{5|\Delta M = \sigma} - d_{5|\Delta M = 0}}{\sigma - 0}$$

Parametric wire delav:

$$d_5 + \alpha_{m,5}^D \Delta M$$

Combinational gate (cell) modeling


• Extended linear gate delay/slew model from PATMOS'11 contest to variation aware model

$$D = a \left(1 + k_{d,v} \Delta V + k_{d,t} \Delta T + k_{d,l} \Delta L + k_{d,w} \Delta W + k_{d,h} \Delta H + k_{d,r} \Delta R\right) + b C_L + c S_i$$

$$S_o = x \left(1 + k_{s,v} \Delta V + k_{s,t} \Delta T + k_{s,l} \Delta L + k_{s,w} \Delta W + k_{s,h} \Delta H + k_{s,r} \Delta R\right) + y C_L + z S_i$$

- Sensitivities (to parameters, input slew, load) provided in gate library
- Lumped load model (no effective Capacitance/current source models)
- Note: Input slew (S_i) and load (C_L) are parametric models

Sequential gate (flip-flop) modeling

• Test (Setup/hold) margin or guard-times a linear function of slews at clock and data points

$$t_{setup} = g + h S_i^{CK} + j S_i^{D}$$

$$t_{hold} = m + n S_i^{CK} + p S_i^{D}$$

- Sensitivities (to input slews) provided in gate library
- Parametric slews → Parametric guard-time

Parametric timing analysis

- Traditional timing analysis/propagation
 - Forward propagation of signal arrival times (at), and slews
 - Backward propagation of signal <u>required arrival times</u> (<u>rat</u>)
 - Slack computation

Nuances

- Worst slew propagation (when 2+ signals meet at a point)
- Separate propagation for <u>early</u>, <u>late</u> modes, and <u>rise</u>, <u>fall</u> transitions
 - Needs *maximum*, *minimum* operations on parametric quantities
 - Could be expensive for statistical timing, inaccuracy concerns
- Single clock domain
- No coupling, common path pessimism reduction, loops

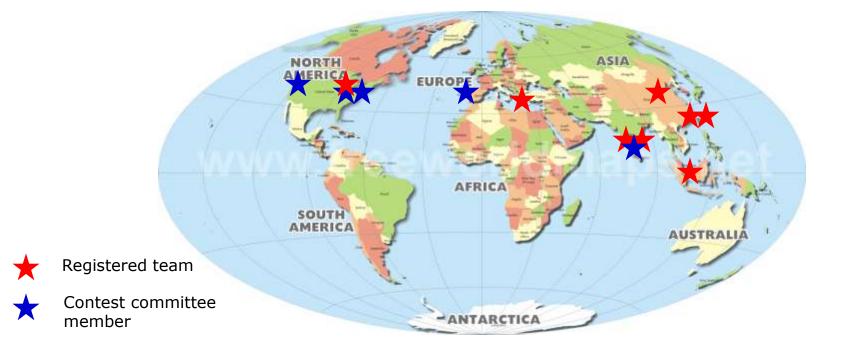
Projection techniques and tool output

• Projection of parametric values: 3 modes required for contest $\mu + a_v \Delta V + a_t \Delta T + a_l \Delta L + a_w \Delta W + a_h \Delta H + a_m \Delta M + a_r \Delta R$

- **MEAN**: Nominal value (μ)
- SIGMA_ONLY: Standard deviation $(\sqrt{a_v^2 + a_t^2 + a_t^2 + a_u^2 + a_h^2 + a_m^2 + a_r^2})$
- WORST_CASE: Worst 3 sigma projection of metal parameter, random parameter, and all other parameters combined together (via root sum square)

$$\left(\mu \pm 3\sqrt{a_v^2 + a_t^2 + a_l^2 + a_w^2 + a_h^2} \pm 3|a_m| \pm 3|a_r|\right)$$

- Required tool output
 - Must report <u>projected values</u> (based on shell variable \$TAU_PROJECTION)
 - Set of lines specifying for each <u>primary output</u> in design
 - Arrival times and slews (for early/late/rise/fall combinations)
 - Set of lines specifying for a subset of pins in design
 - Slacks


Contest timeline

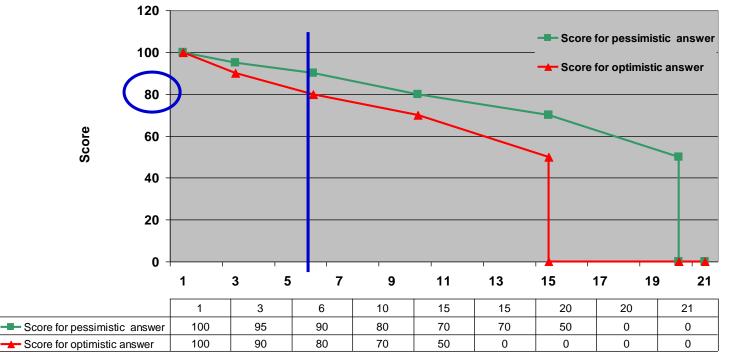
Date	Activity							
Oct 12, 2012	• Contest announced, webpage online (https://sites.google.com/site/taucontest2013)							
	• Detailed 22 page .pdf contest rules document provided							
	• Benchmark suite ver1.0 provided (24 testcases)							
	Variation aware gate library provided							
	• Interconnect network parser and viewer utility provided (debug aid)							
	• Informed that source code of winning tool from PATMOS'11 contest (thanks to Prof. Chang's team from NTU, Taiwan) available upon request to avoid infrastructure development (optionally re-use parsers, etc.)							
Feb 8, 2013	• Detailed calculations for toy benchmark provided							
	• Monte Carlo results for benchmarks ver1.0 provided							
	New variation aware gate library provided							
	Updated contest rules document							
	• Contestants requested to provide early binaries of tool for compatibility testing							
Feb 20, 2013	• 5 new large benchmarks provided (largest benchmark ~88K gates)							
Feb 28, 2013	• Final tool binaries due for evaluation							
(~4+ months)								
Mar 27, 2013	• Results announced							

Teams

• 8 teams

- China (1 Tsinghua Univ. Beijing)
- Greece (1 Univ. of Thessaly Volos)
- India (2 IIT Madras, IISc Bangalore)
- Singapore (1 No affiliation)
- Taiwan (2 National Tsing Hua Univ., National Chiao Tung Univ.)
- USA (1 Illinois Institute of Technology, Chicago)

Interesting tool characteristics


- Statistical, Monte Carlo based No multi-corner timers
- Statistical maximum/minimum (*max/min*) operation nuances
 - Used Clark's [Operations Research'61] moment calculation approach,
 and Visweswariah et al. approach [DAC'04]
 - "Smart" Compare means and do statistical *max/min* in select cases
 - Consider neglected correlation between signal inputs Better accuracy of output distribution. Based on Naderjah *et al.* [IEEE TVLSI'08]
- Parallelization Two teams employed *pthreads*
 - Multi-threaded netlist parsing
 - Multi-threaded wire pre-processing
 - Circuit levelization
 - Multi-threaded forward propagation
 - Multi-threaded backward propagation

Benchmarks

Netlist simple.net c3_slack.net ff.net c17.net c17_slack.net s27.net s344.net c432.net s349.net s400.net s386.net c499.net c1355.net c880.net c1908.net s526.net s510.net c2670.net s1196.net c3540.net c3540.net c5315.net c7552_slack.net c6288.net	# Gates 1 3 3 6 6 6 18 129 134 141 150 156 176 180 221 222 233 270 344 584 691 783 918 1147 1147 1147	# PIs 2 4 2 5 5 6 11 36 11 5 9 41 41 60 33 5 21 157 16 50 10 178 206 206 32	# POs 1 3 2 2 2 1 11 7 11 6 7 32 32 26 25 6 7 63 14 22 19 123 107 107 32	• 20 of 36 benchmarks ver 1.0 • 20 of 36 benchmarks used for final evaluations (> 250 gates) • Largest test-case ~88.4K gates	
Netlist wb_dma.net systemcdes.net tv80.net systemcaes.net mem_ctrl.net ac97_ctrl.net pci_bridge32.net usb_funct.net aes_core.net des_perf.net vga_lcd.net	# Gates 2652 2852 4211 4517 7466 7863 9210 10625 21372 79026 88403	# PIs 217 132 14 260 115 84 162 128 260 235	# POs 215 65 32 129 152 48 207 121 129 64 109	 6 large benchmar not released to contestants earlied All benchmarks not available on webp 	er ow

Evaluation metrics

- Score model for each benchmark: $A * \{ 0.5 + 0.3/T + 0.2/M \}$
 - Accuracy score (A): <u>Equally weighted</u> sum of average-arrival time accuracy, average-slew accuracy, average-slack accuracy, worst accuracy, accuracy of worst design slack
 - Based on worst-case projected mode results only
 - Scoring different for pessimistic versus optimistic result

Evaluation metrics (contd.)

- Score model for each benchmark: $A * \{ 0.5 + 0.3/T + 0.2/M \}$
 - Run-time score (T): Tool run-time (seconds) per 1K gates
 - Average run-time for single threaded statistical timer found ~ 1sec/1K
 gate benchmark
 - Memory score (M): Tool peak memory (in 100Mbs) per 1K gates
 - Average memory for single threaded statistical timer found ~ 100Mb/1K
 gate benchmark

Final evaluation nuances

- Evaluation on 2.33Ghz Quad core machine, 24Gb Ram, up to 8 threads
- Accuracy paramount Monte Carlo based timer to generate golden
- Biased towards tools with better run-time/memory for similar accuracy
- Final score is sum of all (20) benchmark scores

Tool comparison for top 3 teams

Team Id	Team T13_11 IIT Madras, India	Team T13_13 National Tsing Hua University, Taiwan	Team T13_14 National Chiao Tung University, Taiwan
Timer	Statistical multi threaded	Statistical single threaded	Statistical single threaded
Num. benchmarks that <u>crash tool</u>	2	0	3
Missing pin slacks	Few	None	Few
~Average accuracy	0.72	1.0	0.45
~Average run-time	0.3	1.0 [~ 1sec/1K gates]	17.0 (varied between 0.3 – 200)
~Average memory	3.2	1.0 [~ 100Mb/1K gates]	0.3

- Accuracy scores indicated within <u>3% accuracy</u> of statistical timing (for given benchmarks, library) for arrival times and slews
- Slack accuracy and worst timing accuracy using statistical timer usually within 10% of Monte Carlo results

Summary

- Variation aware timing analysis contest
 - Increase awareness of variation aware timing analysis, provide insight into some challenging aspects
 - Parametric timing propagation
 - Model fitting/finite-difference concept, inaccuracies
 - Parametric maximum/minimum operations
 - Projection techniques Pessimism relief
 - Encourage novel parallelization techniques
 - Multi-threaded timers
 - Facilitate creation of a publicly available variation aware timing analysis framework and benchmarks for research/future contests
 - Framework for potential concepts on parametric path tracing
 - Variability aware timing macro-modeling, coupling, etc.
- Reference: Sinha *et al.*, TAU 2013 Variation aware timing analysis contest, ISPD 2013

Final results

• <u>Plaques</u> and <u>cash awards</u> for the top three teams

Team Id	Team T13_11 IIT Madras, India	Team T13_13 National Tsing Hua University, Taiwan	Team T13_14 National Chiao Tung University, Taiwan				
Timer	Statistical <u>multi</u> threaded	Statistical single threaded	Statistical single threaded				
Num. benchmarks that <u>crash tool</u>	2	0	3				
Missing pin slacks	Few	None	Few				
~Average accuracy	0.72	1.0	0.45				
~Average run-time	0.3	1.0 [~ 1sec/1K gates]	17.0 (varied between 0.3 – 200)				
~Average memory	3.2	1.0 [~ 100Mb/1K gates]	0.3				
Final score averaged	119	70	31				

Final score averaged	119	70	31
over all benchmarks			
POSITION	1	2	3

TAU 2013 Variation Aware Timing Contest

Third Place Award

Presented to

Yu-Ming Yang, Yu-Wei Chang, Shih-Heng Huang and Iris Hui-Ru Jianga National Chiao Tung University, Taiwan

For

iTimer

Jinjun Xiong General Chair Chirayu Amin Technical Chair Debjit Sinha Contest Chair

TAU 2013 Variation Aware Timing Contest

Second Place Award

Presented to
Po-Yi Hsu, Sheng-Kai Wu,
Yung-Shun Lin and Wai-Kei Mak
National Tsing Hua University, Taiwan

For

HWL Timer

Jinjun Xiong General Chair Chirayu Amin Technical Chair Debjit Sinha Contest Chair

TAU 2013 Variation Aware Timing Contest

First Place Award

Presented to

Jobin Jacob Kavalam, Sudharshan V, Nitin Chandrachoodan and Shankar Balachandran IIT Madras, India

For

IITimer

Jinjun Xiong General Chair Chirayu Amin Technical Chair Debjit Sinha Contest Chair

Backup: Detailed scores

Final results:

	A	B	C	D	E	F	G	H	1		К	t.	M	N	0	P	Q	R	5	-7
TAU-TAC		TAC 2	2013 F	3 Results			0.5	Runtime weight		Memory weight	0.2									
2	Marcal			Tear	m 11					Tear	n 13		Team 14							
3	Benchmark #gates	timeX10	memX10	T	M	A.	Total	timeX10	memX10	1	M	A	Total	timeX10	memX10	7	M	A	Total	
4 30	97_ctrl	7863	10.2	4167060	0.12972148	0.52995803	69.6	222.026466	70.88	5726964	0.90143711	0.72834338	75.2	83,276305	442.31	2249160	5.62520666	0.28604349	19.7	24.674757
5 86	es_core	21372	20.86	5239152	0.09760434	0.24514093	67.9	298.046437	218.56	18970840	1.02264645	0.88764926	78.5	79.9656527		90900400	and the second second	- Land State of	2000	2101112
6 c2	670	344	2,45	3582664	0.7122093	10.4147209	37.8	35.5481813	2.91	361944	0.84593023	1.05216279	39.3	41.0576465	2.1	144624	0.61046512	0.4204186	31.2	45,774921
7 c3	540	691	2.63	3614676	0.38060781	5.23107959	27.6	36.6099083	5.29	671472	0.76555716	0.97173951	38	41.7121414	5.66	215240	0.81910275	0.31149059	25	37,708209
8 c5	315	918	2.91	3620348	0.31699346	3.9437342	37,1	55,5425996	9.14	1226704	0.9956427	1.33627887	38.7	36.8030138	7.77	304060	0.84640523	0.33122004	30	43.748050
9 ct	288	1667	3.06	3623836	0.18356329	2.17386683	15.4	34.2852615	9.91	1257612	0.5944811	0.75441632	32.2	40.8858659	9.43	367640	0.56568686	0.22053989	25.8	49.979609
10 c7	552	1147	3.01	3617472	0.26242371	3.15385527	31.8	54.2700015	10.06	1257060	0.87707062	1.09595466	39.1	40.0593973	12.53	345956	1.092415	0.30161813	30.1	43.275101
11 67	552_slack	1147	3.07	3625324	0.26763475	3.16070096	53.9	90.7742841	10.93	1260572	0.95292066	1.09901656	78.7	78.4483544	12.6	345988	1.09851787	0.30164603	30.5	43.801782
12 de	es_perf	79026	94.1	9828860	0.11907473	0.12437502	46.8	216.565415	851.05	76043356	1.07692405	0.96225743	70.7	69.7395946						
13 m	em_ctrl	7466	10.94	4154276	0.14653094	0.55642593	70.4	204.637738	100.57	9538156	1.34703991	1.27754567	77.7	68.3185584	384.27	2377588	5.14693276	0.3184554	20.6	24.438162
14 pc	i_bridge32	9210					0	0	116.59	10108840	1.26590662	1.09759392	75.9	69.7673602	19603.1	3583376	212.84582	0.38907448	20.5	20.816722
15 51	196	584	2,5	3587100	0.42808219	6.14229452	83,2	102.615645	3.61	372796	0.61815068	0.63834932	75	97.3969982	2,4	159500	0,4109589	0.27311644	29.7	58,279969
16 51	494	783	2.6	3605184	0.33205619	4.60432184	67.3	97.3763019	5.62	664640	0.71775223	0.8488378	78.2	90.2105663	4.16	205324	0.53128991	0.26222733	24.5	44.770331
17 s5	10	270	2.28	3556352	0.8444444	13,1716741	48.9	42.5648709	1.51	184704	0.55925926	0.68408889	79.3	105,372532	1	90964	0.37037037	0.3369037	21	39,976470
18 ty	stemcaes	4517				To the second se	0	0	59.38	5107244	1.31458933	1.13067168	76.7	69.4207219	2260.41	1703832	50.0422847	0.37720434	20.4	21.138715
19 ty	stemodes	2852	4.49	3750024	0.15743338	1.31487518	59.1	151.158511	25.13	2570400	0.88113604	0.90126227	76.5	81.2721117	106.39	728456	3.73036466	0.25541935	21.7	29.586802
20 ty	80	4211	6.18	3867524	0.14675849	0.91843363	70.9	195.82132	48.14	4794636	1.14319639	1.13859796	78.1	73.2637926	43.57	1233372	1.0346711	0.2928929	20.5	30.192208
21 us	b_funct	10625	12.99	4393824	0.12225882	0.41353638	61.4	211.059062	111.12	9889224	1.04583529	0.93075049	77.6	77.7344351	284.69	3072360	2.67943529	0.28916329	24.4	31.808196
22 vg	a_lcd	88403	124,46	10589148	0.14078708	0.11978268	42.3	181.914022	907.89	76556968	1.02699003	0.86599966	74.6	76.3204817						Tarana San
23 W	b_dma	2652	5.77	4164924	0.21757164	1.57048416	75.1	150.666027	32.03	3079712	1.20776772	1.16127903	78.8	72.5445431	61.47	971156	2.3178733	0.36619759	29.5	34,679675
24					0.27809857	3.21051445	SUM	2381,48205			0.95801168	0.97813977	SUM	1393.57007			17.0451647	0.31374304	SUM	624,64968
25							Avg.	119.074103				1	Avg.	69.0785096					Avg.	31,232484
26																				

Accuracy score:

ilise ochrusk Banch	-	Α.	47	100	36	w	Will Wood	e Will note	Nam-entries-critising	1.0	AT	100	40	w	WS Wood	Willenda	Non-artises enging	114	At	1W	96	w	Witt Wareh	WS rede	Num entries retain
1 ad97_cm1 men ta Avantt		2.5	90.0	100	87.4	- 0	7014100129	14007529	12	76.2	92.4	900	92.7	- 4	90 120	+10762E		19.7	0.7	94.6	- 3	.0	0.40	×907629	1209
1 see core raths were		7.5	57.5	100	56.6	- 3	90 < 100040	H085014		76.5	200	300	57.5		200 ×100050	1385034									
1 c3670 set ta worth	1 2	7.8	81.4	87.2	.0	- 0	0 (216	3	. 0	29.3	96.7	100	- 4		© n150	1		21:21	29.3	9671	(D)	. 0	0.01446	1+	10
1. c5540, net to worst	1 3	7.8	57.3	80.6	. 0	. 0	0 +351	-	. 0	38	90.1	300			0 n589			25	25.5	54.5	0	0	0 =253	1	- 9
1 cS21S not to worth	- 3	7.1	87.7	97.6	- 0	. 0	0 91000	3-	0	20.7	92.5	100	- 0	- 0	0.1642	-		20	52.4	97.9	0	0	0 +1000	1	
1 c5255 net to worst	- 1	5.4	9.2	71.1		. 0	0 +1501ger	9	0	52.2	62	200	- 6	- 0	@ o4241gat	1		25.8	29.2	100	0	0	0 =2553pet	J.	
1 c7002 set to worst	. 3	1.0	70.7	88.3	- 0	a	0 r046	Skinosi	- 0	29.2	96.7	100	- 41	.0	8 A270			20.1	2.52	87.1	- 0	0	0 1346	+	
1 c7552 plackman talward	- 5	3.9	70.7	88.1	80.7	. 0	50 h248	4,611,1	. 0	78.7	95.7	200	97.5	. 01	100 n270	+ 811_1	. 0	50.5	55.5	97.1	2.1	D	0 +248	+ 811.1	-194
1 dec perfination worst	- 4	6.0	91.3	100	42.4	4	0 41000	3499730	. 0	79,7	530	100	92.6	.01	70 vt000	x499725		1775						material by	
I mem ciri ret ta worst		0.4	85.5	35.5	87.6	- 0	80 ×103	k555844	20	37.7	200	300	55.7		95 x100195	×338844		29.8	12	95.2	5.6	.0	0.40	3338844	953
1 pri bridge22 set te wort									- 76	75.9	96.7	100	93	0	90 v100056	+134360		20.5	1	96.6	4.0	0	0 -03433	+134260	2219
1 s1156 net he worst.	- 0	5.2	82.4	100	26.4	.50	80 + 825_1	* 610.2	-0	75	89.1	300	95.7	0	30:0535	+ 810.2		29.7	42.5	57.5	8.5	0	0.6530	+ 810_2	- 10
1 s1494 set in weem	- 6	7.8	76.6	99.1	76.6	- 0	80 +12 D 12		0	79.2	99.6	100	97.5	- 40	100 v13 D 7	0,210,1		24.6	18.7	97.4	6.6	D	0 v12 D 30		57
1 a510 net he worst	- 4	8.9	41.2	75.9	14.3	- 0	50 betr	54,24,1	0	79.5	98.8	200	57.5		100 n 100 3	1,24,1		21	0	57.1		. 0		1,24,1	- 33
1 systemates necits worth										76.7	100	100	92.4	. 0	90:1100363	+96317		30.4	0.0	94.5	2.3	0	0:0	x65217	349
I systemodes met te worst		9.1	80.8	26.7	46.5	- 0	70 (38483)	x54285	4252	76.5	300	300	92.1	0.0	90 (10038	+54285		21.7	0.0	100	8.5	0	0.40	+54285	- 34
1 tell net to worth	. 7	0.8	99.7	100	144	- 0	95 (10007	145443	26	78.1	300	900	90.7	- 6	105:110042	145442		20.8	0:	97.3	5.0	. 0	0.40	142442	32
1 sab_funct.net talworst		2.4	74.6	93.9	68.5	- 3	70 (5874	x55576	15010	77.8	99.5	300	55.6	- 0	95 (100500	(\$5576.		29,8	21.2	25.6	4.5	0	0.40	H05376	211
1 vga_jod nat.ta.werm	- 4	2.3	55.4	86.4	24.6	- 0	0 x1278	H666417	26	74.6	100	100	92.9	. 0	20 k1000061	6666467									
I wit dwe not to worst	7	5.1	95.3	99.1	50.5	-0	90 x14596	+42582		78.8	98.1	300	95.9		100 x10854	+42382	0	25.5	40	99.	12.0	D	0 ×7139	+42582	50
20	33.65	948			71	9.11				80.94			T	11 15				29.0059				- 11	3 14		