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Outline

• Machine learning basics

• Application examples

• Data mining is knowledge discovery

• Some results

– Analyzing design-silicon mismatch

– Improve functional verification

– Analyzing customer returns
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Supervised vs. Unsupervised learning

• A generator G of random vector x  R n, drawn 
independently from a fixed but unknown distribution F(x)
– This is the iid assumption

• Supervised learning
– A supervisor S who returns an output value y on every input x, 

according to the conditional distribution function F(y | x) , also 
fixed and unknown

• A learning machine LM, capable of implementing a set of 
functions f(x, ) , where    that is a set of parameters
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Dataset usually look like

• m samples are given for learning

• Each sample is represented as a vector based 
on n features

• In supervised case, there is a y vector

features

supervised



Learning algorithms
• Supervised learning

– Classification   (y represents a list of classes)
– Regression      (y represents a numerical output)
– Feature ranking
– Classification (regression) rule learning

• Unsupervised learning
– Transformation   (PCA, ICA, etc.)
– Clustering
– Novelty detection   (outlier analysis)
– Association rule mining

• In between, we have
– Rule (diagnosis) learning (classification with extremely 

unbalanced dataset – one/few vs. many)



Supervised learning
• Supervised learning learns in 2 directions:

– Weighting the features
– Weighting the samples

• Supervised learning includes
– Classification – y are class labels
– Regression – y are numerical values
– Feature ranking – select important features
– Classification rule learning – select a combination of features
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Unsupervised learning
• Unsupervised learning also learns in 2 directions:

– Reduce feature dimension
– Grouping samples

• Unsupervised learning includes
– Transformation (PCA, multi-dimensional scaling)
– Association rule mining (explore feature relationship)
– Clustering (grouping similar samples)
– Novelty detection (identifying outliers)
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Supervised learning example

• How to extract layout image boxes
• How to represent a image box
• Where to get training samples?
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DAC 2009

• Based on IBM in-house litho simulation (Frank Liu)
• Learn from cell-based examples
• Scan chip layout for spots sensitive to post-OPC lithographic 

variability
• Identify spots almost the same as using a lithographic simulator
• But orders-of-magnitude faster



Supervised - Fmax prediction

• Fmax prediction is to generalize the correlation in 
between a random vector of (cheap) delay 
measurements and the random variable Fmax

n delay measurements
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Predicting system Fmax (ITC 2010)

• A predictive model can be learned from data
– This model takes multiple structural frequency measurements 

as inputs and calculate a predicted system Fmax

• For practical purpose, this model needs to be interpretable
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Unsupervised learning example

• In order to perform novelty detection, we need 
to have a similarity measure

– Similarity between given two wafer maps

• Then, the objective is to identify wafers whose 
patterns are very different from others
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Example results

• Help understand unexpected test behavior based 
on a particular test perspective
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Unsupervised learning example

• In constrained random verification, simulation cycles 
are wasted on ineffective tests (assembly programs)

• Apply novelty detection to identify “novel” tests for 
simulation (tests different from those simulated)
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Example result (ICCAD 2012)

• The novelty detection framework  results in a 
dramatic cost reduction
– Saving 19 hours in parallel machine simulation
– Saving days if ran on single machine simulation
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Simplistic view of “data mining”

• Data are well organized

• Data are planned for the mining task

• Our job

– Apply the best mining algorithm 

– Obtain statistical significant results

16

Test/Design

Data

One Data

Mining

Algorithm

Statistically

Significant

Results



What happened in reality

• Data are not well organized (missing values, not 
enough data, etc.)

• Initial data are not prepared for the mining task

• Questions are not well formulated

• One algorithm is not enough

• More importantly, the user need to know why 
before taking an important action
– Drop a test or remove a test insertion

– Make a design change

– Tweak process parameters to a corner

• Interpretable evidence is required for an action
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Data mining  Knowledge Discovery

• The mining process is iterative
• Questions are refined in the process
• Multiple datasets are produced 
• Multiple algorithms are applied
• Statistical significant (SS) results are interpreted 

through domain knowledge
• Discover actionable and interpretable knowledge
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Example – analyzing design-silicon mismatch

• Based on AMD quad-core processor (ITC 2010)

• There are 12,248 STA-long paths activated by patterns

– They don’t show up as silicon critical paths

• 158 silicon critical but STA non-critical paths

• Question: Why are the 158 paths so special?

– Use 12,248 silicon non-critical paths as the basis for comparison
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Overview of the infrastructure
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Example result
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Rule learning for analyzing functional tests

• Novel tests are special (e.g. hitting an assertion)
– Learn rules to describe their special properties

• Analyze a novel test against a large population of other non-novel tests
– Extract properties to explain its novelty

• Use them to refine the test template
• Produce additional tests similar to the novel tests

• The learning can be applied iteratively on newly-generated novel tests
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Example result (DAC 2013)

• Five assertions of interest-I, II, III, IV, V

– Comprise the same two condition c1 and c2

– Temporal constraints between c1 and c2 are different 
across different assertions

– Initially, only assertion IV was hit by one test out of 2000

– Learn rules for c1 and c2 respectively, and combine the 
rule macro m1(for c1) and rule macro m2(for c2) based on 
the ordering in the novel test
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Coverage improvement

• After initial learning, 100 tests produced by the combined 
rule macro cover 4 out of 5 assertions

• Refining the rules result in coverage improvement
– All 5 assertions are hit and the coverage increase in iteration 1 

and 2, 100 tests each iteration
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Search for a test perspective

• Given a wafer of interest, a set of tests, and a set of wafers
– For example, the wafer contains a customer return

• Find a test perspective (a subset of tests)

• Such that the wafer shows abnormal failing pattern

• Output the test perspective and the wafer map for further 
analysis

25

Subset

of testsw1 … wN

Wafer of interest

All possible tests Similarity

Measure

Novelty

Detection

Find a subset of tests



Customer return analysis

• Applied to analyze customer returns from an 
automotive SoC product line

• Extract abnormal wafer maps for further inspection
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Summary
• Data mining is not a one-step task

– It is an iterative process
– In each iteration, the goal is to discover interpretable and 

actionable knowledge

• Data mining is not fully automatic
– It provides guides to user
– Manual inspection and decision is required

• Effective data mining cannot be implemented 
without some domain knowledge
– Feature generation is often the key
– Methodology development is crucial

• Data mining is best for improving efficiency
– User takes a long time to solve the problem
– Data mining make the process much faster 27


