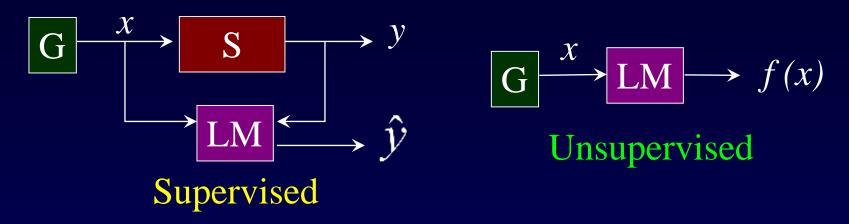
Data Mining In Design and Test Processes – Basic Principles and Promises

Li-C. Wang UC-Santa Barbara

Outline

- Machine learning basics
- Application examples
- Data mining is knowledge discovery
- Some results
 - Analyzing design-silicon mismatch
 - Improve functional verification
 - Analyzing customer returns

Supervised vs. Unsupervised learning



- A generator G of random vector $x \in R^n$, drawn independently from a fixed but unknown distribution F(x)
 - This is the iid assumption
- Supervised learning
 - A supervisor S who returns an output value y on every input x, according to the conditional distribution function $F(y \mid x)$, also fixed and unknown
- A learning machine LM, capable of implementing a set of functions $f(x, \alpha)$, where $\alpha \in \Lambda$ that is a set of parameters

Dataset usually look like

$$\mathbf{X} = \begin{vmatrix} \vec{x}_1 \\ \vec{x}_2 \\ \vdots \\ \vec{x}_m \end{vmatrix} = \begin{vmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m1} & x_{m2} & \dots & x_{mn} \end{vmatrix} \quad \vec{y} = \begin{vmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{vmatrix}$$

supervised

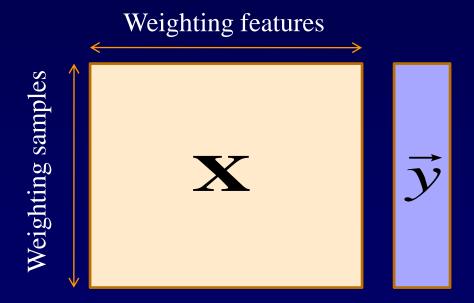
- m samples are given for learning
- Each sample is represented as a vector based on n features
- In supervised case, there is a y vector

Learning algorithms

- Supervised learning
 - Classification (y represents a list of classes)
 - Regression (y represents a numerical output)
 - Feature ranking
 - Classification (regression) rule learning
- Unsupervised learning
 - Transformation (PCA, ICA, etc.)
 - Clustering
 - Novelty detection (outlier analysis)
 - Association rule mining
- In between, we have
 - Rule (diagnosis) learning (classification with extremely unbalanced dataset – one/few vs. many)

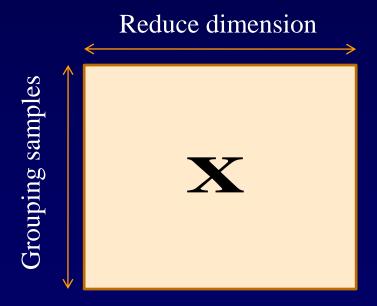
Supervised learning

- Supervised learning learns in 2 directions:
 - Weighting the features
 - Weighting the samples
- Supervised learning includes
 - Classification y are class labels
 - Regression y are numerical values
 - Feature ranking select important features
 - Classification rule learning select a combination of features

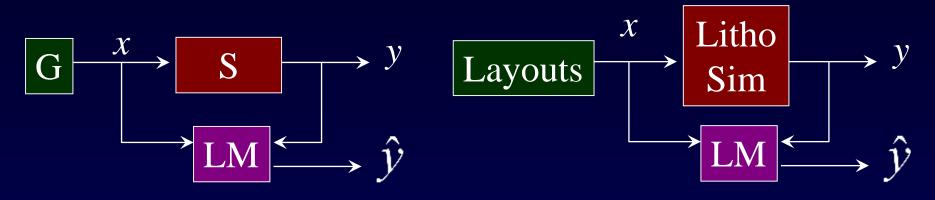


Unsupervised learning

- Unsupervised learning also learns in 2 directions:
 - Reduce feature dimension
 - Grouping samples
- Unsupervised learning includes
 - Transformation (PCA, multi-dimensional scaling)
 - Association rule mining (explore feature relationship)
 - Clustering (grouping similar samples)
 - Novelty detection (identifying outliers)

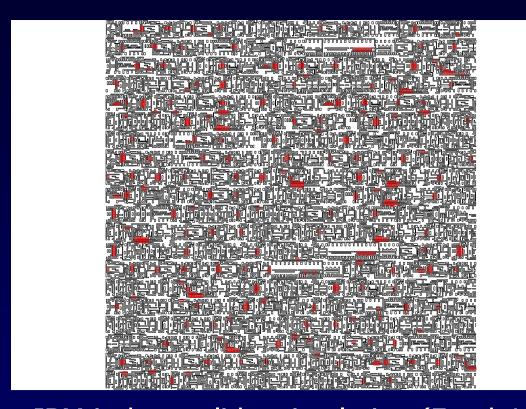


Supervised learning example



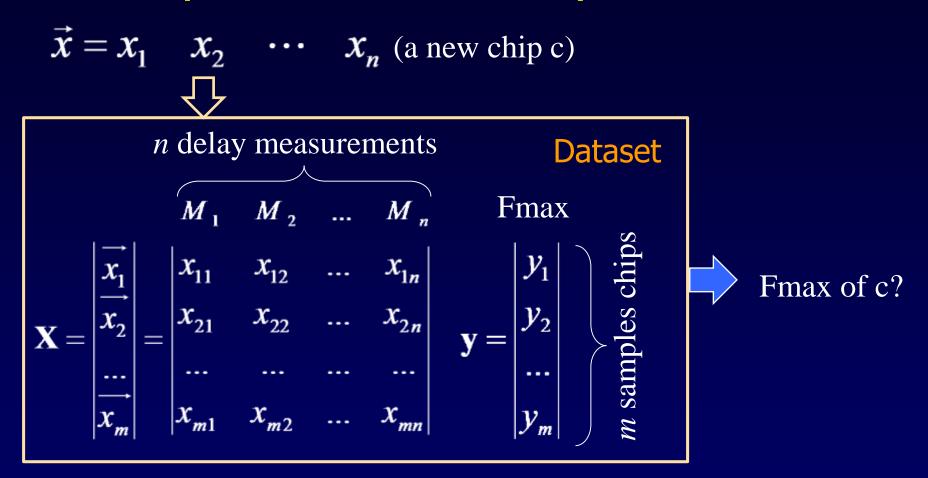
- How to extract layout image boxes
- How to represent a image box
- Where to get training samples?

DAC 2009



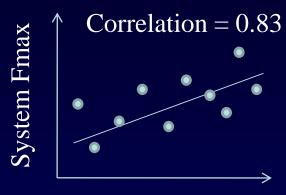
- Based on IBM in-house litho simulation (Frank Liu)
- Learn from cell-based examples
- Scan chip layout for spots sensitive to post-OPC lithographic variability
- Identify spots almost the same as using a lithographic simulator
- But orders-of-magnitude faster

Supervised - Fmax prediction



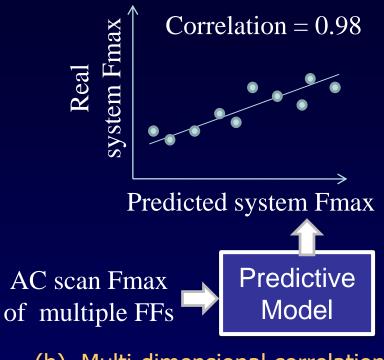
 Fmax prediction is to generalize the correlation in between a random vector of (cheap) delay measurements and the random variable Fmax

Predicting system Fmax (ITC 2010)



AC scan Fmax of the flop that has the highest correlation to system Fmax

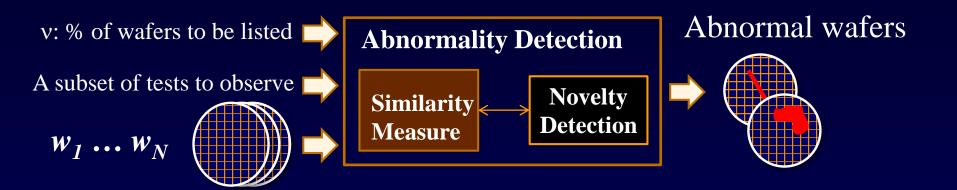
(a). 1-dimensional correlation



(b). Multi-dimensional correlation

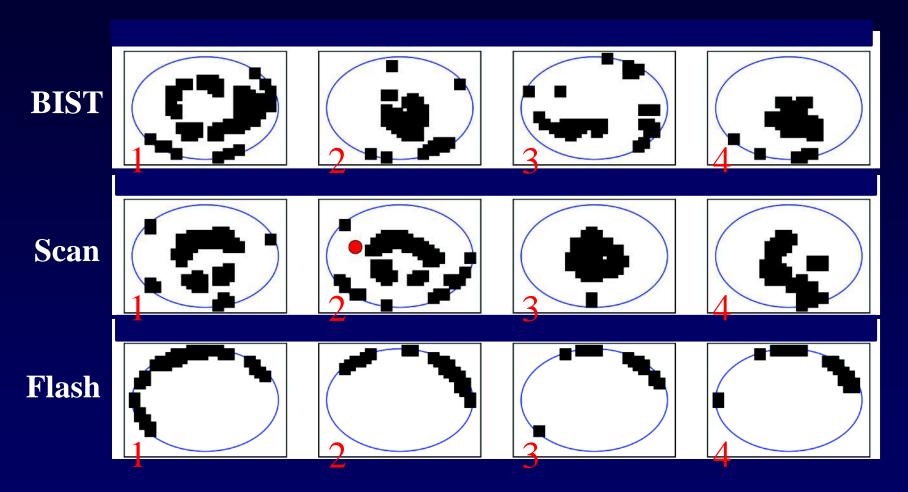
- A predictive model can be learned from data
 - This model takes multiple structural frequency measurements as inputs and calculate a predicted system Fmax
- For practical purpose, this model needs to be interpretable

Unsupervised learning example



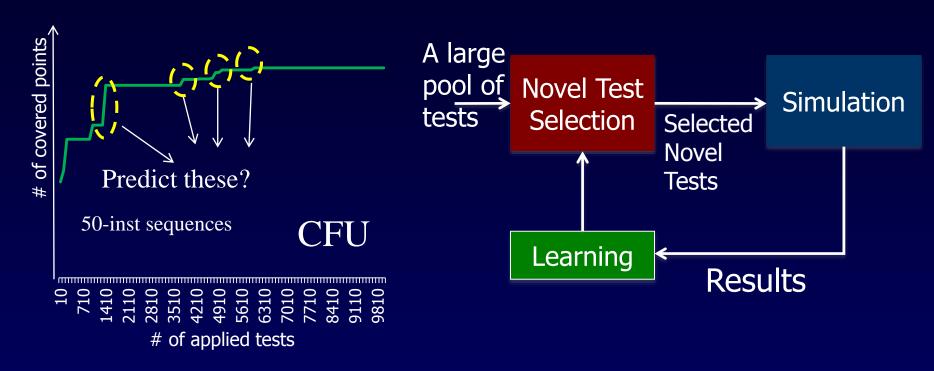
- In order to perform novelty detection, we need to have a similarity measure
 - Similarity between given two wafer maps
- Then, the objective is to identify wafers whose patterns are very different from others

Example results



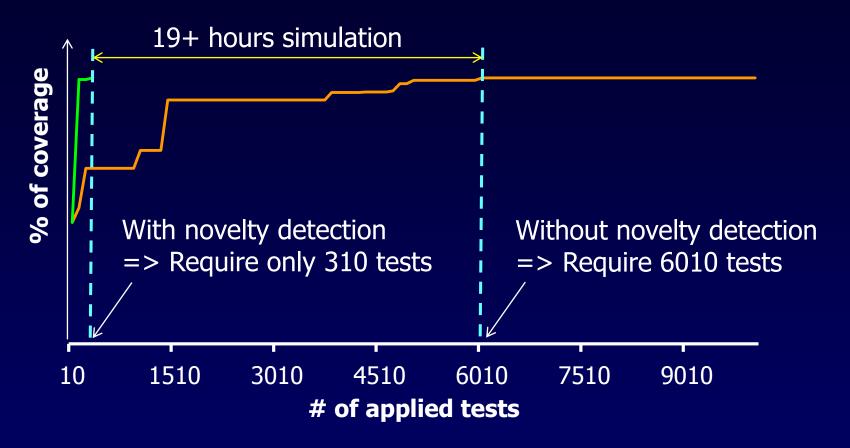
 Help understand unexpected test behavior based on a particular test perspective

Unsupervised learning example



- In constrained random verification, simulation cycles are wasted on ineffective tests (assembly programs)
- Apply novelty detection to identify "novel" tests for simulation (tests different from those simulated)

Example result (ICCAD 2012)



- The novelty detection framework results in a dramatic cost reduction
 - Saving 19 hours in parallel machine simulation
 - Saving days if ran on single machine simulation

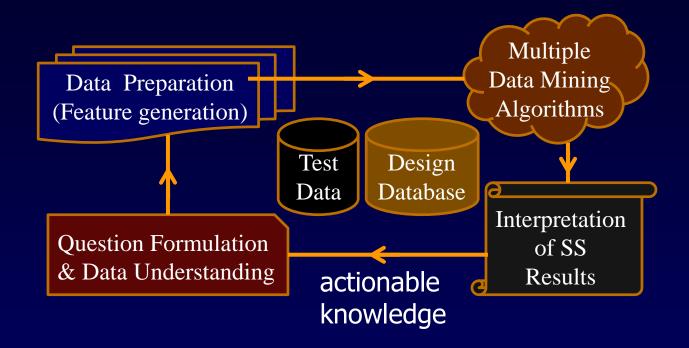
Simplistic view of "data mining"

- Data are well organized
- Data are planned for the mining task
- Our job
 - Apply the best mining algorithm
 - Obtain statistical significant results

What happened in reality

- Data are not well organized (missing values, not enough data, etc.)
- Initial data are not prepared for the mining task
- Questions are not well formulated
- One algorithm is not enough
- More importantly, the user need to know why before taking an important action
 - Drop a test or remove a test insertion
 - Make a design change
 - Tweak process parameters to a corner
- Interpretable evidence is required for an action

Data mining ⇒ Knowledge Discovery



- The mining process is iterative
- Questions are refined in the process
- Multiple datasets are produced
- Multiple algorithms are applied
- Statistical significant (SS) results are interpreted through domain knowledge
- Discover actionable and interpretable knowledge

Example – analyzing design-silicon mismatch

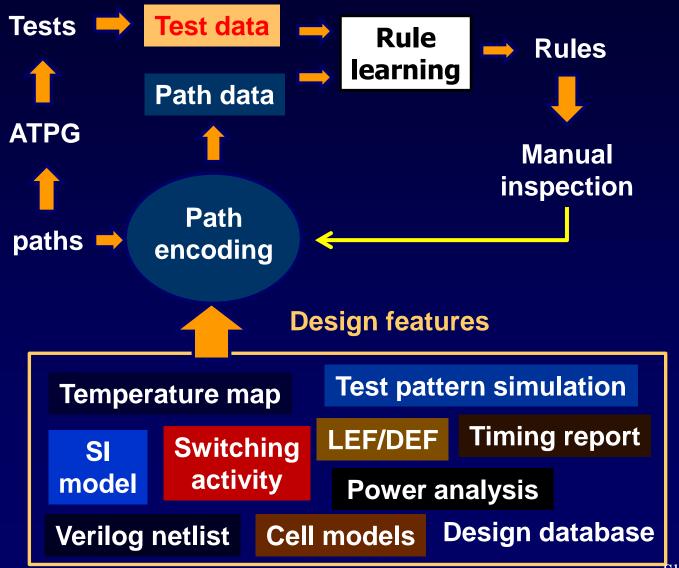
12,248 silicon non-critical paths

VS.

158 silicon critical paths

- Based on AMD quad-core processor (ITC 2010)
- There are 12,248 STA-long paths activated by patterns
 - They don't show up as silicon critical paths
- 158 silicon critical but STA non-critical paths
- Question: Why are the 158 paths so special?
 - Use 12,248 silicon non-critical paths as the basis for comparison

Overview of the infrastructure



Example result

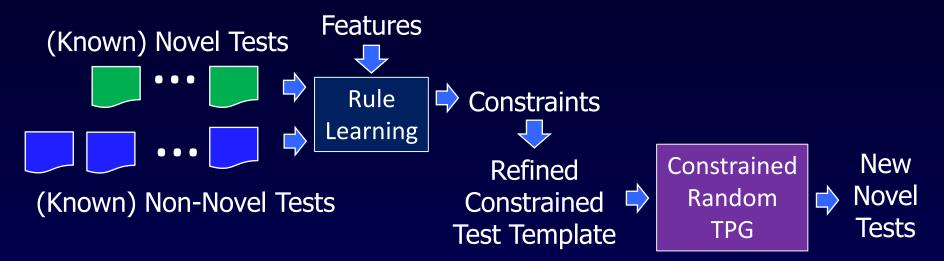
Rule#	Rule	$S_{critical}$	$S_{non-critical}$
#1	$CMAC \in [8, 14] \land$	68	1
	$CCT \in [6,7]$		
#2	$CMAC \in [8, 14] \land$	47	0
	$PS \in [247, \infty]$		
#3	$VRC \in [0.565, 0.571] \land$	47	0
	$PS \in [247, \infty]$		
#4	$CMAC \in [8, 14] \land$	46	0
	$VRC \in [0.565, 0.571]$		
#5	$CMAC \in [8, 14] \land$	46	0
	$VRD \in [0.520, 0.545]$		

Manual inspection of rules #1,2,4,5 led to Explanation of 68 paths; Then, for the rest, run again

Rule#	Rule	$S_{critical}$	S _{non-critical}
#1	$CID \in [102, 148] \land$	26	0
	TS ∈ [378,404]		
#2	$CBC \in [0, \infty] \land$	25	0
	TS ∈ [378,404]		
#3	$CBC \in [0, \infty] \land$	24	0
	$CFD \in [38, 39]$		
#4	CFD ∈ [38,39]∧	24	0
	$TS \in [378, 404]$		

Manual inspection Explains additional 25 paths

Rule learning for analyzing functional tests



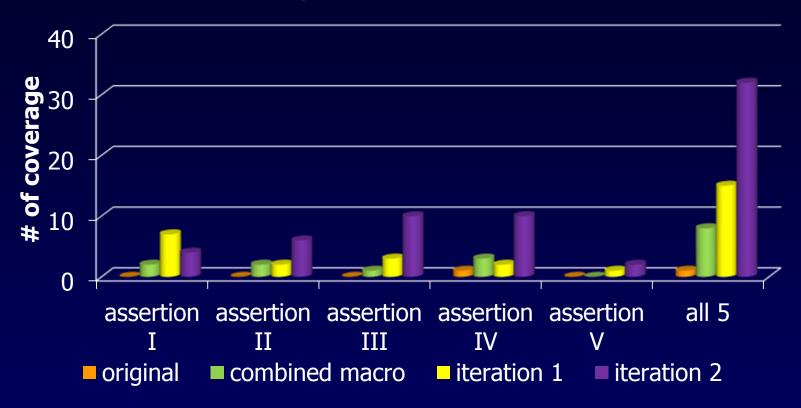
- Novel tests are special (e.g. hitting an assertion)
 - Learn rules to describe their special properties
- Analyze a novel test against a large population of other non-novel tests
 - Extract properties to explain its novelty
- Use them to refine the test template
- Produce additional tests similar to the novel tests
- The learning can be applied iteratively on newly-generated novel tests

Example result (DAC 2013)

- Five assertions of interest-I, II, III, IV, V
 - Comprise the same two condition c₁ and c₂
 - Temporal constraints between c₁ and c₂ are different across different assertions
 - Initially, only assertion IV was hit by one test out of 2000
 - Learn rules for c_1 and c_2 respectively, and combine the rule macro m_1 (for c_1) and rule macro m_2 (for c_2) based on the ordering in the novel test

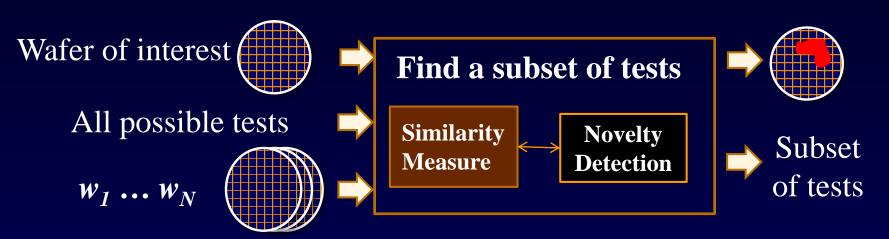
Rule for m1	There is a mulld instruction and the two multiplicands are larger than 2 ³²
Rule for m2	There is a lfd instruction and the instructions prior to the lfd are not memory instructions whose addresses collide with the lfd

Coverage improvement



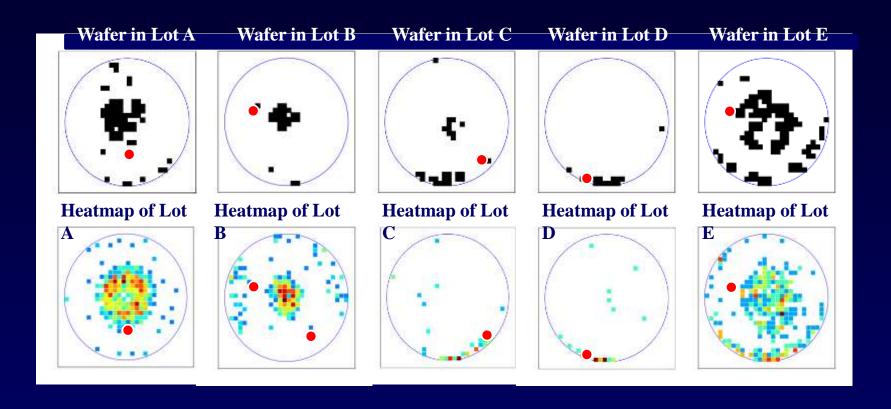
- After initial learning, 100 tests produced by the combined rule macro cover 4 out of 5 assertions
- Refining the rules result in coverage improvement
 - All 5 assertions are hit and the coverage increase in iteration 1 and 2, 100 tests each iteration

Search for a test perspective



- Given a wafer of interest, a set of tests, and a set of wafers
 - For example, the wafer contains a customer return
- Find a test perspective (a subset of tests)
- Such that the wafer shows abnormal failing pattern
- Output the test perspective and the wafer map for further analysis

Customer return analysis



- Applied to analyze customer returns from an automotive SoC product line
- Extract abnormal wafer maps for further inspection

Summary

- Data mining is not a one-step task
 - It is an iterative process
 - In each iteration, the goal is to discover interpretable and actionable knowledge
- Data mining is not fully automatic
 - It provides guides to user
 - Manual inspection and decision is required
- Effective data mining cannot be implemented without some domain knowledge
 - Feature generation is often the key
 - Methodology development is crucial
- Data mining is best for improving efficiency
 - User takes a long time to solve the problem
 - Data mining make the process much faster