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®
Computers vs. Mammalian Brains

LABORATORIES

Parallel distributed architecture Serial architecture
Spontaneously active No activity unless instructed

Precision in components and
operates at very high speeds (GHz)

Composed of noisy components and
operates at low speeds (< 10 Hz)

Low power (30W),
small footprint (1 liter)

High power (100MW),
Large footprint (40M liters)
Asynchronous (no global clock) Synchronous (global clock)

Digital computing and
communication

Analog computing,
Digital communication

Integrated memory and Memory and Computation are
Computation clearly separated
Intelligence via Learning thru BBE Intelligence via programmed

interactions algorithms/rules



Motivation and Objective

LABORATORIES

Problem von Neumann Machines

» As compared to
biological systems, m
today’s intelligent =
machines are less =
efficient by a factor of a _
million to a billion in
complex environments.

Atrade between
<+~ universality and efficiency

Neuromorphic

\ *‘ N Machines
-‘-“*““‘ \

*Human level performance
\ *Dawn of a new age
Dawn of a new
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« For intelligent machines paradigm Program Objective
to be useful, they must i
compete with biological R
systems. “sinlple” ' o “(|:ompllex" o [log]

Environmental Complexity
e.g. Input Combinatorics

Todd Hylton 2008

The SYNAPSE program seeks to break the programmable machine paradigm
by developing neuromorphic machine technology that scales to biological levels
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Program Structure
LABORATORIES

Baseline/Phase 0 October 7, 2008 - September 6, 2009
Option 1/Phase 1 September 7, 2009 - March 28, 2011
Option 2/Phase 2 March 29, 2011 - January 27, 2013
Performers
— HRL (prime) / o A
_ ke | MICHIGAN |
Subcon’Fracto.rs o N IV i
« University of Michigan TR :

« Stanford University

* Neurosciences Institute

« Boston University
 University of California, Irvine
» George Mason University

A /GEORG é.!SET
» Portland State Unive rSity nusmnn%mi\?mm ms anmmm‘w/

« SET Corporation :

LABORATORIES

HRL SyNAPSE Team :



RADICAIL

Overall Approach

LABORATORIES

/ System (SyNAPSE)\
u

Modules Top-down
(e.g. visual cortex) (simulation)

=

Networks
(e.g. cortical column) Model

:-: Biological Scale

Machine Intelligence
Circuits R / \
(e.g. center-surround)

x Make <mmmp Measure

Components
(e.g. synapse / neuron)

=

Materials

\ (e.g. memristors) /

Todd Hylton 2008

Attack the problem “bottom-up” and “top-down” and
force disciplinary integration with a common set of
objectives.




Brain Architecture

LABORATORIES

Brain is composed of 10" neural cells with 10'° synapses:
Very High Density (107% synapses/cm?) and Connectivity (1:10%) :



Architecture Dynamics:
Leaky Integrate and Fire Neuron FABGRATORIES
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i Architecture Dynamics:
Synaptic Plasticity CABORATORIER

A SYNAPSE
synapse
) Presynaptic Postsynaptic
neuron W “neuron —»
Presygapﬂc
ne,;?:,’:,,,’:,’,’,?“e, Mitochondrion
released by produce ATP

exocytosis
4 Synaptic vesicles
contain neurotransmitter
Synaptic Cleft
Postsynaptic
membrane

has receptors for
neurotransmitters Dendrite of
' second neuron
Postsynaptic T d Electrical = Chemical = Electrical
neuron P cpr s ..
= o Speed, Specificity, Timing
ss Spike Timing
g oF ot Dependent Plasticity
L= L ﬂ.'_ WV — g S
SF 07T et (STDP)
;N a0 (Markram et. al 1997; Bi and Poo, 1998)

tpre — tpost [ms]



Architecture Design:

Small World Connectivity  ARGRATORIES
Regular: Small World: Random:
High L, High C Low L, High C Low L, Low C

Strogatz 2000;
Sporns, 2004)

[ncreasingly random connectivity

« Cortex (> 85% of the brain) is organized as a small world network of neurons
» Dense local connections and sparse long range connections

* The typical distance or synaptic path length L between two randomly chosen
neurons grows as L a N where N is the number of neurons in network

« Efficient communication despite network complexity — needed for survival



.Y Large Scale System (Analog Core) HRL

LABORATORIES

Motion Control
Outputs

# Neurons,

w7 Synapses, ooy +«— Programmable [[S ST
' TN ConneCt|V|ty ! Front-End " Interconnect Fabric

. | Neuromorphic
Compiler

-

Brain Architecture ; Routing,

Neuron

' Placement

Set a I

switch states Ahalog C.ore Analog

| - »| with Cortical

| Digital , Memor

| Fabric emory
l Memory | (store synaptic
I < . (neurons, , conductances)
o Acquire k synapses) j Retrieve

Switch states

Overall Design Goal: 106 neurons and 10'° synapses in cm? consuming 1 W of power

10




Synaptic Time Multiplexing (STM)

LABORATORIES

Bailey & Hammerstrom, 1988

synapses (10* per neuron)

synapses -
(4 per neuron) - Proposed Synaptic Time
" d Aty << Multiplexing scheme overcomes
MUX N\~ . . . . . .
wiring limitation by trading off
/ circuit speed with wiring density
S

Scalable solution to enable CMOS based neuromorphic chip design 1




Reconfigurable Fabric vs. Crossbar

OING Ty
sl

RS LABORATORIES
Reconfigurable Fabrics Fixed Fabrics
Time multiplexed Fabric (HRL) Advantages Advantages
- Flexible Crossbar (SUNY) - No mu|tip|exing
topology simplifies synapse
- High effective design
B density (Wires Limitations
reused for - Fixed topology
Neurons different - Synapse
axons) density limited
by wiring
(axons not
multiplexed)
Broadcasting (HRL) Advantages Synapse in 2D array. Neurons in 1D arrays (HP, IBM)
- Flexible Advantages
topology - No multiplexing
- High effective simplifies synapse
density (Wires " design
reused for S Limitations
different 5 - Fixed topology
axons) 2 - Number of
Limitations neurons scale
- High less than
multiplexing linearly with
ratio needed ] ] chip area
for large - Synapse
networks Neurons density limited

by wiring



STM Fabric & Analog Core

Chip Architecture I ASORATORIER
% \e K. Minkovich, N. Srinivasa, J. M. Cruz-Albrecht, Y.
A\t At K. Cho and A. Nogin, "Programming Time-
l [s.] l ﬁg\ Multiplexed Reconfigurable Hardware Using a
~ Al - = A A Scalable Neuromorphic Compiler," IEEE Trans. on
: N \@ E; El)?; 3 P \@ IE [s.] L;/r T Neural Networks and Learning Systems, vol. 23,
o S s = N -
@/ | \@/1 no. 6, pp. 889-901, June 2012.
/3.~ /e
Vi £224 i P2
Capacitor, Memristor, Design to
minimjize # of
Chip \ Nod ?’Zches
OO0 0000 OoooQgd [P W | 174 % A [
. j*ﬁ sWitches4i+i ‘
] | Data I/O and Bias | J Li \ ﬁ——li
O[] T T 11 mh= P ma!
- ot O Digital :
[ § O . Memory
[ % E ] . Axon
© : S .
S o S0 mmmlvewtn] o femm Do
O S 5 Memory .
O B | m I"\‘/' = 1node
ata I/O and Bias . E— —& (1 neuron, 1
O | Datalio and B | - .*%\YITH synapse
O dooddoOdon o M virtual
synapses)

Time-multiplexing ensures scalability of hardware using conventional CMOS technology 13
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HRL SyNAPSE Fabricated
Phase 0 Hardware Base Components

LABORATORIES

Integrate & Fire Neuron

Synapse with STDP

Input
Signals
Pre-Synaptic Synapse
Neuron f . Out,
[ i/\" slgz::
4. ‘¢ 2 \
y " \
= Vpost i:/ _— Vout
a
90nm CMOS A

—.t
te
's I coy:\panr:t: U, b
© (d)
M red dat. — - L5fit b€ Inout [ ]
npu
) Ex;;‘eerir:!::tal‘ e iﬁfH”“'iﬁ '1‘2v
. i STDP 5 0.4pJ per spike  ows |
pre Synap = - "
T e i % 10nW per neuron .
Ve f s c (a)
i =l i :
Vol L L1 . \ Lsworll/ = p I mput 3 |~ —\. |
ti t.“tuz \ _| Circuit vpost 0 ] | | |
\“\._‘ e - Experimental {{} ! |il
vaoll ) 15, N } 1.2v
VOH } { Tpre - Tpost (ms) Output — : |
@ ®
Jose Cruz-Albrecht, Michael Yung, Narayan Srinivasa, “Energy-Efficient, Neuron, Synapse and STDP Integrated 4

Circuits, “ IEEE Transactions on Biomedical Circuits and Systems, vol. 6. No. 3, pp. 246-256, June, 2012.
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Large Scale System HRL®
(Analog Memory) -

LABORATORIES

# Neurons,
o #Synapses,----------------------_—~ pProgrammable
WL, Connectivity ; i Front-End

| Neuromorphic |:
| Compiler |

Brain Architecture | outng, ;
' Placement :
| . Set a I
| switch states Ar]alog Clore
Digital 5 > w.tr;;:bc:gcm Memory
i l (store synaptic
l Memow - . (neurons, conductances)
e Acquire \ synapses) J

Switch states

15
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®
Absolute vs. Incremental Memristors

LABORATORIES
Abrupt Resistance Switching 0.3 e
T ——_ 10f
Ag electrode Ag electrode 02t | /
Ty o < 10—13r
& *(w% uonu \,Ll_ RO :3; :
< 4\ S > 3 % 10—16’ . . . .
80°° f||ament “ ’ % 01F -1 0 1 2
O

__ Or

Voltage (V)

*Two terminal resistance switching device

* Nanoscale a-Si switching area

« Small cell size, < 50 nm x 50 nm (density > 10'%cm?)
« 3.5 bits or 10 levels of storage per device

« Endurance 3*108 cycles and retention is for months

« CMOS compatible materials and processes

Developed CMOS compatible memristors to enable memristor array fabrication

16
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Functional Memristor Array with

£ CMQOS Integration T ABORATORIES

Data written on memristor array (40x40)

[(@ om (b)
5M 3
CMOS 8 8 of
circuit 8 Ml B 25
Wlth 2 S 20H
. [ 250K 2
memristor
100K
S0K
26K
'.: H
- Bottom electrode Bottom electrode
c
i 1 aaa
35 = 5 ﬁ::: 08
() ; o 1 - 0
. 2 305 SEaSiiiiziisiiasidasssssss 05
Multibit Basf i ’
values 051 = Offstate . 2 ' : oy
. ® level-1 (20Mohm) . . = HH HH ;
written o5 ® level-2 (10Mohm) °e 1 EH FEEEEEH R R 3
on >§ N ® level-3 (1Mohm) 10 :::.F: IEE : fERsanina -:E i e
: & T i ERsEsisisncastunins
memristor 2 . °° 5& i s Wl
devi ® o5l . LA TR T TR 3% 2 -3.5 4 353 252 -15-1 056 0 05 1
et\I,{:CG é Bottom electrode Error
within E ozt
integrated 3 [ K. H. Kim, S. Gaba, D. Wheeler, J. Cruz-Albrecht, T. Hussain, N.
chip S . Srinivasa and W. Lu, "A Functional Hybrid Memristor Crossbar-
eor - '.T e Array/CMOS System for Data Storage and Neuromorphic
0 5 o 1520 2 30 Applications" Nano Letters, vol.12, no. 1, pp. 389-395, February/
Pulse Sequence MarCh 2012

17



M ®
i Large Scale System

(Neuromorphic Compiler) LABORATORIES

Motion Control
Outputs

Punlshmen

Broadce.st Regions

» Interconnect Fabric

# Neurons,
_epam, 7 Synapses, «— Programmable
4° ANy, Connectivity Front-End
= Neuromorphic
g : P 10 neurons
Sy Compiler 106 synapses
‘ : _ 1019 virtual synapses
. . Routing,
Brain Architecture Neuron
Placement Set (Analo Core\
switch states _ g . Analog
Memow apric (store synaptic
- . (neurons, . conductances)
Acquire \_ synapses) Y Retrieve J

Switch states

18
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o Scalable Neuromorphic Compiler

Dy LABORATORIES

Z A Excitatory Neuron . Inhibitory Interneuron
770 1 0.+ 17)
. . Switch states
c_ 0O 0 1 0 E> Placement :> Routing :> P TME across
O 1 0--0 Algorithm Algorithm allotted time-
multiplexing steps
1 0 1--0
\ - ‘J K. Minkovich, N. Srinivasa, J. M. Cruz-Albrecht, Y. K. Cho and A. Nogin,

"Programming Time-Multiplexed Reconfigurable Hardware Using a
Scalable Neuromorphic Compiler," IEEE Trans. on Neural Networks and

Learning Systems, vol. 23, no. 6, pp. 889-901, June 2012.

Connectivity Matrix (Neuron A
connects to B, D, F etc)

Enables rapid and efficient translation of microcircuits into time-multiplexed hardware
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Placement: Overview

LABORATORIES

Input(s)

[ Read Network Connectivity From File ]

Purpose: Assign network I/O Ring Placement

neurons to physical hardware
Analytic Placement

nodes

Goal: Minimize congestion Diffusion-Based Smoothing
and allow for evenly
distributed synaptic Legalization

communication

Simulated Annealing

Output(s)
—placement
matrix

20



Analytic Placement

LABORATORIES

« Generates initial placement solution iteratively
* Quadratic wire-length minimization problem
— Synaptic pathways = springs
— Neurons =» connection points
— Minimizes total potential energy of springs (quadratic function of length)
« Converts one-to-many synaptic pathways into pair-wise springs based
on neural star model

« Average synaptic path length sees 3X reduction — directly correlates to
reduction in required STM timeslots

Iteration 1 | Iteration 2 Iteration 3 | Iteration 4

21

Iteration 5 ' Itere;tion [ lteration 7 Iteration 8



i . . .
Diffusion-Based Smoothing HRL

LABORATORIES
* Aims to smooth out densely- " ‘}* S
connected clusters of initial ALYy
placement solution )Y
» Adds forces based on density of
layout and iteratively spreads out -
placement ‘
* Neurons "migrate” to final equilibrium -
positions using velocity functions \“

based on local density gradient

22



Legalization

Assigns neurons to actual grid-
based locations

Ensures all neurons are placed and
no node contains more than 1
neuron

Sorts nodes by connectivity and
pushes neurons outward in spiral
pattern onto unoccupied nodes

LABORATORIES

23



Simulated Annealing

Aims to further reduce grid wire-
length after legalization

Attempts to move neurons to their
"ideal" locations via chain of
relocations

When chain intersects itself, series
of relocations is guaranteed to
reduce grid wire-length

LABORATORIES
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R A %C Al D
Foaon | Routing: Overview

Input(s) Timeslot Assignment

«  Determine minimum number of timeslots
{ required based on fan-in/fan-out restrictions

Read Slacement From Read Network From File *  Sort synapses in increasing order by
Manhattan distance, pre-synaptic neuron,

| ]
and post-synaptic neuron

v
Initialize Chip «  Assign synapses in round-robin fashion
\/

«  When synapse is assigned to given timeslot,
assign other synapses with same pre-
synaptic neuron and within range of same
Manhattan Distance within same timeslot

Assign
Synapses
To Timeslots

Svynaptic Routing

 For each timesilot:

— Group assigned synapses by pre-
synaptic neuron

— Loop over all available gridlines

Unrouted
Synapses

Route
Synapses

25
O
= o
@0
T N
o o
SE
<F

{ — For each gridline, try routing as many
Output(s) - SRAM unrouted synapses as possible
and Pad I/O

« To route a given synapse:
Cost of path: — Use A-star based search

Manhattan Distance — Minimize cost of path
Number of switches required

configuration data

25
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o Example of Compilation
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60 x 20 x 1 AV SN NS, NS U\ _—"" " .

8 @ 6 & © & 0 O 0
OO OO OO O
OO OO OO OO O
T T e

MUY WY VMY Y M N i —

P MWl MY MU W Y —

O (D =D (D D (D= IO (D (D

Capable of compiling 1M neurons and 10B synapses in about 5 minutes

26
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Hybrid Mixed Signal Circuit architecture design (discrete signal and continuous
time)

- Analog for neural and synaptic computation

- Digital for spike transmission

- Low power, small footprint (1 M neurons and 10 B synapses in cm? using 1 W)

Flexible Connectivity
- Programmable STM fabric with compiler enables scalable arbitrary connectivity

Scalable Design
- Modular arrangement of nodes enable rapid scaling with CMOS technology

Currently porting several spiking models on to chip for verifying functional
performance

27



Challenges
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Absence of analog tools for rapid chip design, verification and debugging makes it
impossible to scale rapidly

Multichip implementation is necessary to scale to mammalian levels — however
current interconnect methods such as AER are error prone and power hungry —
maybe 3D CMOS architectures plus other interconnect designs will help here

So far we have only considered plasticity in the form of reweighting the synapses
- reconnection, rewiring and regeneration — currently no solution available

Showing emergent behavior via learning and w/o programming is key for useful
applications — slowly making inroads here but still will be limited due to above

28



