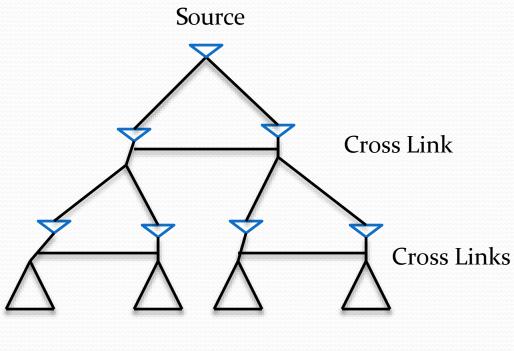
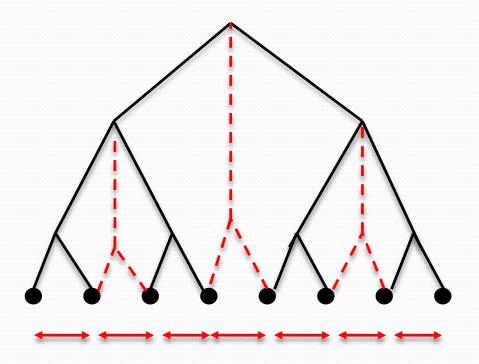
Local Merges for Effective Redundancy in Clock Networks

Rickard Ewetz Cheng-Kok Koh ECE Department, Purdue University


Introduction

- Sample clock network
 - Slew
 - Skew

Source Buffer **Variations** Wire Sinks Related Arrival time: 45 50 42 41 Local Skew Distance (ps) Skew:

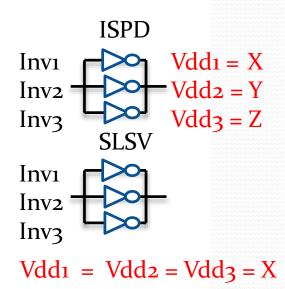

Clock tree

Previous Work – Cross Links

- Sinks
- [8] T. Mittal and C.-K. Koh. Cross link insertion for improving tolerance to variations in clock network synthesis. In Proc. ISPD'11.
- [11] A. Rajaram, J. Hu, and R. Mahapatra. Reducing clock skew variability via cross links. In Proc. DAC'04.
- [12] A. Rajaram and D. Pan. Variation tolerant buffered clock network synthesis with cross links. In Proc. ISPD'06.
- [13] A. Rajaram, D. Z. Pan, and J. Hu. Improved algorithms for link-based non-tree clock networks for skew variability reduction. In Proc. ISPD'05.

Previous Work – Multilevel fusion tree

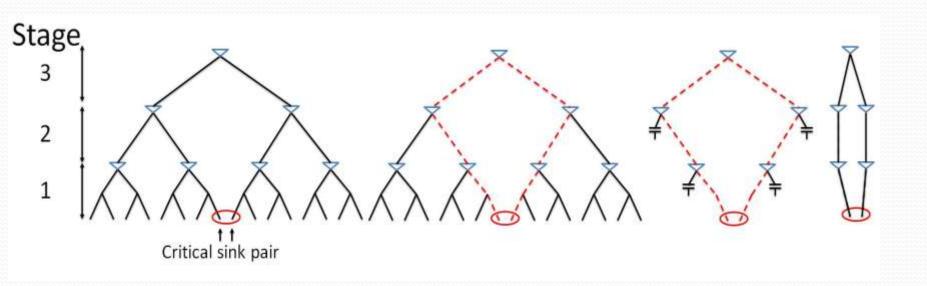
Problem description

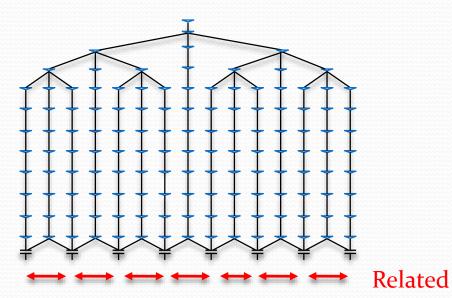

Construct a clock network given:

- Inverter/wire library, blockages, sink locations and loads.
- Process variation model (supply voltage/wire width)
 - ISPD 2010 contest model (ISPD)
 - Single Location Single Voltage (SLSV)

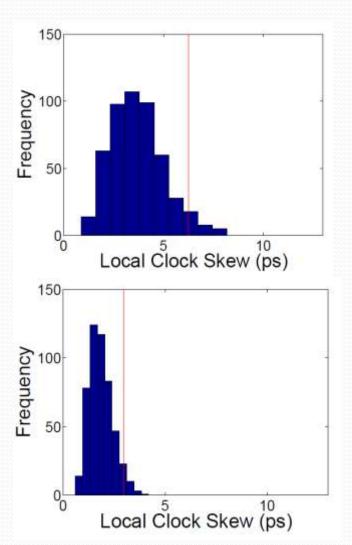
Minimize: Capacitance

Constraints:


- 95% -Local skew (500 Monte Carlos simulations)
- Slew
- No inverters placed within blockages


[15] C. Sze. ISPD 2010 high performance clock network synthesis contest: Benchmark suite and results. pages 143–143, 2010. [2] S. Bujimalla and C.-K. Koh. Synthesis of low power clock trees for handling power-supply variations. In Proc. ISPD'11.

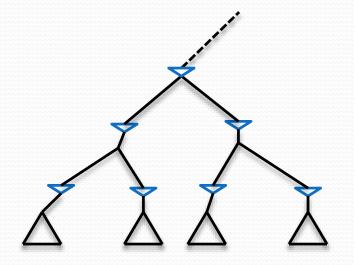
Experimental setup


• Consider sink pairs that are spatially close but topologically distant.

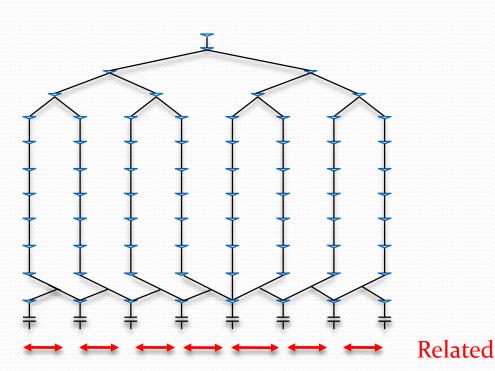
Related

ISPD variations

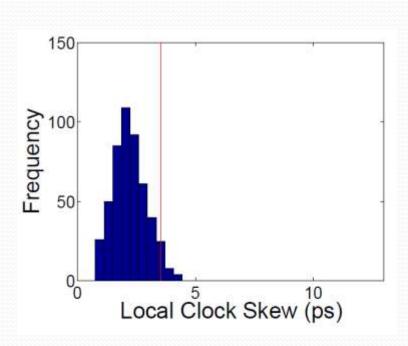
Case Study


Capacitance cost in a clock tree with 8 stages

Stage 3

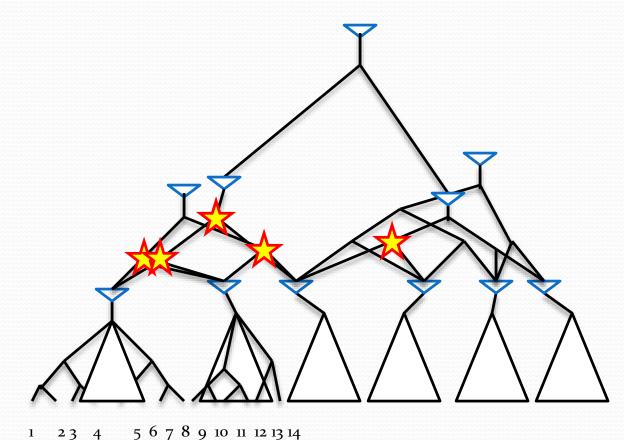

Stage 2

Stage 1



Stage	Total Cap
1	71 %
2	12~%
3	6 %
4	4%
Rest	7 %

Proposal



ISPD

Method

- Build tree stage 1
- Build special stage 2
 - Local merges
 - Sparsification
- Build tree stage 3+

Sinks

Related

Table 2: Comparisons of 95% skew and cost under the ISPD model. An '*' indicates that the solution does not meet the skew requirement.

		Max	95%	Cap.	Run
Ckt.	Method	Skew (ps)	Skew (ps)	(fF)	Time (s)
Š.	[3]	9 <u>7.00</u>	7.32	142.64	1092
BM01	[2]	-	6.48	137.97	472
	Our work	6.65	5.35	130.82	680
	[3]	-	7.42	265.21	4314
BM02	[2]		7.38	268.29	1450
	Our work	*8.53	5.76	254.36	1621
Approximation and the second	[3]		*	1.11	2 8
Norm.	[2]			1.01	
	Our work			1.00	

ISPD

- 1 % lower capacitance on average.
- Significantly lower skew.

[2] Y.-C. Chang, C.-K. Wang, and H.-M. Chen. On construction low power and robust clock tree via slew budgeting. In Proc. ISPD'12. [3] T. Mittal and C.-K. Koh. Cross link insertion for improving tolerance to variations in clock network synthesis. In Proc. ISPD'11.

Table 1: Comparisons of 95% skew and cost under the SLSV model. An '*' indicates that the solution does not meet the skew requirement.

		Max	95%	Cap.	Run
Ckt.	Method	Skew (ps)	Skew (ps)	(fF)	Time (s)
	[4]	*9.43	7.23	1168.10	675
BM01	[1]	*11.40	*10.29	189.06	2324
	Our work	6.65	5.69	155.14	879
	[4]	*8.99	7.35	2099.81	2140
BM02	[1]	*14.19	*12.30	341.08	6723
	Our work	*7.69	6.26	292.99	1978
	400pm 190				
	[4]			3.87	
Norm.	[1]			1.22	
	Our work			1.00	

SLSV

- 22% lower capacitance on average.
- Satisfies BMo1 and BMo2 with 3x lower cap.
- No sparsification on BMo3 to meet skew constraint.

^[1] S. Bujimalla and C.-K. Koh. Synthesis of low power clock trees for handling power-supply variations. In Proc. ISPD'11. [4] L. Xiao, Z. Xiao, Z. Qian, Y. Jiang, T. Huang, H. Tian, and E. F. Y. Young. Local clock skew minimization using blockage-aware mixed tree-mesh clock network. In Proc. ICCAD'10.

Questions

• Thank you!