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Learn from Prof. Kajitana

e Think differently and deeply
e Apply thought to current challenges

Then collaborate

Goals of Presentation:

1. Define and propose “rule breaker” idea

2. Request support from physical design community
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Multi-Synchronous Advantage

. Efficiency in power and performance is new game in town
Multi-synchronous design provides optimization opportunity

New (asynchronous) timing model is one excellent path

A A\

Produces average 10x eT? improvement

e Pentium: et? = 17.5%
o FFT: et? = 16.9x

5. But ... need improved physical design support

Design Energy Area Freq. Latency Aggregate

Pentium F.E. 2.05 2.92 2.38 12.11 X%
64-pt FFT 3.95 2.83 2.07 3.37 77.98 X
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Timing is a Key Issue

Multi-synchronous design produces best resulis

Synchronous
3.0GHz clk

Synchronous
variable freq.

Synchronous Clock at 1.8GHz

Single frequency, low skew Multiple frequencies

(small blocks, standard CAD) (SoC reality — localization)

1. global block frequencies 1. blocks operate at best frequency
2. higher clock power 2. network not synchronized

3. clock design, distribution 3. synchronizing FIFOs
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Energy Efficient Design

Wine goblet model:

e Energy efficiency has two primary sources
+ System architecture
+ Physical design

e Methodology and CAD unify sources

Best realization:

e Multi-synchronous

+ Defined by system’s critical path

+ Then optimal local power-delay

+ Asynchronous best methodology:
no synchronization cost
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Interface Matters!

Clocked design requires synchronizers when crossing all domains.

IP Clock Domain Network Clock Domain

data,

clk |

—

Major location for buffering in a design.
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Interface Matters!

No synchronization required into async domain.

IP Clock Domain Network Clock Domain
data,
clk T -
r

Improves power, performance, and modularity
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Timed Asynchronous Designs

® 1997 RAPPID Si: 0.25, 1.8V, 35°C, for common instr
® Comparing to 400MHz Deschutes Processor

E RAPPID
Throughput Lzl —
[Inst./nS] f . @ Clocked

Latency
[nS]

Testability: 95.9%

Area (BIST stuck-at)

[mm?]

Power
[nJ]

intal.

Key pipeline circuit
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Multi-Synchronous Architecture

1. Make architectural bottleneck as fast as possible.

2. Make the rest of the design match bottleneck
e ...Normally as slow as possible

3. Optimize locally for power/performance.

bufack_. — Y, ‘
4)— tagout1
bufreq —3$
irdyack .
tagini _l
o } tagout7
tagin7

Asynchronous Pentium bottleneck circuit
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Concurrency and Time

Architectural level timing experiment: Pentium front end
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Cache Latch
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Concurrency and Time

Architectural level timing experiment: Pentium front end
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Concurrency and Time

Architectural level timing experiment: Pentium front end
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Concurrency and Time

Architectural level timing experiment: Pentium front end
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Concurrency and Time

Architectural level timing experiment: Pentium front end

Cache Latch m
i A 4 Y A 4 A 4 A 4 A 4 A 4 A 4 A 4 Y
3

Len. Decoders

o |
=]
=~ |
o |
(&)
L
w

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<

Tag Units 5

<
<
<
<
<
<
<
<
<
<
<
<
<

Output Buffer

Tag Units

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<

| Output Buffer |

| bbb b b N by

Tag Units

‘ A Y Y A Y A Y Y A A Y Y y

Output Buffer

I v

Tag Units

Output Buffer L[ Ly | AR AN AN r Loy | Y y

27 March 2013 UofU and GMT



Concurrency and Time

Architectural level timing experiment: Pentium front end
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Timing and Sequencing
Traditional representation of timing:

e Metric values

+ On an IC we measure it to picoseconds
«+ In track and ski racing, we measure it to milliseconds

But what do we really care about?

e it isn’t the number on the stop watch. ..
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Timing and Sequencing
Traditional representation of timing:

e Metric values

+ On an IC we measure it to picoseconds
«+ In track and ski racing, we measure it to milliseconds

But what do we really care about?

e it isn’t the number on the stop watch. ..

We care about who wins!!

The key: Timing results in sequencing

Relative Timing formally represents the signal sequencing
produced by circuit timing
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New Formal Abstract Model: Relative Timing

e Timing is both the technology differentiator and barrier
o Relative Timing is the generalized solution
e The key property of time is the sequencing it imposes

Sequence gives winner, performance, etc.

e true in semiconductors as well as sports
e absolute stopwatch value is auxiliary

Novel relativistic formal logic

representation of time (relative timing):
pod — poc; < pPocC,

Sequencing relative to common reference

e Can now evaluate sequencing

e Can now control sequencing

27 March 2013 UofU and GMT 18



Relative Timing
1. Relative Timing

e Sequences signals at poc (point of convergence)
e Requires a common timing reference: pod (point of divergence)
2. Formal representation: pod — poc; + margin < poc,

3. RT models timing in ALL systems
e Clocked: pod = clock poc = flops
e Async: pod = request poc = latches

4. RT enables direct commercial CAD support of general timing requirements
e formal RT constraints mapped to sdc constraints

data
] FFI _Q_ FFi+1 [
POC, ‘

A 0 > clk

POD POD POC

B o4, clk f | f |
i .
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Relative Timed Design: Bundled Data

Bundled data design is much like clocked.

n n n n
R —E : F»FFH *@—FFM—» — L @— Liy1 @— Lo
A A A

L L

clock network req; 0% ey % T reqiy3
e (/\\ N ack; | Ctli [ack;y Ctli+1jack;. o Ctl; +2]lack; . 3
P ) ‘ =

Frequency based (clocked) design. Timed (bundled data) handshake
Clock frequency and datapath delay of design. Delay element sized by
first pipeline stage is constrained by RT constraint:

L;/clkt; — L 1/d+s < Liyi/clklig req;] — L, 1/d+s < L q/clkt

Clocked physical design directly supports the clocked Relative
Timing constraints. The asynchronous circuit constraints must be
provided as min and max constraints, and are not well supported
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Relative Timing Driven Flow

set d0_fdel 0.600
set d0_fdel_margin [expr $d0_fdel + 0.050]
set dO_bdel 0.060

set_size_only -all_instances [find -hier cell Ic1]
set_size_only -all_instances [find -hier cell Ic3]
set_size_only -all_instances [find -hier cell Ic4]

set_disable_timing -from A2 -to Y [find -hier cell Ic1]
set_disable_timing -from B1 -to Y [find -hier cell Ic1]
set_disable_timing -from A2 -to Y [find -hier cell Ic3]
set_disable_timing -from B1 -to Y [find -hier cell Ic3]

set_max_delay $d0_fdel -from a -to 10/d
set_max_delay $d0_fdel -from b -to 10/d
set_min_delay $d0_fdel_margin -from Ir -to 10/clk
set_max_delay $d0_bdel -from Ir -to la

#margin 0.050 -from a -to 10/d -from Ir -to 10/clk
#margin 0.050 -from b -to 10/d -from Ir -to 10/clk
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Multi-rate 64-Point FFT Architecture
Initial design target: high performance military applications

e Mathematically based on Wy = ¢~/¥ notation
e Hierarchical multi-rate design: N = NNV

e Decimate frequency (|) by N,
+ operate on N, low frequency streams

e [ransmute data & frequency to N; low frequency streams

e Expand (1) by N; to reconstruct original frequency stream
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Designh Models

Hierarchical derivation of multi-frequency design:

w1 miny v~ N1 —1 miny nmony
Xml (mz) o anzo WN anzo xn2 (nl)WNl WN2
e N, FFTs using N, values as the inner summation

e Scaled and used to produce N, FFTs of N, values
Hierarchically scale design
o Base case when N =4, X (m) = W(n)

e 4-point FFT performed without multiplication
+ Multiplication constants W* become =1

27 March 2013 UofU and GMT
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FFT-64
Implemented on IBM’s 65nm 10sf process, Artisan academic library
Three design blocks:
e FFT-4
e FFT-16  N|,N, =4
o FFT-64 N, =16, N,=4
Two designs:
e Clocked Multi-Synchronous

e Relative Timed Multi-Synchronous

+ near identical architectures
+ additional RT area / pipeline optimized version for FFT-64
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General Multi-rate FFT Architecture

1.25GHz 313MHz 313MHz to 78 MHz

N; Constants |
v xo(n1) | Ny-pt. FFT | éi) > x0(0) xo(1) o 0o xo(N1—1)
N; Constants |
X1\ . 27(N—
I N> ( ) >  Np-pt. FFT %}—» xl(O) e-’szl(l) 00 0 812 (IX,' 1>X1(N1—1)
= . N Constants |
Z 27(N1—1) 27 (Npy—1) (N1 —1)
- —1(0 : <o J _
L’ ) = 1(711): Ni-pt. FFT %_’ ;-1(0) e/ ay (1) ¢ v (1)
X(m) < TN |« Np-pt. FFT |«
~1
¢ TN |« No-pt. FFT |«
.
-1
<! TN |« No-pt. FFT |«
1 25GHZ 78M HZ ASIC tool flow, 65nm technology
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Data flow graph of pipelined 4-Point FFT design:

FFT-4 Building Block

Re{x[0]}
Im{x[0]}
Re{x[1]}
Im{x[1]}
Re{x[2]}
Im{x[2]}
Re{x[3]}

Im{x[3]}

Re{X[0]}
Im{X[0]}
Re{X[1]}
Im{X[11}
Re{X[2]}
Im{X[2]}
Re{X[3]}

Im{X[3]}
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Pipelined Asynchronous 4-Point Architecture

e Operates at 1/4 the input frequency

e Synchronization occurs between decimated rows
+ Fast internal pipeline stages essential

LC1 10 jO —rc2— 4 / j4 —1C3 18 8 —1.C4
LC1— f1 il —rc2—1 5 5 13— 19 79 —Ic4
fr JLCO1 Dec4 ExpA[ILCS
Cli—1 72 2 20— 16 6 31710 jl0—1c4,
LC1 13 i3 e £7 77 o311 jl1E—LC4
Fork - Join Fork - Join Fork Join
add /sub add [sub
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Decimator-4 Desigh Comparison

e Clocked block requires pipeline to change frequency

e Async block latency combinational and concurrent

clk/4 . ShiftReg
ShiftReg L
L ] D1 i rl
—— RO R4
clk r2
J D2
o 3
N R1 RS r
/ r4
o D3
R2 R6
\ al
) ai v
Din D4 24
R3 R7 '
Din D1
L] D2

Multi-Synchronous asynchronous design smaller, faster, lower power
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Results

The 16-point FFT Comparison Result (* values are scaled ideally to 65 nm technology)

Points |Word|Time for 1K-point|{Clock|Tech.[ Energy/point Area Power|Energy| Area |Throughput
bits s MHz| nm |pJ/data— point mW |Benefit|Benefit] Benefit
Our Design(Async)||16-1024( 32 0.83 1274 65 25.05 54 Kgates | 30.9 | 8.01 | 2.77 8.32
Our Design(clock) [[16-1024| 32 1.73 588 | 65 41.83 71 Kgates | 24.7 | 4.8 | 2.07 3.98
Guan [1] 16-1024| 16 6.91* 653" | 130 200.68 147 Kgates| 29.7* 1 1 1

The 64-point FFT Comparison Result (* values are scaled ideally to 65 nm technology)

Points [Word|Time for 1K-point|Clock|Tech.| Energy/point Area Power [Energy| Area |Throughput
bits s MHz| nm |pJ/data— point mW |Benefit|Benefit| Benefit
Our Design(Async-opt)||64-1024| 32 0.93 1284 65 62.41 0.41 mm? | 685 | 6.1 0.46 30.16
Our Design(Async) [|64-1024( 32 0.84 1366 65 59.94 0.50 mm? | 72.9 | 6.35 | 0.38 33.42
Our Design(clock) |[64-1024| 32 3.13 588 | 65 246.75 1.16 mm?* | 80.7 | 1.54 | 0.16 8.99
Baireddy [2] 64-4096| - 28.14* 514*| 90 380.88 0.19 mm?>*|13.86*| 1 1 1

The 64-point async-opt design contains 229k gates, our clocked 454k.

* For comparison, these designs were scaled to a 65nm process by scaling frequency, power, and area in
the 130nm technology by 2.0, 0.5, 0.25x, and in the 90nm design by 1.43, 0.7, and 0.49 x respectively.

[11 X. Guan, Y. Fei, and H. Lin, “Hierarchical Design of an Application-Specific Instruction Set Processor for High-Throughput and Scalable
FFT Processing” in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 20, No. 3, pp. 551-563, march 2012.

[2] V. Baireddy, H. Khasnis, and R. Mundhada, “A 64-4096 point FFT/IFFT/Windowing Processor for Multi Standard ADSL/VDSL
Applications”, in IEEE International symposium on Signals, Systems and Electronics (ISSSE’07), pp. 403—405, 2007.
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Multi-Synchronous Advantage

. Efficiency in power and performance is new game in town
Multi-synchronous design provides optimization opprotunity

New (asynchronous) timing model is one excellent path

A A\

Produces average 10x eT? improvement

e Pentium: et? = 17.5%
o FFT: et? = 16.9x

5. But ... need improved physical design support

Design Energy Area Freq. Latency Aggregate

Pentium F.E. 2.05 2.92 2.38 12.11 X%
64-pt FFT 3.95 2.83 2.07 3.37 77.98 X
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RT Physical Design Optimization

Timing, power, and performance optimizations driven by relative

timing constriants.
n
@ o Lisa ——

req; reqio D reqit3
ack; | Ctli [ ack; Ctli+1 | ackiin Ctlio | ackii3
< < [ —

reqt — L, /d4+m < L, /clk}
Mapped to set _max_delay and set_min_delay constraints

Clock frequency determines min delay, async adds “hold time”
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RT Physical Desigh Problems

n
~ Liyo ——
A

req; req;
QI+2 Qi+3

ack; i | ackiyy i+1 | ackjio Ctlit2 | ack;,3
— < < [ —

1. Inconsistency between operation and results

e supported pins & formats, synthesis vs place and route, etc.

2. Min-delay constraints not well supported

e Treated as “hold time fixing”
e Create arbitrarily large delays
+ Degrades performance
+ Required matching max-delay constraint to bound delay
3. Poor job of optimizing competing constraints
4. Placement can be substantially improved

27 March 2013 UofU and GMT
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RT Physical Design Problems

Simple experiment with inverters
with endpoints mapping either to
module pin or library gate pin:

A B| >oC

module i0

module i1

F%

Design Compiler SoC Encounter
Path Result | lterations Type Result type

A—E Yes 5 buffers No —
A—F Yes 3 buffers No —
B—E Yes 1 Dly Elts No —
B—F Yes 1 Dly Elts Yes Dly Elts
C—E Yes 1 Dly Elts No —
C—F Yes 1 Dly Elts Yes Dly Elts
D—E No — — No —
D—F No — — No —

Paths use both max and min delay constraints

27 March 2013
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RT Physical Design Problems

[T JLCO1 Dec4

ExpA[\LC5I2 T

I.C1 f0 jo L.C2 f4 / j4 LC3 f8 j8 L.C4
Cl, f1 jl C2, ) j5 C3 f9 j9 C44
C1, f2 j2 C2, f6 j6 C3, f10 j10 C4,
I.C1 f3 j3 .C2 f7 Jj7 L.C35 fl1 j11 L.C4
Fork - Join Fork - Join Fork Join
add /sub add /sub

Min-delay constraints get dropped, even in relatively small design!

Design Compiler SoC SoC - timing closure
Model | #iter | cyc. time | #iter | cyc. time | energy/op | #iter | cyc. time | energy/op
wl0.5 9 738ps 1 728ps 5.16pd 70 785ps 4.85pJ
wi0 7 666ps 1 764ps 5.07pd 16 763ps 4.87pd
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RT Physical Design Potential

v

req;

~ Lit2

acki o

1. Low hanging fruit for performance improvements

2. Force directed algorithms

e Combine power/placement optimizations
e Drive cell clustering

Ctli2

req;+3
—

acki+3
| ——

e Drive pipeline/repeater placement and wire optimization

3. Tool performance: Convergence and run-time
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Multi-Synchronous Advantage

. Efficiency in power and performance is new game in town
Multi-synchronous design provides optimization opprotunity

New (asynchronous) timing model is one excellent path

A A\

Produces average 10x eT? improvement

e Pentium: et? = 17.5%
o FFT: et? = 16.9x

5. But ... need improved physical design support

Design Energy Area Freq. Latency Aggregate

Pentium F.E. 2.05 2.92 2.38 12.11 X%
64-pt FFT 3.95 2.83 2.07 3.37 77.98 X
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