1|
I

T
Y II
L

Network Flow Based
Datapath Bit Slicing

Hua Xiang Minsik Cho Haoxmg Rn_‘
Matthew Ziegler Ruchir Puri g

03/27/2013

Introduction

= Datapaths are composed of bit slices
= What are bit slices?

— For ideal datapath, each bit should have the same structure with
no or very few connections to other bits

— In real design, bit slices have similar structures

* Different bits can be implemented differently,
= e.g., NAND or AND+INV

* Different bits have connections
= e.g., Carry bit

— —
7N\

\
/ \ / \
Bitl / PI (1) AND2 AND2} INV OR2 NAND2 1 PO (4) |\
| \ /) 17 1

| \

|
Al | R
Bit2, |PI@ ANDZ) AED}'% —

I |
| ' OR2
| |
| I
o I
Bit3, | PI () AND2 INV OR2 AND2 PO (2)
o} o) \
\ ! \]
o / — /
PI (4 AND3 INV OR2 NAND2O PO (1)
Bit4 4)] :

\
_7/

N
X Y

Applications for datapath bit slices

= The bit line alignment imposed on placement/floorplan help to
create high density high performance design

1620 » 304 tracks

q72 1134 1296 14538 1628

= Automatic datapath-aware latch bank planning

— Designer’s hand-crafted manual latch placement

0 Good quality
» Timing-consuming
» Understanding design 100%
— Automatic structured latch placement

- Datapath bit slicing provides guidance for latch bank placement
— X location is determined by bit slice alignment
— Y location draws on the bit height of each bit

0 Provide an early starting point for datapath macros
0 Sweep through many configurations overnight

Bit Slicing Approaches in Literature

= Maintain datapath structures from VHDL
— Limit datapath optimization
— Impose hard constraints on design

= Regularity extraction

— Template based

« Templates are either provided or auto generated
- Exact match with templates
+ Some even assume the bit lines is repeated infinitely
» Hard for similar match
» A few bits in the datapath might be quite different from the rest
— E.g., the last bit is very likely to be different
— Location/Name based

- Draw on item locations or names for matching
» Physical information is not available

» Naming is not trustable, especially after optimization
— Gates/nets may be added or deleted

Datapath Extraction

= |dentify all gates related to the given datapath
— For a datapath gate, it must have paths to the input vector and the output vector.

= Method: Two-way search extraction

— First search: mark all gates in the input fan-out cone
— Second search: mark all gates in the output fan-in cone
— Only gates marked in both searches are returned

= All bit line gates are included in the two-way search

= But not all gates returned by two-way search are bit line gates
AND2

—ﬂD}\ INV OR2 o PO (4)

s [|—

AND2
&2
sie 10 |—A3)

Datapath Bit Matching

Datapath extraction identifies the connectivity between two vectors
How to identify each bit slice? -> Datapath Bit Matching

— Given an input vector X=(x1,...,xn) and an output vector Y=(y1,...,yn)
— |dentify one-to-one matching between X and Y

— N bit slices can be identified through two-way search algorithm

Bit Matching can be done with a bipartite graph? No

— The weight of a pair of starting and ending bit cannot be calculated
independently

Bit Matching is a partition problem? No

— Not all gates in the datapath graph belong to bit lines

Bit Matching can be done with path tracing? No

— One starting bit may have paths connecting to multiple ending bits

Bit Matching can by done with enumeration? Long runtime
— The searching space is huge

Datapath Main Frame

= Observation:

— All bit slices carry similar number of gates
— The connections among bit slices are limited

— All bit slices usually have at least one similar path from the input bit to the
output bit, and the path is disjoint with the similar paths in other bit lines

» ldentify the longest similar path?

A

= Datapath Main Frame B lﬂD

Given a datapath input vector X=(x1, ..., xn), and an
output vector Y=(y1, ..., yn), identify n disjoint paths
from X to Y such that the n paths cover the maximum
number of datapath gates.

= Datapath bit slicing flow

C Datapath C Datapath
F Bit Matching Bit Slicing

Min-Cost Max-Flow Two Way Search
Network Flow Extraction

(&)

Flow-based Datapath Main Frame Algorithm

= The main target is to find n paths which cover as many gates as possible

= A flow network is constructed to capture the constraints
— To maximize gates on the extraction graph

* Assign a large negative cost for each gate
— To minimize crossing between bit lines

» Assign a small positive cost for each net
— Apply the min-cost max-flow algorithm to identify bit slices

= The min cost solution corresponds the max number of gates

X(1)

X()

X(3)

lterative Enhancement

= Min-cost max-flow algorithm only returns one optimal solution
= There might be multiple optimal flow solutions

' Datapath ' Datapath
- Bit Matching Bit Slicing

= Create more flow solutions

Create More Flow Solutions

= Any two optimal solutions include the same number of gates
— Very likely they cover the same set of gates

= Any two optimal solutions include the same number of nets
— The two sets of nets must be different

= Adjust edge weights to generate different flow solutions

Algorithm Adjust_Flow_Network_Cost (G, G4, flow)
1. for each edge ¢ inthe flow

2. ifecorrespondstoanetin Gy

3. thenCy(e)+=29

&) ONO),

@MMV‘M ®

.‘ummm

Partition flow solutions into groups

Piece groups from different solutions to create new flow solutions

Group-Plece based Flow Creation

Datapat Bit Slicing Algorithm

Algorithm Datapath_Bit_Slicing(S. T, Iters)

G, = Two_Way Search_Extraction(S, T);

(InitFlow, InitMatch) = MF|_by Flow(S, T, G,);
Slices=Iter_Improve(iters, S, T, Gy, Gg, InitFlow, InitMatch)
return Slices:

i DD e

- N

Datapath
Bit Slicing

Datapath ' - ' Datapath

Extraction ‘ % Bit Slices
|
/]

Two Way Search Two Way Search
Extraction Extraction

A)

Experimental Results (I)

= 5 designs are created for testing
= All tests get perfect bit slicing

Datapath | Width || Slices | MinSize | MaxSize | runtime
Test1-1 4 4 4 5 0.08s
Test2-1 4 4 4 5 0.09s
Test3-1 7 7 1 5 0.36s
Test4-1 32 32 3 8 6.5s
Test4-2 32 32 2 3 6.9s
Test4-3 32 32 2 3 8.68
47> J Test4-1 Bit Slice Gate Number Distribution
“%3‘— 8 _
—A D 7 -
a(2)—— 2 56 -
a(l) — i 2:@— jo—— S(2) é) 5
_,2 I:ﬂ, ::xS(l) Z ;1 :
S £ 2]
D S =2
a(0) =+ 13 =13 =—5(3) 0 -
a(3) =~ 23'-"43:] 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
'ﬁ[@:

Testl-1

Experimental Results (I1)

= Seven testcases are derived from industrial designs
= Tested on a linux workstation (2.8GHz)

Datapath | Width || Slices | MinSize | MaxSize | runtime
Test5-3 8 8 10 12 0.55s
Test5-4 64 64 8 10 2.58s
Test5-1 10 10 31 37 0.68s
Test5-2 8 8 6 14 0.57s
Test5-5 16 16 13 17 1.45s
Test6-1 64 64 9 13 0.28s
Test6-2 32 32 4 8 0.17s
Test6-3 64 64 5 7 0.22s
Test6-3 64 64 5 5 0.24s
Test6-4 56 56 6 6 0.19s
Test6-4 56 56 4 6 0.20s
Test7-1 56 56 3 7 0.18s

Conclusion

= By converting datapath bit slicing problem to datapath main
frame problem, the request for “similarity” definition is
avoided.

A flow network approach is proposed to optimally solve the
datapath main frame problems.

An iterative method is presented to create more optimal
datapath main frame solutions to improve bit slicing
solutions.

An efficient two way search approach is developed to derive
the full bit slices.

Experiments on datapath macros give good bit slicing
results.

The datapath bit slicing results can be applied to datapath
placement and latch bank planning.

