Relative Timing Driven Multi-Synchronous Design: Enabling Order-of-Magnitude Energy Reduction

Kenneth S. Stevens

University of Utah
Granite Mountain Technologies

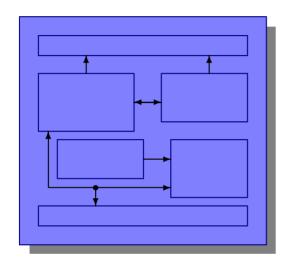
Learn from Prof. Kajitana

- Think differently and deeply
- Apply thought to current challenges

Then collaborate

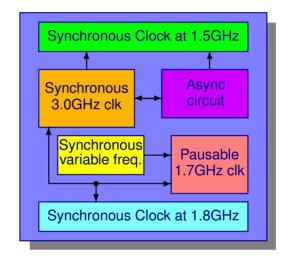
Goals of Presentation:

- 1. Define and propose "rule breaker" idea
- 2. Request support from physical design community


Multi-Synchronous Advantage

- 1. Efficiency in power and performance is new game in town
- 2. Multi-synchronous design provides optimization opportunity
- 3. New (asynchronous) timing model is one excellent path
- **4.** Produces average $10 \times e\tau^2$ improvement
 - Pentium: $e\tau^2 = 17.5 \times$
 - FFT: $e\tau^2 = 16.9 \times$
- 5. But ... need improved physical design support

Design	Energy	Area	Freq.	Latency	Aggregate
Pentium F.E.	2.05	0.85	2.92	2.38	12.11×
64-pt FFT	3.95	2.83	2.07	3.37	77.98×


Timing is a Key Issue

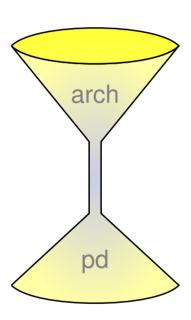
Multi-synchronous design produces best results

Single frequency, low skew (small blocks, standard CAD)

- 1. global block frequencies
- 2. higher clock power
- 3. clock design, distribution

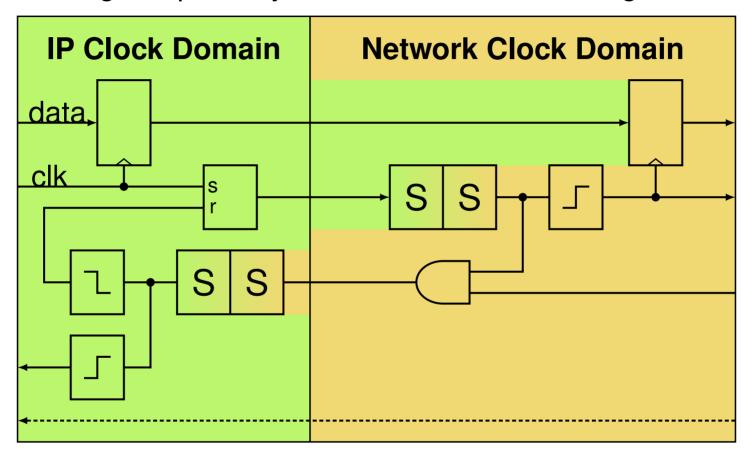
Multiple frequencies (SoC reality – localization)

- 1. blocks operate at best frequency
- 2. network not synchronized
- 3. synchronizing FIFOs


Energy Efficient Design

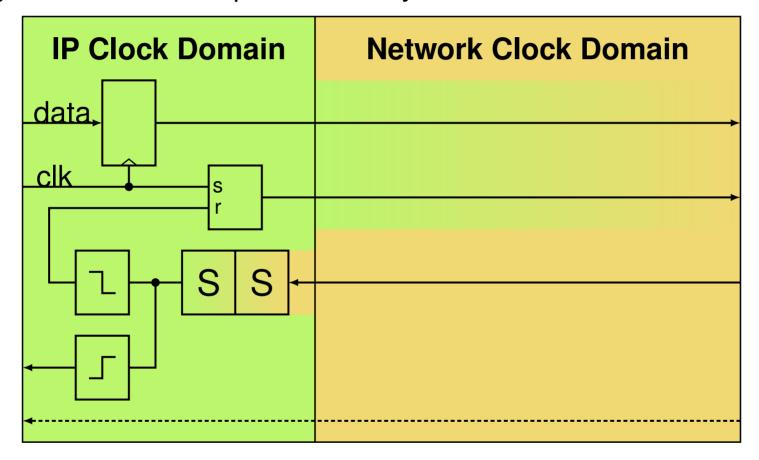
Wine goblet model:

- Energy efficiency has two primary sources
 - System architecture
 - Physical design
- Methodology and CAD unify sources

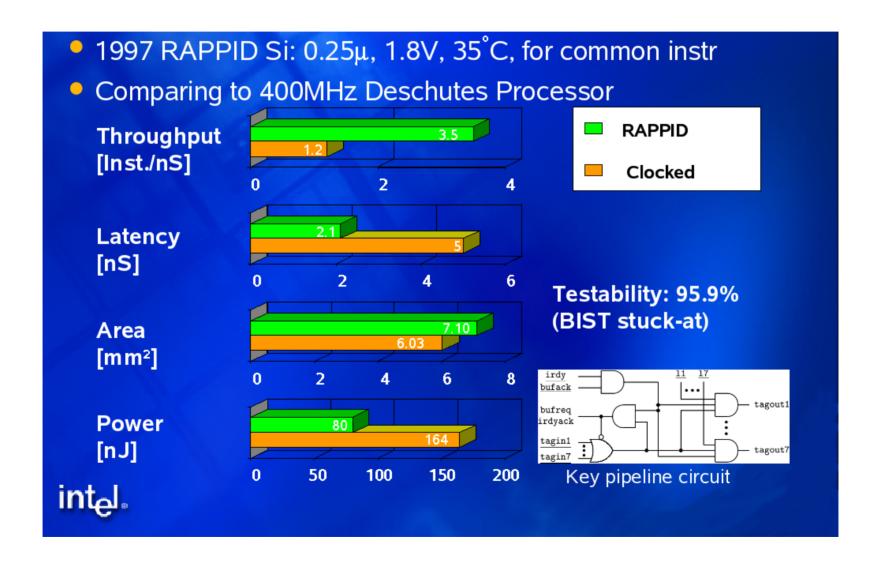

Best realization:

- Multi-synchronous
 - Defined by system's critical path
 - Then optimal local power-delay
 - Asynchronous best methodology:
 - no synchronization cost

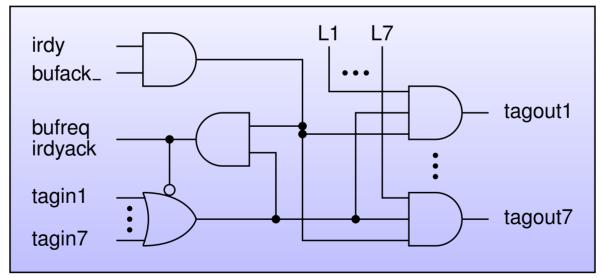
Interface Matters!


Clocked design requires synchronizers when crossing all domains.

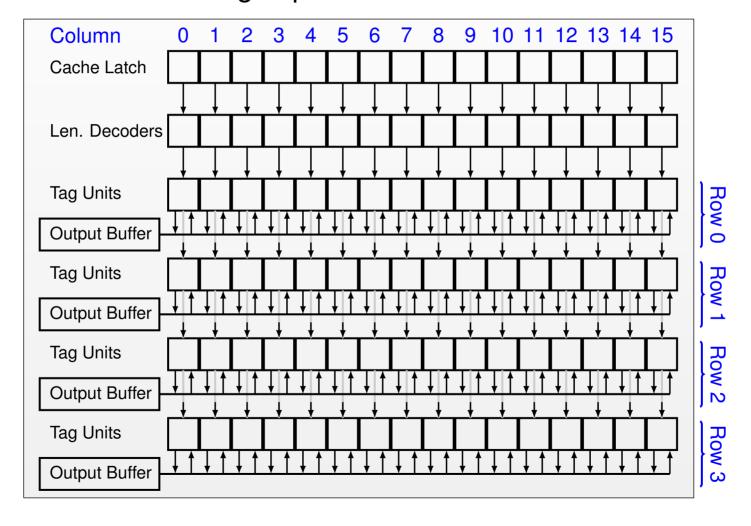
Major location for buffering in a design.

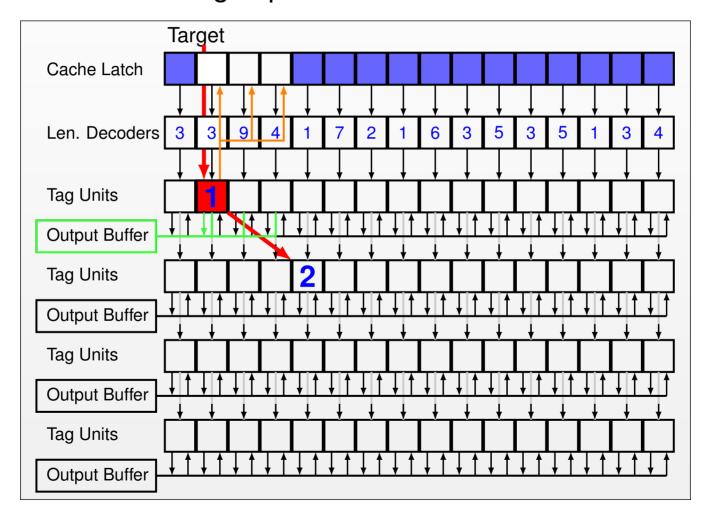

Interface Matters!

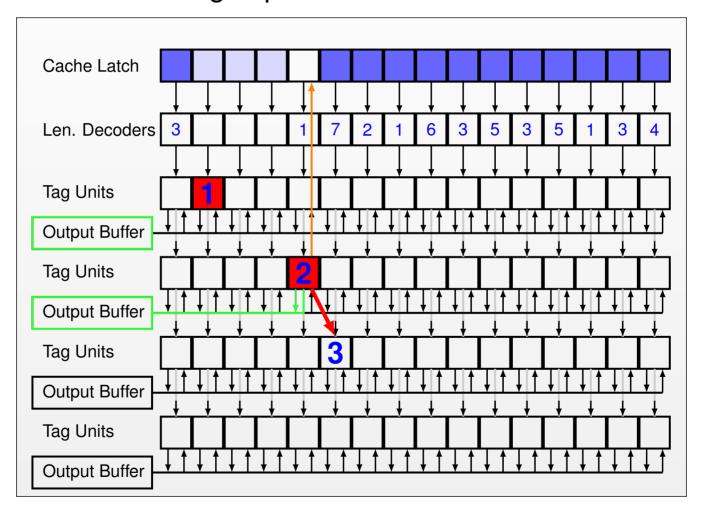
No synchronization required into async domain.

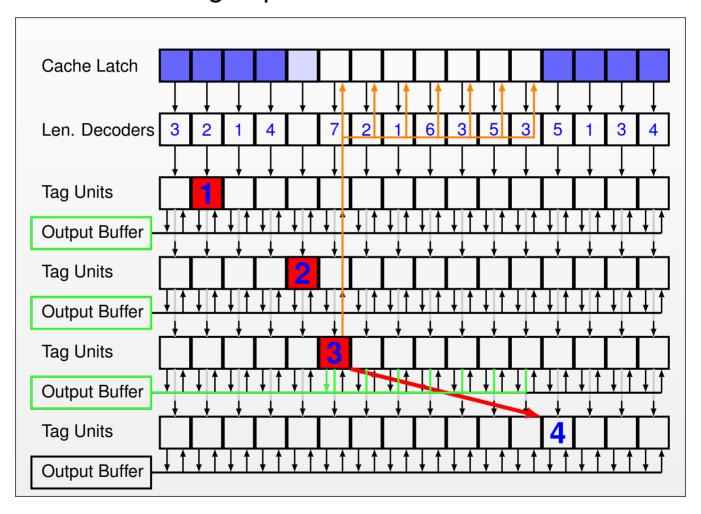

Improves power, performance, and modularity

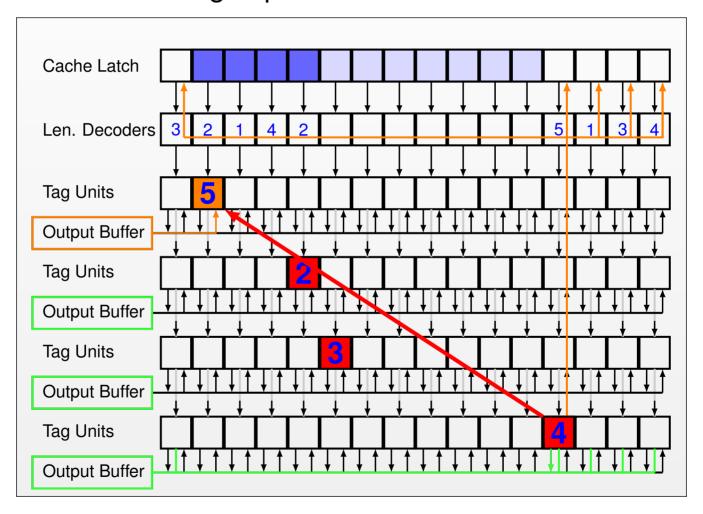
Timed Asynchronous Designs

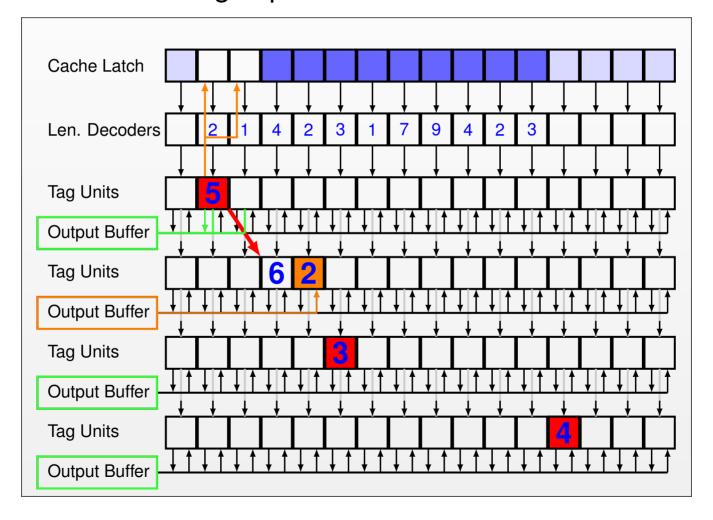



Multi-Synchronous Architecture


- 1. Make architectural bottleneck as fast as possible.
- 2. Make the rest of the design match bottleneck
 - ... normally as slow as possible
- 3. Optimize locally for power/performance.




Asynchronous Pentium bottleneck circuit



Timing and Sequencing

Traditional representation of timing:

- Metric values
 - On an IC we measure it to picoseconds
 - In track and ski racing, we measure it to milliseconds

But what do we really care about?

• it isn't the number on the stop watch...

Timing and Sequencing

Traditional representation of timing:

- Metric values
 - On an IC we measure it to picoseconds
 - In track and ski racing, we measure it to milliseconds

• it isn't the number on the stop watch. . .

We care about who wins!!

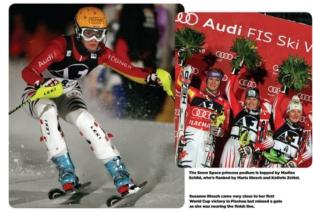
The key: Timing results in sequencing

Relative Timing formally represents the signal sequencing produced by circuit timing

New Formal Abstract Model: Relative Timing

- Timing is both the technology differentiator and barrier
- Relative Timing is the generalized solution
- The key property of time is the sequencing it imposes

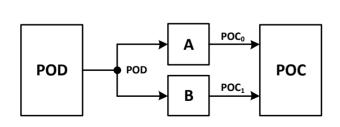
Sequence gives winner, performance, etc.

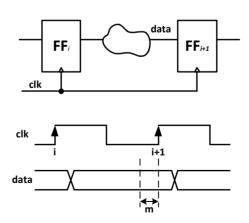

- true in semiconductors as well as sports
- absolute stopwatch value is auxiliary

Novel relativistic formal logic representation of time (relative timing):

 $pod \mapsto poc_1 \prec poc_2$

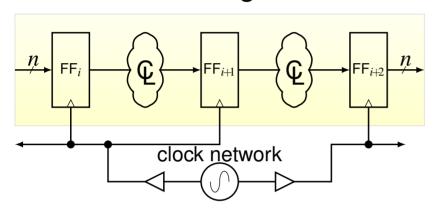
Sequencing relative to common reference

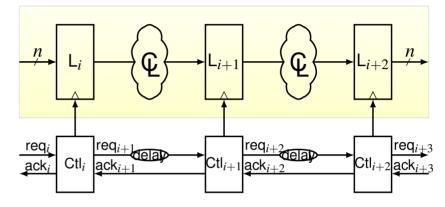

- can now evaluate sequencing
- can now control sequencing



skiracing.com | 2

Relative Timing


- 1. Relative Timing
 - Sequences signals at poc (point of convergence)
 - Requires a common timing reference: pod (*point of divergence*)
- **2.** Formal representation: pod \mapsto poc₁ + margin \prec poc₂
- 3. RT models timing in ALL systems
 - Clocked: pod = clock poc = flops
 - Async: pod = request poc = latches
- 4. RT enables direct commercial CAD support of general timing requirements
 - formal RT constraints mapped to sdc constraints



Relative Timed Design: Bundled Data

Bundled data design is much like clocked.

Frequency based (clocked) design. Clock frequency and datapath delay of first pipeline stage is constrained by $L_i/clk\uparrow_i \mapsto L_{i+1}/d+s \prec L_{i+1}/clk\uparrow_{i+1}$

Timed (bundled data) handshake design. Delay element sized by RT constraint:

$$\operatorname{req}_i \uparrow \mapsto \mathsf{L}_{i+1}/\mathsf{d+s} \prec \mathsf{L}_{i+1}/\mathsf{clk} \uparrow$$

Clocked **physical design** directly supports the clocked Relative Timing constraints. The asynchronous circuit constraints must be provided as min and max constraints, and are **not well supported**

Relative Timing Driven Flow

```
set d0_fdel 0.600
set d0_fdel_margin [expr $d0_fdel + 0.050]
set d0_bdel 0.060
set_size_only -all_instances [find -hier cell lc1]
set_size_only -all_instances [find -hier cell lc3]
set_size_only -all_instances [find -hier cell lc4]
set_disable_timing -from A2 -to Y [find -hier cell lc1]
set_disable_timing -from B1 -to Y [find -hier cell lc1]
set_disable_timing -from A2 -to Y [find -hier cell lc3]
set_disable_timing -from B1 -to Y [find -hier cell lc3]
set_max_delay $d0_fdel -from a -to I0/d
set_max_delay $d0_fdel -from b -to I0/d
set_min_delay $d0_fdel_margin -from lr -to I0/clk
set_max_delay $d0_bdel -from Ir -to la
#margin 0.050 -from a -to I0/d -from Ir -to I0/clk
#margin 0.050 -from b -to I0/d -from lr -to I0/clk
```

Multi-rate 64-Point FFT Architecture

Initial design target: high performance military applications

- Mathematically based on $W_N = e^{-j \frac{2\pi}{N}}$ notation
- Hierarchical multi-rate design: $N = N_1 N_2$
- Decimate frequency (\downarrow) by N_2
 - operate on N_2 low frequency streams
- Transmute data & frequency to N_1 low frequency streams
- Expand (\uparrow) by N_1 to reconstruct original frequency stream

Design Models

Hierarchical derivation of multi-frequency design:

$$X_{m_1}(m_2) = \sum_{n_2=0}^{N_2-1} \left[W_N^{m_1 n_2} \sum_{n_1=0}^{N_1-1} x_{n_2}(n_1) W_{N_1}^{m_1 n_1} \right] W_{N_2}^{m_2 n_2}$$

- N_2 FFTs using N_1 values as the inner summation
- Scaled and used to produce N_1 FFTs of N_2 values

Hierarchically scale design

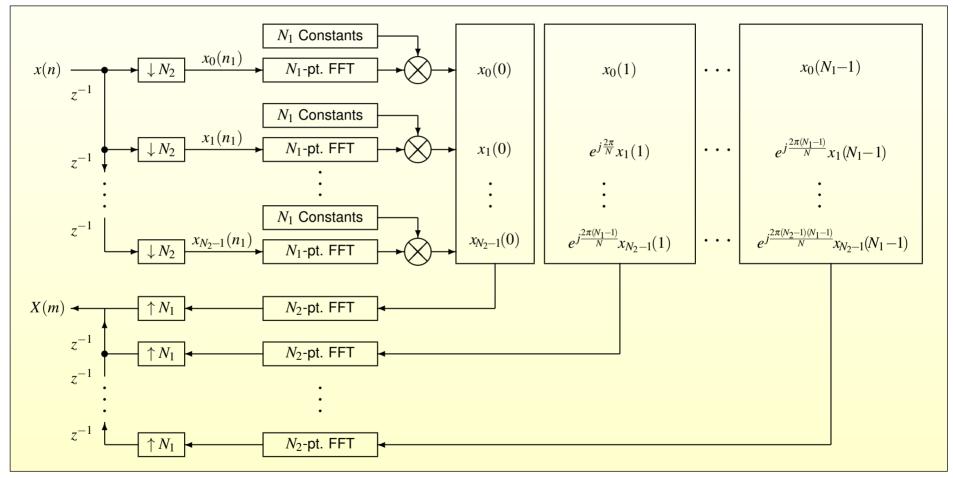
- Base case when N = 4, $X(m) = W^4x(n)$
- 4-point FFT performed without multiplication
 - Multiplication constants W^4 become ± 1

FFT-64

Implemented on IBM's 65nm 10sf process, Artisan academic library Three design blocks:

- FFT-4
- FFT-16 $N_1, N_2 = 4$
- FFT-64 $N_1 = 16$, $N_2 = 4$

Two designs:

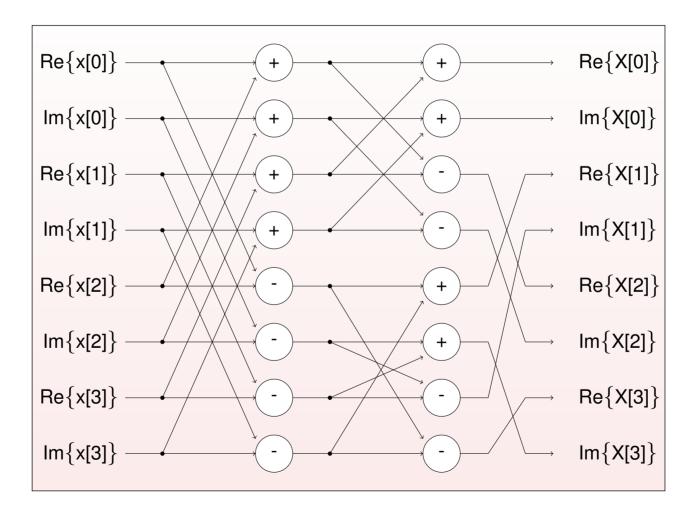

- Clocked Multi-Synchronous
- Relative Timed Multi-Synchronous
 - near identical architectures
 - additional RT area / pipeline optimized version for FFT-64

General Multi-rate FFT Architecture

1.25GHz

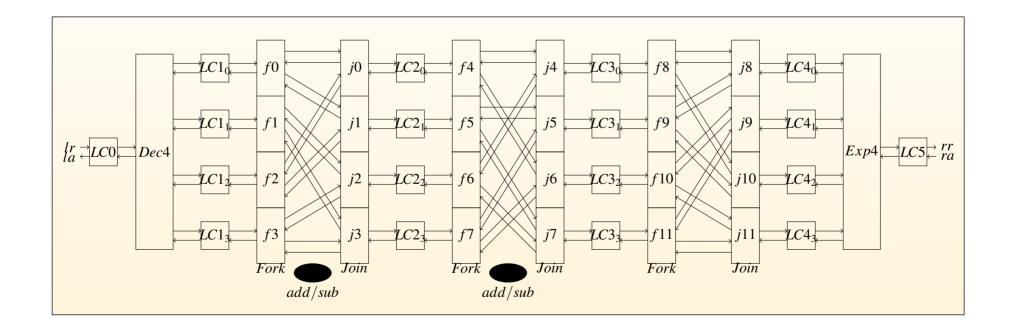
313MHz

313MHz to 78MHz

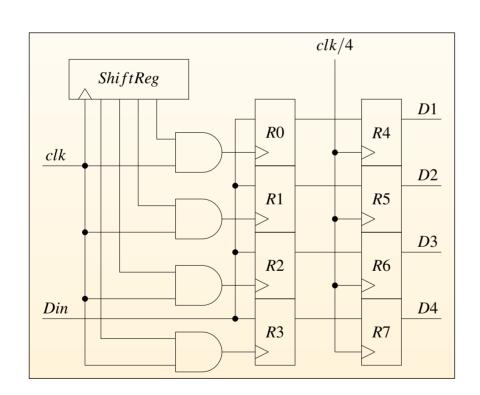

1.25GHz

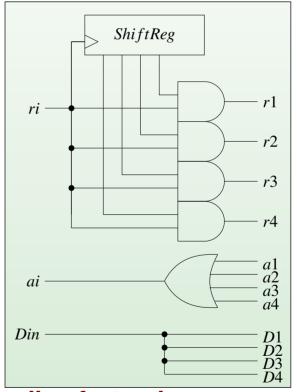
78MHz

ASIC tool flow, 65nm technology


FFT-4 Building Block

Data flow graph of pipelined 4-Point FFT design:


Pipelined Asynchronous 4-Point Architecture


- Operates at 1/4 the input frequency
- Synchronization occurs between decimated rows
 - Fast internal pipeline stages essential

Decimator-4 Design Comparison

- Clocked block requires pipeline to change frequency
- Async block latency combinational and concurrent

Multi-Synchronous asynchronous design smaller, faster, lower power

Results

The 16-point FFT Comparison Result (* values are scaled ideally to 65 nm technology)

	Points	Word	Time for 1K-point	Clock	Tech.	Energy/point	Area	Power	Energy	Area	Throughput
		bits	μs	MHz	nm	pJ/data-point		mW	Benefit	Benefit	Benefit
Our Design(Async)	16-1024	32	0.83	1274	65	25.05	54 Kgates	30.9	8.01	2.77	8.32
Our Design(clock)	16-1024	32	1.73	588	65	41.83	71 Kgates	24.7	4.8	2.07	3.98
Guan [1]	16-1024	16	6.91*	653*	130	200.68	147 Kgates	29.7*	1	1	1

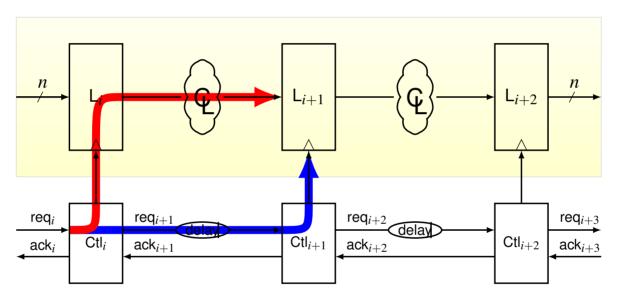
The 64-point FFT Comparison Result (* values are scaled ideally to 65 nm technology)

	Points	Word	Time for 1K-point	Clock	Tech.	Energy/point	Area	Power	Energy	Area	Throughput
		bits	μs	MHz	nm	pJ/data - point		mW	Benefit	Benefit	Benefit
Our Design(Async-opt)	64-1024	32	0.93	1284	65	62.41	0.41 <i>mm</i> ²	68.5	6.1	0.46	30.16
Our Design(Async)	64-1024	32	0.84	1366	65	59.94	$0.50 \ mm^2$	72.9	6.35	0.38	33.42
Our Design(clock)	64-1024	32	3.13	588	65	246.75	1.16 <i>mm</i> ²	80.7	1.54	0.16	8.99
Baireddy [2]	64-4096	-	28.14*	514*	90	380.88	$0.19 \ mm^{2*}$	13.86*	1	1	1

The 64-point async-opt design contains 229k gates, our clocked 454k.

- [1] X. Guan, Y. Fei, and H. Lin, "Hierarchical Design of an Application-Specific Instruction Set Processor for High-Throughput and Scalable FFT Processing" in IEEE *Transactions on Very Large Scale Integration (VLSI) Systems*, Vol. 20, No. 3, pp. 551–563, march 2012.
- [2] V. Baireddy, H. Khasnis, and R. Mundhada, "A 64-4096 point FFT/IFFT/Windowing Processor for Multi Standard ADSL/VDSL Applications", in IEEE *International symposium on Signals, Systems and Electronics (ISSSE'07)*, pp. 403–405, 2007.

^{*} For comparison, these designs were scaled to a 65nm process by scaling frequency, power, and area in the 130nm technology by 2.0, 0.5, 0.25×, and in the 90nm design by 1.43, 0.7, and 0.49× respectively.

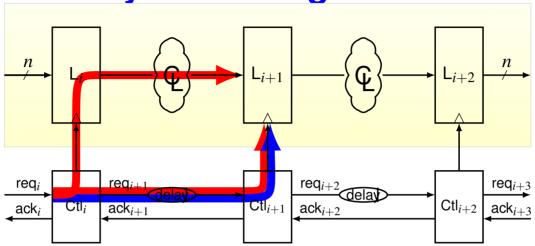

Multi-Synchronous Advantage

- 1. Efficiency in power and performance is new game in town
- 2. Multi-synchronous design provides optimization opprotunity
- 3. New (asynchronous) timing model is one excellent path
- **4.** Produces average $10 \times e\tau^2$ improvement
 - Pentium: $e\tau^2 = 17.5 \times$
 - FFT: $e\tau^2 = 16.9 \times$
- 5. But ... need improved physical design support

Design	Energy	Area	Freq.	Latency	Aggregate
Pentium F.E.	2.05	0.85	2.92	2.38	12.11×
64-pt FFT	3.95	2.83	2.07	3.37	$77.98 \times$

RT Physical Design Optimization

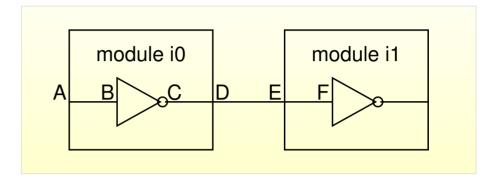
Timing, power, and performance optimizations driven by relative timing constriants.



$$\operatorname{req}_i \uparrow \mapsto \mathsf{L}_{i+1}/\mathsf{d} + m \prec \mathsf{L}_{i+1}/\mathsf{clk} \uparrow$$

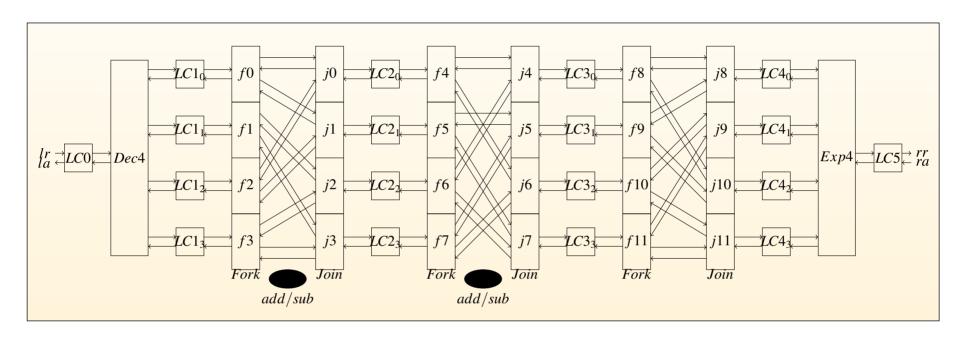
Mapped to set_max_delay and set_min_delay constraints

Clock frequency determines min delay, async adds "hold time"



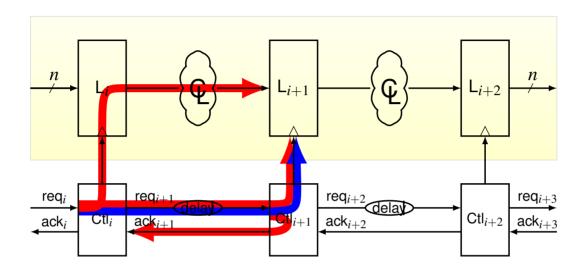
- 1. Inconsistency between operation and results
 - supported pins & formats, synthesis vs place and route, etc.
- 2. Min-delay constraints not well supported
 - Treated as "hold time fixing"
 - Create arbitrarily large delays
 - Degrades performance
 - Required matching max-delay constraint to bound delay
- 3. Poor job of optimizing competing constraints
- 4. Placement can be substantially improved

RT Physical Design Problems


Simple experiment with inverters with endpoints mapping either to module pin or library gate pin:

	D	esign Compi	SoC En	counter	
Path	Result	Iterations	Type	Result	type
A o E	Yes	5	buffers	No	_
A o F	Yes	5	buffers	No	_
$B \to E$	Yes	1	Dly Elts	No	_
$B \to F$	Yes	1	Dly Elts	Yes	Dly Elts
C o E	Yes	1	Dly Elts	No	_
$C \to F$	Yes	1	Dly Elts	Yes	Dly Elts
D o E	No	_	_	No	_
$D \to F$	No	_	_	No	_

Paths use both max and min delay constraints


RT Physical Design Problems

Min-delay constraints get dropped, even in relatively small design!

	Desig	n Compiler		SoC		SoC - timing closure			
Model	#iter	cyc. time	#iter	cyc. time	energy/op	#iter	cyc. time	energy/op	
wl0.5	9	738ps	1	728ps	5.16pJ	70	785ps	4.85pJ	
wl0	7	666ps	1	764ps	5.07pJ	16	763ps	4.87pJ	

RT Physical Design Potential

- 1. Low hanging fruit for performance improvements
- 2. Force directed algorithms
 - Combine power/placement optimizations
 - Drive cell clustering
 - Drive pipeline/repeater placement and wire optimization
- 3. Tool performance: Convergence and run-time

Multi-Synchronous Advantage

- 1. Efficiency in power and performance is new game in town
- 2. Multi-synchronous design provides optimization opprotunity
- 3. New (asynchronous) timing model is one excellent path
- **4.** Produces average $10 \times e\tau^2$ improvement
 - Pentium: $e\tau^2 = 17.5 \times$
 - FFT: $e\tau^2 = 16.9 \times$
- 5. But ... need improved physical design support

Design	Energy	Area	Freq.	Latency	Aggregate
Pentium F.E.	2.05	0.85	2.92	2.38	12.11×
64-pt FFT	3.95	2.83	2.07	3.37	77.98×