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Parallel distributed architecture 
 
Spontaneously active 
 
Composed of noisy components and 
operates at low speeds (< 10 Hz) 
 
Low power (30W),  
small footprint (1 liter) 
 
Asynchronous (no global clock) 
 
Analog computing, 
Digital communication 
 
Integrated memory and 
Computation 
 
Intelligence via Learning thru BBE 
interactions 

Serial architecture 
 
No activity unless instructed 
 
Precision in components and 
operates at very high speeds (GHz) 
 
High power (100MW),  
Large footprint (40M liters) 
 
Synchronous (global clock) 
 
Digital computing and  
communication 
 
Memory and Computation are 
clearly separated 
 
Intelligence via programmed 
algorithms/rules 

Computers vs. Mammalian Brains 
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The SyNAPSE program seeks to break the programmable machine paradigm 
by developing neuromorphic machine technology that scales to biological levels 

von Neumann Machines 

Neuromorphic 
Machines  

Machine 
Complexity 

e.g. Gates; 
Memory; 
Neurons; 

Synapses 
Power; 

Size 

[log] 

• Human level performance 
• Dawn of a new age 

Dawn of a new 
paradigm 

“simple” “complex” 

Environmental Complexity 
e.g. Input Combinatorics 

[log] 

Program Objective 

A trade between 
universality and efficiency 

Problem 
•  As compared to 

biological systems, 
today’s intelligent 
machines are less 
efficient by a factor of a 
million to a billion in 
complex environments. 

•  For intelligent machines 
to be useful, they must 
compete with biological 
systems. 

Todd Hylton 2008 

Motivation and Objective 
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Program Structure 

•  Performers 
–  HRL (prime) 
–  Subcontractors 

•  University of Michigan 
•  Stanford University 
•  Neurosciences Institute 
•  Boston University 
•  University of California, Irvine 
•  George Mason University 
•  Portland State University 
•  SET Corporation 

–  Sub 

 
 

 

 

Structure Period of Performance 

Baseline/Phase 0 October 7, 2008 - September 6, 2009 

Option 1/Phase 1 September 7, 2009 - March 28, 2011 

Option 2/Phase 2 March 29, 2011 - January 27, 2013 

HRL SyNAPSE Team 
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Measure Make 

Model 

Attack the problem “bottom-up” and “top-down” and 
force disciplinary integration with a common set of 
objectives. 

Top-down 
(simulation) 

Bottom-up 
(devices) 

Biological Scale 
Machine Intelligence 

Materials 
(e.g. memristors) 

Components 
(e.g. synapse / neuron) 

Circuits 
(e.g. center-surround) 

Networks 
(e.g. cortical column) 

Modules 
(e.g. visual cortex) 

 System (SyNAPSE) 

Todd Hylton 2008 

Overall Approach 
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Brain Architecture 

Brain is composed of 1011 neural cells with 1015 synapses: 
Very High Density (1010 synapses/cm2) and Connectivity (1:104) 

Dense Network  

Neurons 
Synapses 
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Architecture Dynamics: 
Leaky Integrate and Fire Neuron 

E spike 
I spike 

τAMPA 

τGABA 

Analog Spiking (Mixed Signal) 

VA

t

TISI = 1/fspike

ti ti+1

ti, ti+1 are 
asynchronous times 
(not quantized). 
They encode signal 
information 

1 wire used 
per signal

Signal  A Analog
Processing

Block

Signal  B 

•  Single wire used to represent spike signals which encode 
analog information 

 
•  Dissipate power only during spike events 
 
•  Spiking system less prone to noise and variations (only 

needs to maintain timing information) 

•  Cascaded spiking analog processing blocks is less prone 
to noise accumulation due to spikes combined with 
learning and adaptation 

Pre- 
neuron 

Post- 
neuron 
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Architecture Dynamics: 
Synaptic Plasticity 

Spike Timing  
Dependent Plasticity 
(STDP) 

(Markram et. al 1997; Bi and Poo, 1998) 

Electrical è Chemical è Electrical 
Speed, Specificity, Timing 
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Architecture Design: 
Small World Connectivity 

•  Cortex (> 85% of the brain) is organized as a small world network of neurons 

•  Dense local connections and sparse long range connections 

•  The typical distance or synaptic path length L between two randomly chosen  
     neurons grows as L α N where N is the number of neurons in network 
 
•  Efficient communication despite network complexity – needed for survival 

Strogatz 2000; 
Sporns, 2004) 
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Large Scale System (Analog Core) 

Neuromorphic
Compiler

Digital
Memory

Analog Core
with Cortical

Fabric
(neurons, 
synapses)

Analog 
Memory

(store synaptic
conductances)

# Neurons,
# Synapses,
Connectivity

Routing,
Neuron
Placement Set 

switch states

Acquire 
Switch states

Store

Retrieve

Programmable
Front-End
(focus of this 
paper)

Brain Architecture

Neuromorphic
Compiler

Digital
Memory

Analog Core
with Cortical

Fabric
(neurons, 
synapses)

Analog 
Memory

(store synaptic
conductances)

# Neurons,
# Synapses,
Connectivity

Routing,
Neuron
Placement Set 

switch states

Acquire 
Switch states

Store

Retrieve

Programmable
Front-End
(focus of this 
paper)

Brain Architecture

Overall Design Goal: 106 neurons and 1010 synapses in cm2 consuming 1 W of power 
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= 
MUXMUX tN Δ

Synaptic Time Multiplexing (STM)  

Direct wire connections 
between neurons is prohibitive 
with required wiring density [3]  

Bailey & Hammerstrom, 1988 

Proposed Synaptic Time 
Multiplexing scheme overcomes 

wiring limitation by trading off 
circuit speed with wiring density 

neurons 
synapses 

1.0cm 

APP Chip 

(104 per neuron) 

synapses 

Time 

MUXtΔ

APP Chip 

(4 per neuron) 

(1
) 

+ 

MUXtΔ

APP Chip 
(2

) 

+ 

MUXtΔ

APP Chip 

…
 …

 

…
 

…
 

(N
M

U
X)

 

Scalable solution to enable CMOS based neuromorphic chip design 
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Reconfigurable Fabric vs. Crossbar  

Reconfigurable Fabrics 

Broadcasting (HRL) 

Time multiplexed Fabric (HRL)  

Fixed Fabrics 

Crossbar (SUNY) 

Synapse in 2D array. Neurons in 1D arrays (HP, IBM) 

Neurons 

N
eu

ro
ns

 

Neurons 

Advantages 
-  Flexible 

topology 
-  High effective 

density (Wires 
reused for 
different 
axons) 

Advantages 
-  Flexible 

topology 
-  High effective 

density (Wires 
reused for 
different 
axons) 

Limitations 
-  High 

multiplexing 
ratio needed 
for large 
networks  

Advantages 
-  No multiplexing 

simplifies synapse 
design 

Limitations 
-  Fixed topology 
-  Synapse 

density limited 
by wiring 
(axons not 
multiplexed) 

-    

Limitations 
-  Fixed topology 
-  Number of 

neurons scale 
less than 
linearly with 
chip area  

-  Synapse 
density limited 
by wiring 

Advantages 
-  No multiplexing 

simplifies synapse 
design 
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STM Fabric & Analog Core 
Chip Architecture 

Time-multiplexing ensures scalability of hardware using conventional CMOS technology 

K. Minkovich, N. Srinivasa, J. M. Cruz-Albrecht, Y. 
K. Cho and A. Nogin, "Programming Time-
Multiplexed Reconfigurable Hardware Using a 
Scalable Neuromorphic Compiler," IEEE Trans. on 
Neural Networks and Learning Systems, vol. 23, 
no. 6, pp. 889-901, June 2012. 
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Memory

Neuron Synapse
/STDP

Analog 
Memory

Switches

Axon 
Routing 

Channels

Digital 
Memory

Neuron Synapse
/STDP

Analog 
Memory

Switches

Axon 
Routing 

Channels

Chip 

1 node 
(1 neuron, 1 

synapse 
M virtual 

synapses) 

Node 

Capacitor, Memristor,

…  
Design to 

minimize  # of 
switches 
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HRL SyNAPSE Fabricated  
Phase 0 Hardware Base Components 

Synapse with STDP 
Integrate & Fire Neuron 

Jose Cruz-Albrecht, Michael Yung, Narayan Srinivasa, “Energy-Efficient, Neuron, Synapse and STDP Integrated 
Circuits, “ IEEE Transactions on Biomedical Circuits and Systems, vol. 6. No. 3, pp. 246-256, June, 2012. 

90nm CMOS 

    0.4pJ per spike 
< 10nW per neuron 
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Large Scale System  
(Analog Memory) 

Neuromorphic
Compiler

Digital
Memory

Analog Core
with Cortical

Fabric
(neurons, 
synapses)

Analog 
Memory

(store synaptic
conductances)

# Neurons,
# Synapses,
Connectivity

Routing,
Neuron
Placement Set 

switch states

Acquire 
Switch states

Store

Retrieve

Programmable
Front-End
(focus of this 
paper)

Brain Architecture

Neuromorphic
Compiler

Digital
Memory

Analog Core
with Cortical

Fabric
(neurons, 
synapses)

Analog 
Memory

(store synaptic
conductances)

# Neurons,
# Synapses,
Connectivity

Routing,
Neuron
Placement Set 

switch states

Acquire 
Switch states

Store

Retrieve

Programmable
Front-End
(focus of this 
paper)

Brain Architecture
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Abrupt	
  Resistance	
  Switching	
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Absolute vs. Incremental Memristors 

Developed CMOS compatible memristors to enable memristor array fabrication 

Ag electrode 

p-Si electrode 

filament 
“on” 

Ag electrode 

p-Si electrode 

“off” 

• Two terminal resistance switching device 
•  Nanoscale a-Si switching area 
•  Small cell size, < 50 nm x 50 nm (density > 1010/cm2) 
•  3.5 bits or 10 levels of storage per device 
•  Endurance 3*108 cycles and retention is for months 
•  CMOS compatible materials and processes 
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Functional Memristor Array with 
CMOS Integration 

0 5 10 15 20 25 30

0.0
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 Off-state
 level-1 (20Mohm)
 level-2 (10Mohm)
 level-3 (1Mohm)

C
ur

re
nt

 (u
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 @
1.

3V
 V

re
ad

Pulse Sequence

CMOS 
circuit 
with  
memristor 

Multibit 
values  
written 
on  
memristor 
device 
within  
integrated 
chip 

Data written on memristor array (40x40) 

K. H. Kim, S. Gaba, D. Wheeler, J. Cruz‐Albrecht, T. Hussain, N. 
Srinivasa and W. Lu, "A Functional Hybrid Memristor Crossbar-
Array/CMOS System for Data Storage and Neuromorphic 
Applications" Nano Letters, vol.12, no. 1, pp. 389–395, February/
March 2012. 
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Large Scale System  
(Neuromorphic Compiler) 

Neuromorphic
Compiler

Digital
Memory

Analog Core
with Cortical

Fabric
(neurons, 
synapses)

Analog 
Memory

(store synaptic
conductances)

# Neurons,
# Synapses,
Connectivity

Routing,
Neuron
Placement Set 

switch states

Acquire 
Switch states

Store

Retrieve

Programmable
Front-End
(focus of this 
paper)

Brain Architecture

Neuromorphic
Compiler

Digital
Memory

Analog Core
with Cortical

Fabric
(neurons, 
synapses)

Analog 
Memory

(store synaptic
conductances)

# Neurons,
# Synapses,
Connectivity

Routing,
Neuron
Placement Set 

switch states

Acquire 
Switch states

Store

Retrieve

Programmable
Front-End
(focus of this 
paper)

Brain Architecture

106 neurons 
106 synapses 
1010 virtual synapses 
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Connectivity Matrix (Neuron A 
connects to B, D, F etc) 

Scalable Neuromorphic Compiler 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

0   101
0   010
0   100
1   010

C
Placement 
Algorithm 

Switch states  
for TMF across 
allotted time- 
multiplexing steps 

Routing  
Algorithm 

Enables rapid and efficient translation of microcircuits into time-multiplexed hardware 

Excitatory Neuron Inhibitory Interneuron 

K. Minkovich, N. Srinivasa, J. M. Cruz-Albrecht, Y. K. Cho and A. Nogin, 
"Programming Time-Multiplexed Reconfigurable Hardware Using a 
Scalable Neuromorphic Compiler," IEEE Trans. on Neural Networks and 
Learning Systems, vol. 23, no. 6, pp. 889-901, June 2012. 
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Placement: Overview 

Purpose: Assign network 
neurons to physical hardware 
nodes 
 
Goal: Minimize congestion 
and allow for evenly 
distributed synaptic 
communication 

Read Network Connectivity From File 

I/O Ring Placement 

Analytic Placement 

Diffusion-Based Smoothing 

Legalization 

Simulated Annealing 

Input(s) 

Output(s) 
–placement 

matrix 
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Analytic Placement 

•  Generates initial placement solution iteratively 
•  Quadratic wire-length minimization problem 

–  Synaptic pathways è springs 
–  Neurons è connection points 
–  Minimizes total potential energy of springs (quadratic function of length) 

•  Converts one-to-many synaptic pathways into pair-wise springs based 
on neural star model 

•  Average synaptic path length sees 3X reduction – directly correlates to 
reduction in required STM timeslots 
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Diffusion-Based Smoothing 

•  Aims to smooth out densely-
connected clusters of initial 
placement solution 

•  Adds forces based on density of 
layout and iteratively spreads out 
placement 

•  Neurons "migrate" to final equilibrium 
positions using velocity functions 
based on local density gradient 
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Legalization 

•  Assigns neurons to actual grid-
based locations 

•  Ensures all neurons are placed and 
no node contains more than 1 
neuron 

•  Sorts nodes by connectivity and 
pushes neurons outward in spiral 
pattern onto unoccupied nodes 
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Simulated Annealing 

•  Aims to further reduce grid wire-
length after legalization 

•  Attempts to move neurons to their 
"ideal" locations via chain of 
relocations 

•  When chain intersects itself, series 
of relocations is guaranteed to 
reduce grid wire-length 
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Routing: Overview 

Initialize Chip 

Assign 
Synapses  

To Timeslots 

Input(s) 

Output(s) – SRAM 
and Pad I/O 

configuration data 

Read Placement From 
File Read Network From File 

A
llo

ca
te

 M
or

e 
Ti

m
es

lo
ts

 F
or

 
U

nr
ou

te
d 

S
yn

ap
se

s 

Route  
Synapses 

Timeslot Assignment 
•  Determine minimum number of timeslots 

required based on fan-in/fan-out restrictions 
•  Sort synapses in increasing order by 

Manhattan distance, pre-synaptic neuron, 
and post-synaptic neuron 

•  Assign synapses in round-robin fashion 
•  When synapse is assigned to given timeslot, 

assign other synapses with same pre-
synaptic neuron and within range of same 
Manhattan Distance within same timeslot 

Synaptic Routing 
•  For each timeslot: 

–  Group assigned synapses by pre-
synaptic neuron 

–  Loop over all available gridlines 
–  For each gridline, try routing as many 

unrouted synapses as possible 

•  To route a given synapse: 
–  Use A-star based search 
–  Minimize cost of path 

Cost of path: 
Manhattan Distance 
Number of switches required 
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Example of Compilation  

60 x 20 x 1 

Capable of compiling 1M neurons and 10B synapses in about 5 minutes 
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Summary 

•  Hybrid Mixed Signal Circuit architecture design (discrete signal and continuous 
time) 

     - Analog for neural and synaptic computation 
     - Digital for spike transmission 
     - Low power, small footprint (1 M neurons and 10 B synapses in cm2 using 1 W) 
 
•  Flexible Connectivity 
     - Programmable STM fabric with compiler enables scalable arbitrary connectivity 
 
•  Scalable Design 
     - Modular arrangement of nodes enable rapid scaling with CMOS technology 
 
•  Currently porting several spiking models on to chip for verifying functional 

performance 
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Challenges 

•  Absence of analog tools for rapid chip design,  verification and debugging makes it 
impossible to scale rapidly 

•  Multichip implementation is necessary to scale to mammalian levels – however 
current interconnect methods such as AER are error prone and power hungry – 
maybe 3D CMOS architectures plus other interconnect designs will help here 

•  So far we have only considered plasticity in the form of reweighting the synapses 
     - reconnection, rewiring and regeneration – currently no solution available 

•  Showing emergent behavior via learning and w/o programming is key for useful 
applications – slowly making inroads here but still will be limited due to above 


