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Learn from Prof. Kajitana

l Think differently and deeply

l Apply thought to current challenges

Then collaborate

Goals of Presentation:

1. Define and propose “rule breaker” idea

2. Request support from physical design community
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Multi-Synchronous Advantage

1. Efficiency in power and performance is new game in town

2. Multi-synchronous design provides optimization opportunity

3. New (asynchronous) timing model is one excellent path

4. Produces average 10× eτ2 improvement

l Pentium: eτ2 = 17.5×
l FFT: eτ2 = 16.9×

5. But ... need improved physical design support

Design Energy Area Freq. Latency Aggregate
Pentium F.E. 2.05 0.85 2.92 2.38 12.11×
64-pt FFT 3.95 2.83 2.07 3.37 77.98×
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Timing is a Key Issue

Multi-synchronous design produces best results
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Single frequency, low skew
(small blocks, standard CAD)
1. global block frequencies

2. higher clock power

3. clock design, distribution

Synchronous Clock at 1.8GHz

Synchronous
variable freq. Pausable

1.7GHz clk
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Multiple frequencies
(SoC reality – localization)
1. blocks operate at best frequency

2. network not synchronized

3. synchronizing FIFOs
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Energy Efficient Design
Wine goblet model:

l Energy efficiency has two primary sources

u System architecture
u Physical design

l Methodology and CAD unify sources

Best realization:

l Multi-synchronous

u Defined by system’s critical path
u Then optimal local power-delay
u Asynchronous best methodology:

n no synchronization cost

arch

pd
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Interface Matters!

Clocked design requires synchronizers when crossing all domains.

IP Clock Domain Network Clock Domain

data

clk s
r S S

S S

Major location for buffering in a design.
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Interface Matters!

No synchronization required into async domain.

IP Clock Domain Network Clock Domain

data

clk s
r

S S

Improves power, performance, and modularity
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Timed Asynchronous Designs
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Multi-Synchronous Architecture

1. Make architectural bottleneck as fast as possible.

2. Make the rest of the design match bottleneck

l . . . normally as slow as possible

3. Optimize locally for power/performance.

tagin7

tagin1

irdyack
bufreq

bufack
irdy L1 L7

tagout7

tagout1

Asynchronous Pentium bottleneck circuit
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Concurrency and Time

Architectural level timing experiment: Pentium front end
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Concurrency and Time

Architectural level timing experiment: Pentium front end
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Concurrency and Time

Architectural level timing experiment: Pentium front end
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Concurrency and Time

Architectural level timing experiment: Pentium front end
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Concurrency and Time

Architectural level timing experiment: Pentium front end
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Concurrency and Time

Architectural level timing experiment: Pentium front end
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Timing and Sequencing

Traditional representation of timing:

l Metric values

u On an IC we measure it to picoseconds
u In track and ski racing, we measure it to milliseconds

But what do we really care about?

l it isn’t the number on the stop watch. . .
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Timing and Sequencing

Traditional representation of timing:

l Metric values

u On an IC we measure it to picoseconds
u In track and ski racing, we measure it to milliseconds

But what do we really care about?

l it isn’t the number on the stop watch. . .

We care about who wins!!

The key: Timing results in sequencing

Relative Timing formally represents the signal sequencing
produced by circuit timing
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New Formal Abstract Model: Relative Timing

l Timing is both the technology differentiator and barrier
l Relative Timing is the generalized solution
l The key property of time is the sequencing it imposes

Sequence gives winner, performance, etc.

l true in semiconductors as well as sports
l absolute stopwatch value is auxiliary

Novel relativistic formal logic
representation of time (relative timing):

pod 7→ poc1 ≺ poc2

Sequencing relative to common reference
l can now evaluate sequencing
l can now control sequencing
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Relative Timing
1. Relative Timing

l Sequences signals at poc (point of convergence)
l Requires a common timing reference: pod (point of divergence)

2. Formal representation: pod 7→ poc1 + margin ≺ poc2

3. RT models timing in ALL systems

l Clocked: pod = clock poc = flops
l Async: pod = request poc = latches

4. RT enables direct commercial CAD support of general timing requirements

l formal RT constraints mapped to sdc constraints

POD POC

A

B

POD

POC0

POC1

FFi FFi+1

data

clk

i i+1

clk

data

m

27 March 2013 UofU and GMT 19



Relative Timed Design: Bundled Data

Bundled data design is much like clocked.

CL CLFFi FFi+1 FFi+2
n n

clock network

Frequency based (clocked) design.
Clock frequency and datapath delay of
first pipeline stage is constrained by
Li/clk↑i 7→ Li+1/d+s ≺ Li+1/clk↑i+1

CL CLLi Li+1 Li+2
n n

Ctli Ctli+1 Ctli+2

reqi
acki

reqi+1
acki+1

reqi+2
acki+2

reqi+3
acki+3

delay delay

Timed (bundled data) handshake
design. Delay element sized by
RT constraint:
reqi↑ 7→ Li+1/d+s ≺ Li+1/clk↑

Clocked physical design directly supports the clocked Relative
Timing constraints. The asynchronous circuit constraints must be
provided as min and max constraints, and are not well supported
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Relative Timing Driven Flow
set d0 fdel 0.600
set d0 fdel margin [expr $d0 fdel + 0.050]
set d0 bdel 0.060

set size only -all instances [find -hier cell lc1]
set size only -all instances [find -hier cell lc3]
set size only -all instances [find -hier cell lc4]

set disable timing -from A2 -to Y [find -hier cell lc1]
set disable timing -from B1 -to Y [find -hier cell lc1]
set disable timing -from A2 -to Y [find -hier cell lc3]
set disable timing -from B1 -to Y [find -hier cell lc3]

set max delay $d0 fdel -from a -to l0/d
set max delay $d0 fdel -from b -to l0/d
set min delay $d0 fdel margin -from lr -to l0/clk
set max delay $d0 bdel -from lr -to la
#margin 0.050 -from a -to l0/d -from lr -to l0/clk
#margin 0.050 -from b -to l0/d -from lr -to l0/clk
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Multi-rate 64-Point FFT Architecture

Initial design target: high performance military applications

l Mathematically based on WN = e− j2π
N notation

l Hierarchical multi-rate design: N = N1N2

l Decimate frequency (↓) by N2

u operate on N2 low frequency streams

l Transmute data & frequency to N1 low frequency streams

l Expand (↑) by N1 to reconstruct original frequency stream
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Design Models

Hierarchical derivation of multi-frequency design:

Xm1(m2) = ∑
N2−1
n2=0

[
W m1n2

N ∑
N1−1
n1=0 xn2(n1)W

m1n1
N1

]
W m2n2

N2

l N2 FFTs using N1 values as the inner summation

l Scaled and used to produce N1 FFTs of N2 values

Hierarchically scale design

l Base case when N = 4, X(m) =W 4x(n)

l 4-point FFT performed without multiplication

u Multiplication constants W 4 become ±1
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FFT-64

Implemented on IBM’s 65nm 10sf process, Artisan academic library

Three design blocks:

l FFT-4

l FFT-16 N1,N2 = 4

l FFT-64 N1 = 16, N2 = 4

Two designs:

l Clocked Multi-Synchronous

l Relative Timed Multi-Synchronous

u near identical architectures
u additional RT area / pipeline optimized version for FFT-64
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General Multi-rate FFT Architecture

1.25GHz 313MHz 313MHz to 78MHz
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1.25GHz 78MHz ASIC tool flow, 65nm technology
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FFT-4 Building Block

Data flow graph of pipelined 4-Point FFT design:

Re{x[0]} + + Re{X[0]}

Im{x[0]} + + Im{X[0]}

Re{x[1]} + - Re{X[1]}

Im{x[1]} + - Im{X[1]}

Re{x[2]} - + Re{X[2]}

Im{x[2]} - + Im{X[2]}

Re{x[3]} - - Re{X[3]}

Im{x[3]} - - Im{X[3]}
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Pipelined Asynchronous 4-Point Architecture

l Operates at 1/4 the input frequency

l Synchronization occurs between decimated rows

u Fast internal pipeline stages essential

LC0
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Decimator-4 Design Comparison

l Clocked block requires pipeline to change frequency

l Async block latency combinational and concurrent

Shi f tReg

R0

R1

R2

R3

R4

R5

R6

R7
Din

D1

D2

D3

D4

clk

clk/4 Shi f tReg

ri r1

r2

r3

r4

Din D1
D2
D3
D4

a1
a2
a3
a4

ai

Multi-Synchronous asynchronous design smaller, faster, lower power
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Results
The 16-point FFT Comparison Result (* values are scaled ideally to 65 nm technology)

Points Word Time for 1K-point Clock Tech. Energy/point Area Power Energy Area Throughput

bits µs MHz nm pJ/data− point mW Benefit Benefit Benefit

Our Design(Async) 16-1024 32 0.83 1274 65 25.05 54 Kgates 30.9 8.01 2.77 8.32

Our Design(clock) 16-1024 32 1.73 588 65 41.83 71 Kgates 24.7 4.8 2.07 3.98

Guan [1] 16-1024 16 6.91∗ 653∗ 130 200.68 147 Kgates 29.7∗ 1 1 1

The 64-point FFT Comparison Result (* values are scaled ideally to 65 nm technology)

Points Word Time for 1K-point Clock Tech. Energy/point Area Power Energy Area Throughput

bits µs MHz nm pJ/data− point mW Benefit Benefit Benefit

Our Design(Async-opt) 64-1024 32 0.93 1284 65 62.41 0.41 mm2 68.5 6.1 0.46 30.16

Our Design(Async) 64-1024 32 0.84 1366 65 59.94 0.50 mm2 72.9 6.35 0.38 33.42

Our Design(clock) 64-1024 32 3.13 588 65 246.75 1.16 mm2 80.7 1.54 0.16 8.99

Baireddy [2] 64-4096 - 28.14∗ 514∗ 90 380.88 0.19 mm2∗ 13.86∗ 1 1 1

The 64-point async-opt design contains 229k gates, our clocked 454k.
∗ For comparison, these designs were scaled to a 65nm process by scaling frequency, power, and area in

the 130nm technology by 2.0, 0.5, 0.25×, and in the 90nm design by 1.43, 0.7, and 0.49× respectively.

[1] X. Guan, Y. Fei, and H. Lin, “Hierarchical Design of an Application-Specific Instruction Set Processor for High-Throughput and Scalable
FFT Processing” in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 20, No. 3, pp. 551–563, march 2012.

[2] V. Baireddy, H. Khasnis, and R. Mundhada, “A 64-4096 point FFT/IFFT/Windowing Processor for Multi Standard ADSL/VDSL
Applications”, in IEEE International symposium on Signals, Systems and Electronics (ISSSE’07), pp. 403–405, 2007.
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Multi-Synchronous Advantage

1. Efficiency in power and performance is new game in town

2. Multi-synchronous design provides optimization opprotunity

3. New (asynchronous) timing model is one excellent path

4. Produces average 10× eτ2 improvement

l Pentium: eτ2 = 17.5×
l FFT: eτ2 = 16.9×

5. But ... need improved physical design support

Design Energy Area Freq. Latency Aggregate
Pentium F.E. 2.05 0.85 2.92 2.38 12.11×
64-pt FFT 3.95 2.83 2.07 3.37 77.98×
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RT Physical Design Optimization

Timing, power, and performance optimizations driven by relative
timing constriants.

CL CLLi Li+1 Li+2
n n

Ctli Ctli+1 Ctli+2

reqi

acki

reqi+1

acki+1

reqi+2

acki+2

reqi+3

acki+3
delay delay

reqi↑ 7→ Li+1/d+m ≺ Li+1/clk↑
Mapped to set max delay and set min delay constraints

Clock frequency determines min delay, async adds “hold time”
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RT Physical Design Problems

CL CLLi Li+1 Li+2
n n

Ctli Ctli+1 Ctli+2

reqi

acki

reqi+1

acki+1

reqi+2

acki+2

reqi+3

acki+3
delay delay

1. Inconsistency between operation and results

l supported pins & formats, synthesis vs place and route, etc.
2. Min-delay constraints not well supported

l Treated as “hold time fixing”
l Create arbitrarily large delays

u Degrades performance
u Required matching max-delay constraint to bound delay

3. Poor job of optimizing competing constraints
4. Placement can be substantially improved
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RT Physical Design Problems

Simple experiment with inverters
with endpoints mapping either to
module pin or library gate pin:

module i0 module i1

A B C D E F

Design Compiler SoC Encounter
Path Result Iterations Type Result type

A→ E Yes 5 buffers No –
A→ F Yes 5 buffers No –
B→ E Yes 1 Dly Elts No –
B→ F Yes 1 Dly Elts Yes Dly Elts
C→ E Yes 1 Dly Elts No –
C→ F Yes 1 Dly Elts Yes Dly Elts
D→ E No – – No –
D→ F No – – No –

Paths use both max and min delay constraints
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RT Physical Design Problems
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Fork Join Fork Join Fork Join

Min-delay constraints get dropped, even in relatively small design!

Design Compiler SoC SoC - timing closure
Model #iter cyc. time #iter cyc. time energy/op #iter cyc. time energy/op
wl0.5 9 738ps 1 728ps 5.16pJ 70 785ps 4.85pJ
wl0 7 666ps 1 764ps 5.07pJ 16 763ps 4.87pJ
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RT Physical Design Potential

CL CLLi Li+1 Li+2
n n

Ctli Ctli+1 Ctli+2

reqi

acki

reqi+1

acki+1

reqi+2

acki+2

reqi+3

acki+3
delay delay

1. Low hanging fruit for performance improvements

2. Force directed algorithms

l Combine power/placement optimizations
l Drive cell clustering
l Drive pipeline/repeater placement and wire optimization

3. Tool performance: Convergence and run-time
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Multi-Synchronous Advantage

1. Efficiency in power and performance is new game in town

2. Multi-synchronous design provides optimization opprotunity

3. New (asynchronous) timing model is one excellent path

4. Produces average 10× eτ2 improvement

l Pentium: eτ2 = 17.5×
l FFT: eτ2 = 16.9×

5. But ... need improved physical design support

Design Energy Area Freq. Latency Aggregate
Pentium F.E. 2.05 0.85 2.92 2.38 12.11×
64-pt FFT 3.95 2.83 2.07 3.37 77.98×
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