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What is Biochips?

e General definition

— A chip with a small solid platform made of glass, plastic, or
membrane which deals with the behavior, precise control and
manipulation of fluids that are constrained to a small scale

e Functionality

— Analysis, reaction, or detection of biological samples (DNA or
human blood)

e Application
— Clinical diagnostics
— Environmental monitoring
— Automated drug discovery
— Cell culturing
— Protein crystallization
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Classification of Biochips
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Valve: The Basic Unit of Flow-based Microfluidic Biochips

¢ Functional component

— Valves can be combined to form more complex units,
e.g., latches, switches, mixers, multiplexers, micropumps

e Reliability
— The open and close activities (valve-switching) for a valve is
limited
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The Need of CAD Support

e Applications become more complicated

— Large-scale bioassays

Pressure
Source z,

— Multiple and concurrent assay operations on a biochip .

e Current methodologies

— Manual
— Full-custom
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Component Model : Mixer

Microfluidic mixer

Input Waste
S3
To other

components
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Motivation

Microfluidic mixer

Open the valve

ﬁ@ B Close the valve
2 7

4

13 98

Valve-switching : 20 + Mixing
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Group Continuous Operations

20
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5 Phases for a mixing operation

<+—p \alve-switching for a mixing operation

<+—» Reduce valve-switching 6 times

Total reduction
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Transportation Issue

/
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e Total valve-switching

— Valve-switching of a mixer
— Valve-switching of intersections
— Valve-switching of a storage

Storage
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Problem Formulation

e [nput: A biochemical application modeled as a
sequential graph and a component library

e Objective: Synthesize a flow-based microfluidic biochip
such that the valve-switching amount and application
completion time are minimized

e Constraint: Resource constraints and design rules
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Top-Down Synthesis I\/Iethodology

s

e Architecture-level synthesis

— Set-based minimum cost
maximum flow (SMCMF) Bl ol
= Resource binding L_‘mmlm'l"_l
= Resource scheduling e
e Physical-level synthesis e e R ﬁ
— Incremental cluster expansion ot | e e
(ICE)
» Placement
= Routing

e Explicit scheduling | ﬁ | | L_rjjl
— List-scheduling based i o ot —

approach
= Total valve-switching amount l_—mm |
= Application completion time L B




Set-based Minimum Cost Maximum Flow

¢ Set-based

— Group continuous operations in a set to reduce the valve-
switching activities

e Maximum Flow

— Each flow path represents a component. Our goal here is to
maximize the component parallelization.

e Minimum Cost

— Find a way that not only satisfies the parallelization but also
minimize the application completion time
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Time Evaluation
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Find Continuous Sets
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Continuous Sets
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Build the Flow Network

o “iepl
— Create Src and Dst vertex

— Create a vertex Vi e V for each Si
Step?2
— Separate Vi — (Vii,, Vi 0
— Create a directed edge Vi, — Vi,
cost=0 and capacity=1
Step3
— Separate Dst — (Dst;,,, Dst_)
— Create a directed edge Dst;,, — Dst,;,
cost=0 and capacity=3 (given
component numbers)

Step4

— Create directed edges Src — V', and
Vi — Dst;, cost = 0 and capacity=1

— Foreach Vi ,and Vi, ifVl ,+T
(transportation time) = Vi, create a
directed edge V', — Vi, cost=f(x)
and capacity=1. Here, x is defined as
(V' -V',,)| and f is proportional to x




Apply Minimum Cost Maximum Flow
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Sort by the Priority

2. Number of total operations

2 continuous
operations

Priority
1. Number of continuous operations

3 continuous
operations

Mixer; Mixer, Mixer;

high




Insert the Remaining Operation

Mixer, Mixer, Mixer, Mixer,




Relational Graph

M1
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Top-Down Synthesis Methodology
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Motivation
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One Storage

Storage,

—

|7/_I

4%2 + 2

Valve-switching
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Two Storage

Storage, Storage,
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Valve-switching
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Find the Clusters

Iteration : @
Cluster : 8)

[ Storage : 4 }
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Find the Clusters

Iteration : ;
Cluster :(\5:;

[ Storage : 4 }
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Incremental Cluster Expansion
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Compaction
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Routing by dijkstra’s algorithm
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100 Mixers and 10 Storages
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Top-Down Synthesis Methodology
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e Explicit scheduling
— List-scheduling based
approach
= Application completion time
» Total valve-switching amount

| Scheduling Result |




Explicit Scheduling

Color / Work

Operation |Trasportation

Y il TS

Valve-switching amount%, 250 (62 18@,

Idle | Input Output

Binding by SMCME Application Completlbon Time - 285(3)
Time| 12|34 6|7|8|9|10(1112|13|14|15|16/1718|19|20|21|22|23|24|25|26|27|28/49|30|31/32|33|34|35
Mixer1|| Opl Op8 Opi1 Op13
Mixer2 Op4 Op5 Op6 Op10 Op12 X
Mixer3|| Op2 ||| Op3 Op9 op7 Reduce 140
Binding by baseline method valve-switching

Time| 1|2 |3|4|5|6|7|8|9/|10/11|12|13|14|15|16|17|18/19|20 21|22 23|24 25262728293031323337’?’_’K
Mixerl|| Opl Op3 Op5 Op9 Op10 Op13

Mixer2|| Op2 Op8 Opl1

Mixer3 Op4 Op6 Op7 Op12 S

%‘ﬁ
Valve-switching amoun€ = :390(166,224).>
Application Completion Time 3'3'2(8)
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Experimental Settings

¢ |[mplemented our algorithm in C++ language on a PC

with Core2 Quad processors at 2.66GHz and 3.25GB of
RAM

e Compared set-based minimum cost maximum flow
binding algorithm with list scheduling based binding

algorithm (baseline method) on top-down synthesis
methodology

¢ Tested on several synthetic benchmarks by

— Adjusted operation numbers from 7 to 8191 and fixed mixers as
20 and storage as 1

— Adjusted mixers from 10 ~ 100 and fixed operation humbers as
1023 and storage as 1

— Adjusted storage from 1 ~ 10 and fixed operation numbers as
1023 and mixer as 100
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Experimental Results (1/3)
4 N
Operation : 7~8191
Mixer : 20
Storage

/
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Experimental Results (2/3)

Complete time (K sec.)
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Experimental Results (3/3)
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Conclusions

¢ The valve-switching activities for the components such
as mixer and storage were modeled

¢ A first top-down synthesis methodology for flow-based
microfluidic biochip was presented

e Two algorithms for architecture-level synthesis and
physical-level synthesis were proposed
— Set-based minimum cost maximum flow (SMCMF)
— Incremental cluster expansion (ICE)

* The experimental results showed that our top-down
synthesis methodology not only minimized the valve-
switching amount but also reduced the application
completion time
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