JUnipPer

NETWORKS

DESIGN AND TUNING OF A TREE-MESH
CLOCK DISTRIBUTION

Nikhil Jayakumar, Dave Murata, Valery Kugel
{ nikhilj, dmurata , valery } @juniper.net
Juniper Networks

OVERVIEW

. Comparison of Clock trees vs Clock Grids/Mesh
-Juniper’s Clock distribution design overview

-Juniper’s 2 step tuning flow for clock meshes
« Coarse Tuning
« Fine Tuning

. Conclusion

CLOCK TREES VS CLOCK GRIDS

There are 2 two kinds of clock skews STA v
= Structural (layout) skew | ————— V7 —
r Capacitive load mismaitch >_|{Handled by balanced clock treesi
. . (Eg:Htrees))
= Wire length mismatch -~ Zero 1 Tow skew only in the
- absence of PVT variations

« Dynamic clock deskewing schemes

o * Dynamic:
variations

——————————————————————————

N Skew due to PVT} Two types of approaches to handle this:

* Static:)

(
i * Cross-link addition
|
\

Necessitates SPICE based analysis
« Regular STA won’t work due to re-convergences.

(more on this later....)

VERTICAL CLOCK SPINE + HORIZONTAL CLOCK RIBS

Y

Y
v
>

B 4

-—— -—— o)

[P —

4

Y

T

- -—— g e o

R

i it (it Uit A |

Constructed to
* be balanced
= have low latency (and hence low jitter)

Wire width, spacing, buffer drive strength, wire length between
buffers chosen after careful simulation. Factors considered:

= Jitter (chose wire code for minimum jitter per unit length)
= Slew constraints

= Dynamic IR drop & EM limits

= Routability &area constraints

= Qvershoot & undershoot due to inductance

Cancel out PVT variations through insertion of cross-links (shorting
wires) at regular intervals.

= Cross-links were inserted only if skew reduction outweighed jitter
increase.

WHY CROSS-LINKS COMPLICATE TIMING?

2

50p

100p

N

150p

VYVYVYVY

STA cannot handle
re-convergence in non-linear
circuits.

= SPICE confirms the averaging

effect of the short, but STA
cannot see this.

= Where is the point of
divergence?

Need a SPICE simulation to
estimate delays.

JUNIPER GLOBAL CLOCK DISTRIBUTION

Hybrid tree-mesh
= Balanced tree driving a mesh

Horizontal clock ribs

= Cross-links added at regular intervals
in the tree also to reduce skew due to
PVT

Construction:
= PLL drives Vertical Spine
= Vertical Spine drives 6 Horizontal
Ribs
= Horizontal Ribs drive clock mesh

Technology Details:
= Frequency: 700Mhz to 800Mhz

= TSMC 40nm (45GS_1P10M_6X1Y2Z
+ Al RDL)
= Top 2 (thick) metal layers (Mz)
used to distribute the core clock

Vertical clock spine

/ Core clock region

WHY REDUCE SKEW IN A MESH?

Q : Clock meshes reduce skew - so then why do we have to
tune it?

= Clock meshes have an effect of averaging the delay — but at the
cost of short circcuit current

= Large skew can result in a very large short-circuit current for
drivers whose outputs are shorted

Should not rely on the mesh to reduce structural skew. The
mesh is used to only reduce PVT skew.

JUNIPER’S 2 STEP TUNING FLOW

1. Coarse-tuning through balancing
= Tuning the vertical spine and horizontal ribs through RC balancing

= Tuning the mesh through selective removal of horizontal cross-link
wires in the mesh

= Based on effective wire length (capacitance) driven by each buffer

2. Fine-tuning through driver sizing

= Automatic driver tuning flow that sizes drivers in the vertical spine
and horizontal ribs

= Drivers are sized to achieve uniform output delay and slew
= Flow can simultaneously size several thousands of buffers
= Manual tuning is impossible on such a scale

COARSE TUNING FLOW OF THE MESH

/ DB with full clock mesh /

\ 4

Remove all horizontal Mz wires of the clock mesh
except the ones closest to the horizontal clock ribs

A 4

Find effective length (and thus capacitance) of vertical
Mz wires of clock mesh driven by each buffer

A\ 4

Add back horizontal Mz cross-links such that total ‘
effective capacitance is equal across all output buffers

A\ 4

Extract Clock mesh (STAR-RC)

\ 4

Simulate in SPICE and verify skew

FINE TUNING FLOW

/ Extracted netlist /

\ 4

Simulate in SPICE and gather slew and
delay data

A\ 4

Re-size buffers based on slew at output
of buffers (aim is to get slew at all buffers
to be uniform)

A\ 4

Simulate modified netlist (with re-sized
buffers) and gather slew and delay data

YES

Is
[skew(previous_run) —
skew (current_run)] >
1ps ?

/ Modified netlist & DB /

Buffers are sized based on
output slew
= |f slew is larger than target
slew, the buffer is up-sized

proportionally to achieve
target slew

= |f slew is smaller than target
slew, the buffer is down-sized
proportionally to achieve
target slew

The fine tuning flow is able to
converge to a low-skew
solution within 2 to 3 iterations

Buffers can be re-sized without
re-extracting since the buffers
are designed to be footprint
compatible

= Saves significant runtime

since extraction alone can
take a day or more

RESULTS

The tuning flow allowed us to reduce the structural skew of the mesh

= Skew was reduced to < 30ps across the whole core region and across multiple process
corners
(from > 100ps before tuning)

The removal of the majority of the cross-links also helped save power

= Power consumed by the distribution (including buffers in the vertical spine + horizontal
ribs) was = 1.4W for a 16mm X17mm clock mesh area at 0.9V, 800Mhz

= Removal of the horizontal cross-links helped reduce mesh capacitance and thus clock
power by 30%

13509
| MSe. 0
| M09
13359 B
1 35e¢® @
1 3250
1 329

13150

000 ; SkeW
Core clock area

30ps
16mm X 17mm

X lum)

* Example of skew plot over
an 16mm X 17mm core region

CONCLUSION

We have presented a 2 step tuning flow that can de-skew and
tune a clock mesh containing several thousand buffers

= The fine-tuning flow enables 2 to 3 iterations to be completed within
24 hours.

= Structural skew of more than 100ps was reduced to less than 25ps

Removal of horizontal Mz cross-links in the clock mesh helped
reduce clock power

= Clock distribution + mesh consumed a total of 1.4W in a 100W chip

= The removal of most of the horizontal cross-links reduced mesh
capacitance and power by ~30%

This tuning flow was used in multiple chips across two technology
generations

Thank You

