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“The essence of Mathematics is not
to make simple things complicated,
but to make complicated things
simple,” Dr. S. Gudder
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Introduction



Clock Networks

Clock network for Circuit ISPD(09-31



Buffer sizing for Clock Networks
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Buffer sizing for Clock Networks

o Slew:
— Rise/fall time

 Keep as low as
possible




Buffer sizing for Clock Networks
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Generally, Increasing the sizes of
buffers will reduce skew and slew




Buffer sizing for Clock Networks

However 40% of total power is used in Clock

networks [1].

[1] Q. Zhu, “High-Speed Clock Network Design.” Boston: Kluwer Academic
Publishers, 2003.



Buffer sizing for Clock Networks

For any clock network

Minimize: power
While maintaining: skew
slew



Mathematical Model

minimize:
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How Hard is the Problem??

his problem is a
non-convex
Nonlinear
non-differentiable
with integer variables.

Which means it islike the K2 mountain of
optimization.



Discrete Variables

minimize:
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Continuous Variables

minimize:
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Geometric Programming
for Buffer Sizing



Geometric Programming

Monomial: atx,"x,?x5*..x" , o0 =0,x € R”

Posynomial: E Monomials



Geometric Programming

Geometric Programming Problem:

minimize:

f ( x) 4@ posynomial
0

subject to :

f(x)=<1, i=1,..,m 4= posynomial

hi (x)=1, Vi= 1,....p 4@ monomial



Buffer Sizing Problem

minimize:
Area(x) = E X Xy, 4@ posynomial
bEB

subject to :
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Geometric Relaxation

minimize:

Area(x) = E X Xy, 4@ posynomial
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Skew Constraint Relaxation
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GP Formulation

Equivalent geometric program (GP)

minimize:
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GP Relaxation

Algorithm: GP Buffer Sizing
Input: Clock network (ISPD09), ¢

Output: Optimal buffer sizes

skew ? Slew

GP Optimal Nominal Sizing
1. Perform GP relaxation
2. Solve GP (MOSEK)
3. Introduce defects (Monte Carlo)
4. Calculate power, slew, and skew (NGSPICE)




Geometric Programming Results
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Geometric Programming Results

Power and skew improvement as a result of GP programming.

Each circle represent the GPC result for one ISPDQ9 circuit.
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Continuous Back to Discrete

x, 2, VbEB

X =w_..VbEB
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Discretized GP Solution

Power and skew changes as a result of discretization.
Each point represent the result for one ISPD09 circuit.
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The difficult case:
Circuit nbl1:

Power improvement:

72%

Skew improvement:
-427 ps

The OQOutlier




Robust Geometric Buffer
Sizing



“So far as the theories of
mathematics are about reality, they
are not certain; so far as they are
certain, they are not about reality.”
Albert Einstein



Why Did the Solution Change?

Desired

l Bottom
Layer

= Top
Layer

Modern process
adds variations




Deterministic Optimization

Feasible region
Optimal solution
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Effects of Uncertainty
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Robust Optimization

X

Feasible region
Optimal solution

Robust 7
Optimal solution

Uncertainty
ellipsoid




Robust Optimization: Buffer Sizing

Each ideal variable x has an associated
random variable Ax

Constraints are expanded via Taylor Series

f(x) <1
n
f(xy +A%) = f(x,) + Vf (x,)Ax <1

Consider only the maximum variation
J(x)+ n‘v}?xx{vf (xo)Ax} <1



RGP Algorithm

Algorithm: Robust GP Buffer Sizing

Input: Clock network (ISPD09), 7
Output: Optimal buffer sizes

skew ? slew

Phase 1. Perform GP sizing

Phase 2. Variation-Aware Sizing

2.a Formulate Robust GP (RGP)

2.b Solve RGP (MOSEK)

2.c Calculate power, slew, and skew (NGSPICE)




Robust Runtime Results
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Robust Continuous Results

Comparison of power and skew for continuous GP and RGP.
Each point is power/skew results for one ISPDQ9 circuit.
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Robust Discrete Results

Comparison of power and skew improvement for discrete GP and
RGP. Each point represents the results for one ISPD09 circuit.
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Final Robust Results

Improvement in power and skew for discrete RGP. Each point

represents %e result for one ISPD09 circuit.
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Robust Results

Skew distributions for nominally and robust-sized networks
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Conclusions and Future Work



Conclusion

New optimization techniques allow us to
obtain results that can capture the
reality of today’s deep submicron

technology.



“In mathematics, you don’t understand
things. You just get to use them.”,
Johann von Neumann



Future Work

Can we reduce the time for RGP by
parallelization?

Can we use mathematical techniques
for discretization”?

Can we optimize power and skew at the
same time?
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