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Outline

Machine learning basics
Application examples
Data mining is knowledge discovery

Some results

— Analyzing design-silicon mismatch
— Improve functional verification

— Analyzing customer returns



Supervised vs. Unsupervised learning
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independently from a fixed but unknown distribution F(x)
— This is the 1id assumption

e Supervised learning

— A supervisor S who returns an output value y on every input x,
according to the conditional distribution function F(y | x) , also
fixed and unknown

e A learning machine LM, capable of implementing a set of
functions f(x, «) , where a € A that is a set of parameters



Dataset usually look like
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m samples are given for learning

Each sample is represented as a vector based
on n features

In supervised case, there is a y vector



Learning algorithms

e Supervised learning
— Classification (y represents a list of classes)
— Regression (y represents a humerical output)
— Feature ranking
— Classification (regression) rule learning

e Unsupervised learning
— Transformation (PCA, ICA, etc.)
— Clustering
— Novelty detection (outlier analysis)
— Association rule mining

e In between, we have

— Rule (diagnosis) learning (classification with extremely
unbalanced dataset — one/few vs. many)



Supervised learning

e Supervised learning learns in 2 directions:
— Weighting the features
— Weighting the samples
e Supervised learning includes
— Classification — y are class labels
— Regression —y are numerical values

— Feature ranking — select important features
— Classification rule learning — select a combination of features

Weighting features

X

Weighting samples

SRC eWorkshop, Aug 31, 2010 — Wang UCSB



Unsupervised learning

e Unsupervised learning also learns in 2 directions:
— Reduce feature dimension
— Grouping samples

e Unsupervised learning includes
— Transformation (PCA, multi-dimensional scaling)
— Association rule mining (explore feature relationship)
— Clustering (grouping similar samples)
— Novelty detection (identifying outliers)

Reduce dimension

X

Grouping samples

SRC eWorkshop, Aug 31, 2010 — Wang UCSB



Supervised learning example
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e How to extract layout image boxes
e How to represent a image box
e Where to get training samples?



DAC 2009

Based on IBM in- house I|tho S|mulat|on (Frank Liu)
Learn from cell-based examples

Scan chip layout for spots sensitive to post-OPC lithographic
variability

Identify spots almost the same as using a lithographic simulator
But orders-of-magnitude faster



Supervised - Fmax prediction
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e Fmax prediction is to generalize the correlation in

between a random vector of (cheap) delay
measurements and the random variable Fmax



Predicting system Fmax (ITC 2010)
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(a). 1-dimensional correlation
(b). Multi-dimensional correlation

e A predictive model can be learned from data

— This model takes multiple structural frequency measurements
as inputs and calculate a predicted system Fmax

e For practical purpose, this model needs to be interpretable
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Unsupervised learning example

Abnormal wafers
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e In order to perform novelty detection, we need
to have a similarity measure
— Similarity between given two wafer maps

e Then, the objective is to identify wafers whose
patterns are very different from others
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Example results
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e Help understand unexpected test behavior based
on a particular test perspective
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Unsupervised learning example
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e In constrained random verification, simulation cycles
are wasted on ineffective tests (assembly programs)

e Apply novelty detection to identify “novel” tests for
simulation (tests different from those simulated)
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Example result (ICCAD 2012)

19+ hours simulation

L
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%o of coverage

Without novelty detection
=> Require 6010 tests

With novelty detection
=> Require only 310 tests
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e The novelty detection framework results in a
dramatic cost reduction
— Saving 19 hours in parallel machine simulation
— Saving days if ran on single machine simulation



Simplistic view of “data mining”

>
Test/Design | =
Data

e Data are well organized
e Data are planned for the mining task
e QOur job

— Apply the best mining algorithm

— Obtain statistical significant results

~) D
One Data Statistically

I\/I|n|_ng => | Significant
Algorithm

Results |
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What happened in reality

Data are not well organized (missing values, not
enough data, etc.)

Initial data are not prepared for the mining task
Questions are not well formulated
One algorithm is not enough

More importantly, the user need to know why
before taking an important action

— Drop a test or remove a test insertion

— Make a design change

— Tweak process parameters to a corner

Interpretable evidence is required for an action
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Data mining = Knowledge Discovery
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The mining process is iterative
Questions are refined in the process
Multiple datasets are produced
Multiple algorithms are applied

Statistical significant (SS) results are interpreted
through domain knowledge

Discover actionable and interpretable knowledge

(J Results
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Example — analyzing design-silicon mismatch

12,248 silicon 158 silicon
non-critical paths L critical paths

Based on AMD quad-core processor (ITC 2010)

There are 12,248 STA-long paths activated by patterns
— They don't show up as silicon critical paths

158 silicon critical but STA non-critical paths

Question: Why are the 158 paths so special?
— Use 12,248 silicon non-critical paths as the basis for comparison
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Overview of the infrastructure
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Temperature map Test pattern simulation
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model  activity Power analysis

Verilog netlist Cell models Design database

Slide #20



Example result

CMAC < [8.14]~

CCT = [r 7]

CMAC = [8. 14|~

PS < [247, <]

VRC € [0.565,0.571]A
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VRC € [0.565, 1h“-"]]
{::r-.-l_ﬂ.{:: < [8,14]A
VRD < [0.520,0.545]

Manual inspection of rules #1,2,4,5 led to
Explanation of 68 paths; Then, for the rest, run again
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Rule learning for analyzing functional tests

Features

Known) Novel Tests
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Novel tests are special (e.g. hitting an assertion)

— Learn rules to describe their special properties

Constrained
Random
TPG

New

|j> Novel

Tests

e Analyze a novel test against a large population of other non-novel tests
— Extract properties to explain its novelty

o Use them to refine the test template

e Produce additional tests similar to the novel tests

e The learning can be applied iteratively on newly-generated novel tests



Example result (DAC 2013)

e Five assertions of interest-I, II, III, IV, V
— Comprise the same two condition ¢, and ¢,

— Temporal constraints between ¢, and ¢, are different
across different assertions

— Initially, only assertion IV was hit by one test out of 2000

— Learn rules for ¢, and ¢, respectively, and combine the
rule macro m,(for c,) and rule macro m,(for c,) based on
the ordering in the novel test

Rule for
ml

Rule for
m2

There is a mulld instruction and the two
multiplicands are larger than 232

There is a Ifd instruction and the instructions prior
to the Ifd are not memory instructions whose
addresses collide with the Ifd
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Coverage improvement
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e After initial learning, 100 tests produced by the combined
rule macro cover 4 out of 5 assertions

e Refining the rules result in coverage improvement

— All 5 assertions are hit and the coverage increase in iteration 1
and 2, 100 tests each iteration
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Search for a test perspective

Wafer of interest
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e Given a wafer of interest, a set of tests, and a set of wafers

— For example, the wafer contains a customer return

e Find a test perspective (a subset of tests)

e Such that the wafer shows abnormal failing pattern

e Output the test perspective and the wafer map for further

analysis
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Customer return analysis

Wafer in Lot B

Wafer in Lot C Wafer in Lot D Wafer in Lot E

L o
Heatmap of Lot Heatmap of Lot Heatmap of Lot Heatmap of Lot

e Applied to analyze customer returns from an
automotive SoC product line

o Extract abnormal wafer maps for further inspection
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Summary

Data mining is not a one-step task
— It is an iterative process

— In each iteration, the goal is to discover interpretable and
actionable knowledge

Data mining is not fully automatic
— It provides guides to user
— Manual inspection and decision is required

Effective data mining cannot be implemented
without some domain knowledge

— Feature generation is often the key
— Methodology development is crucial

Data mining is best for improving efficiency
— User takes a long time to solve the problem
— Data mining make the process much faster 27



