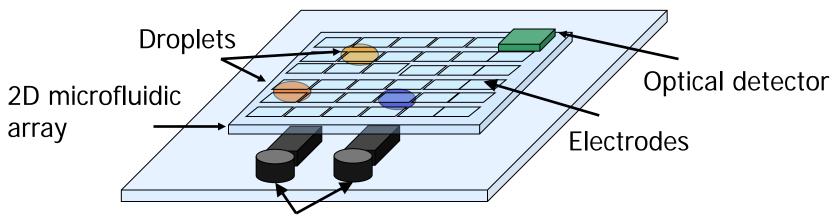
A Two-Stage ILP-Based Droplet Routing Algorithm For Pin-Constrained Digital Microfluidic Biochips

2010 ACM International Symposium on Physical Design (ISPD'10)

Tsung-Wei Huang and Tsung-Yi Ho

http://eda.csie.ncku.edu.tw
Department of Computer Science and Information Engineering
National Cheng Kung University
Tainan, Taiwan

- . Introduction
- Problem formulation
- . Our contribution
- Basic ILP formulation
- Deterministic ILP formulation
- . Experimental results
- . Conclusion


- Introduction
 - Digital microfluidic biochips
 - Pin-constrained digital microfluidic biochips
 - Previous work and limitations
- Our contribution
- Problem formulation
- Basic ILP formulation
- Deterministic ILP formulation
- . Experimental results
- Conclusion

Digital Microfluidic Biochips (DMFBs) (1/2)

- . Three main components:
 - 2D microfluidic array: set of basic cells for biological reactions
 - Reservoirs/dispensing ports: for droplet generation
 - Optical detectors: detection of reaction result
- . Perform laboratory procedures based on *droplets*
 - Droplet: biological sample carrier

Reservoirs/Dispensing ports

The schematic view of a biochip (Duke Univ.)

Digital Microfluidic Biochips (DMFBs) (2/2)

Movement control of a droplet

Pin-Constrained Digital Microfluidic Biochips

Direct-addressing biochips

Dedicated pin to identify the control signal

- Dedicated control pin for each electrode
- Maximum freedom of droplets
- High demanded control pins

Control pins: 24

- 7 8 9 10 11 12
- 13 14 15 16 17 18
- 19 20 21 22 23 24
- Broadcast-addressing biochips *
 - A control pin can be shared by multiple electrodes
 - Flexible for pin-constrained DMFBs
 - Control pin sharing


1 2 3 4 1 2

7 8 9 10 14 12

Control pins: 15

13 14 15 13 8 7

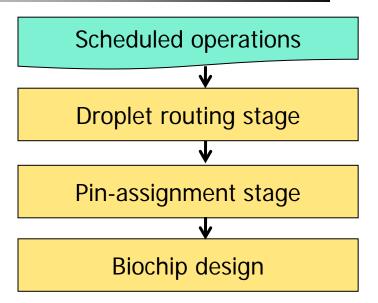
* [T. Xu and K. Chakrabarty, DAC'08]

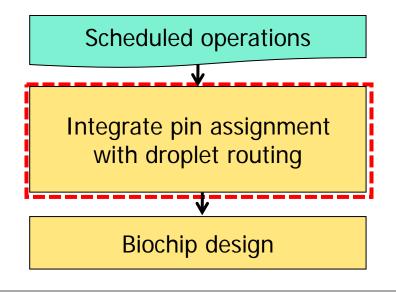
Previous Work and Limitation (1/2)

Droplet routing algorithms

- Droplet routing in the synthesis of digital microfluidic biochips
 [Su et al, DATE'06]
- Modeling and controlling parallel tasks in droplet based microfluidic systems
 [K. F. Böhringer, TCAD'06]
- A network-flow based routing algorithm for digital microfluidic biochips
 [Yuh et al, ICCAD'07]
- Integrated droplet routing in the synthesis of microfluidic biochips
 [T. Xu and K. Chakrabarty, DAC'07]
- A high-performance droplet routing algorithm for digital microfluidic biochips [Cho and Pan, ISPD'08]

Pin-constrained digital microfluidic biochips


- Droplet-trace-based array partition and a pin assignment algorithm for the automated design of digital microfluidic biochips

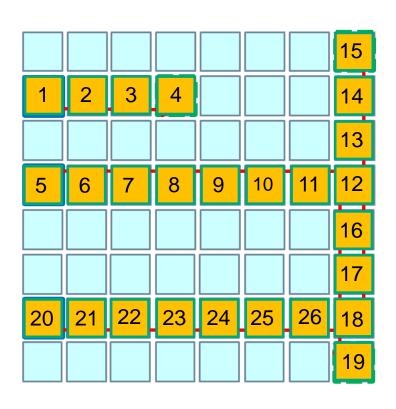

 [T. V. and M. Chalambarty, CODEC 10002001]
 - [T. Xu and K. Chakrabarty, CODES+ISSS'06]
- Broadcast electrode-addressing for pin-constrained multi-functional digital microfluidic biochips
 - [T. Xu and K. Chakrabarty, DAC'08]

Previous Work and Limitation (2/2)

. Limitations

- Separately consider the routing stage and the pin-assignment stage
- The solution quality is limited
 - # of Control pins
 - # of Used cells
 - Execution time

Ours integrated method **simultaneously** minimizes the # of control pins, # of used cells, and execution time for pin-constrained DMFBs.

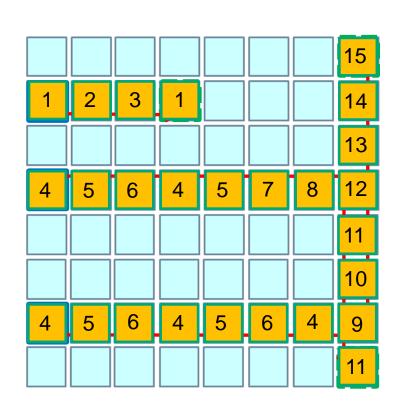

- Introduction
- Our contribution
- Problem formulation
- Basic ILP formulation
- Deterministic ILP formulation
- . Experimental results
- . Conclusion

Previous Method – Direct Addressing

- . Apply the direct addressing to a routing result
 - Separate pin assignment stage and routing stage

Control Pins: 26

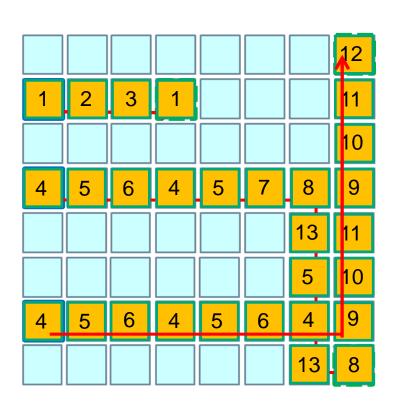
Used Cell: 26


execution time: 18

of control pins = # of used cells

Previous Method (1/2) - Broadcast Addressing

- . Apply the broadcast addressing to a routing result
 - Separate pin assignment stage and routing stage


Control Pins: 15 Used Cell: 26

execution time: 18

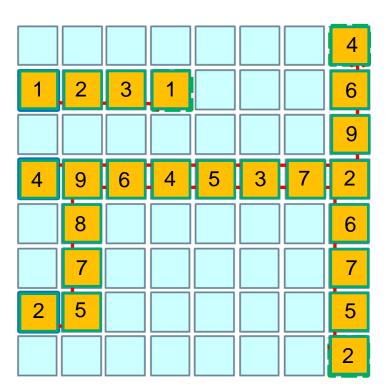
Previous Method (2/2) - Broadcast Addressing

. Simply integrate the broadcast addressing with droplet routing

Control Pins: 15 Used Cell: 26

execution time: 18

Control Pins: 13
Used Cell: 29


execution time: 20

May increase the # of used cells and execution time

Ours (1/2)

Integrate broadcast addressing with droplet routing while simultaneously minimizing the # of control pins, # of used cells, and execution time

Control Pins: 15 Used Cell: 26

execution time: 18

Control Pins: 13 Used Cell: 29

execution time: 20

Control Pins: 9
Used Cell: 23

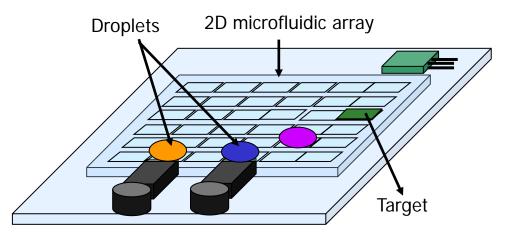
execution time: 15

Minimized # of control pins
Minimized # of used cells
Minimized execution time

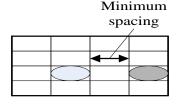
Ours (2/2)

. Contributions:

- We propose the first algorithm that integrates the broadcastaddressing with droplet routing problem, while simultaneously minimizing the # of control pins, # of used cells, and execution time
- A basic ILP formulation is introduced to obtain an optimal solution
- A two-stage ILP-based algorithm is presented to tackle the complexity of the basic ILP formulation



- . Introduction
- . Our contribution
- Problem formulation
- Basic ILP formulation
- Deterministic ILP formulation
- . Experimental results
- . Conclusion



Problem Formulation

- Input: A netlist of *n droplets* $D = \{d_1, d_2, ..., d_n\}$, the locations of modules
- Objective: Route all droplets from their source cells to their target cells while minimizing the # of control pins, # of used cells, and execution time for high throughput designs
- Constraint: Fluidic and timing constraints should be satisfied.

Fluidic constraint

Static fluidic constraint

Dynamic fluidic constraint

- Timing constraint
 - Maximum available executed time

- Introduction
- Problem formulation
- Our contribution
- Basic ILP formulation
 - Objective function
 - Basic constraints
 - Electrode constraints
 - Broadcast-addressing constraints
 - Limitations
- Deterministic ILP formulation
- . Experimental results
- . Conclusion

Objective Function

Objective function

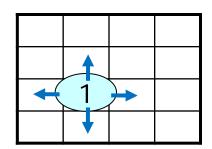
- Minimize the # of control pins
- Minimize the # of used cells
- Minimize the execution time

(product cost)

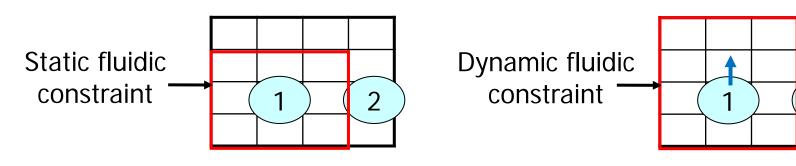
(fault-tolerance)

(reliability)

Minimize:
$$\alpha \sum up(p) + \beta \sum uc(x, y) + \gamma T_l$$


of control pins # of used cells execution time

where α , β , and γ are user-defined parameters



Basic Constraints

- Source/target requirement
 - All droplets locate at their sources at time zero
 - A droplet stays at its target once reaching it
- Exclusive constraint
 - Each droplet has only one location at a time step
- Droplet movement constraint
 - A droplet can move to four adjacent cells or stall

- Static/dynamic fluidic constraint
 - No other droplets are in the 3x3 region centered by a droplet at time t / within t ~ t+1

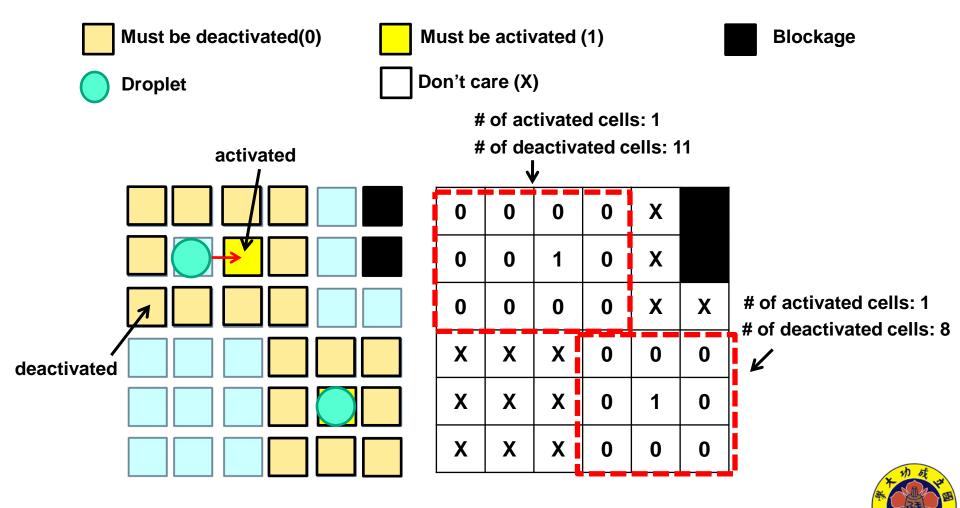
Electrode Constraints (1/2)

Electrode constraints

 To model the control of droplets by turning on/off the actuation voltage of electrodes

Activation type

- "1" represents the activated electrode (turn on)
- "0" represents the deactivated electrode (turn off)
- "X" represents the don't care (both "1" and "0" are legal)


Formulation technique

- Extract the cells that "must-be-activated"
- Extract the cells that "must-be-deactivated"

Electrode Constraints (2/2)

. Illustration

Broadcast-Addressing Constraints

- Broadcast-addressing constraints
 - Model the pin assignment by "compatible" activation sequences

Electrode	E_1	E_2	E_3	E_4	E_5	E_6	$oxed{E_7}$	E_8	E_{g}	E_{10}	E_{11}	E_{12}
Activation sequence	1	1	0	0	0	X	X	0	X	X	X	X
	0	0	1	1	1	0	0	1	X	X	X	X
	0	0	0	0	0	1	1	0	0	0	X	X
	X	X	0	0	0	0	0	0	1	1	0	0
	X	X	X	X	1	0	0	1	X	X	1	1

Merge: E_4 and E_5 0100X+01001 \rightarrow 01001

Pin-assignment result								
Pin	Electrodes	Merged activation sequence						
1	$\mathbf{E}_4,\mathbf{E}_5$	0 1 0 0 1						

or

	Pin-assignment result								
Pin	Electrodes	Merged activation sequence							
1	$\mathbf{E_4}$	0 1 0 0 X							
2	\mathbf{E}_{5}	0 1 0 0 1							

Merge: E_5 and E_6 01001+X0100 \rightarrow Invalid

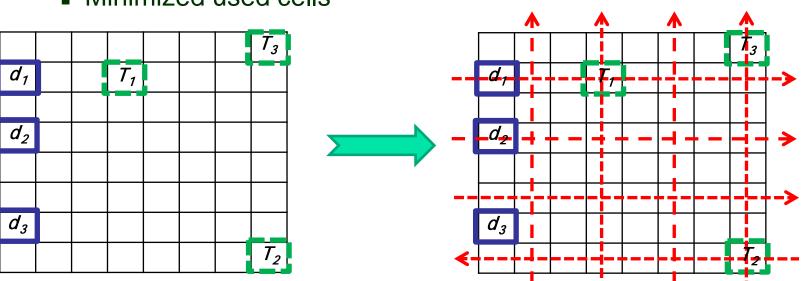
Limitations

- . Pros and cons
 - Advantage: an optimal solution
 - Drawback: only feasible to small applications
- Multi-objectives optimization
 - Simultaneously consider the optimization of the #of control pins,
 # of used cells, and execution time
 - Introduce a high solution space
- Many formulation constraints
 - High # of variables
 - High # of constraints

- Introduction
- Problem formulation
- . Our contribution
- Basic ILP formulation
- Deterministic ILP formulation
 - Two-stage ILP-based routing algorithm
- . Experimental results
- . Conclusion

Two-Stage ILP-Based Routing Algorithm

- . First stage
 - Major goal: reduce the solution space
 - Global routing
 - Obtain an initial routing paths
- . Second stage
 - Major goal: accelerate the searching time
 - Incremental ILP-based routing method
 - Iteratively select an un-routed droplet
 - Route this droplet with previous routing solutions



Global Routing

. Global routing

- Preferred routing tracks construction
 - Reduce the design complexity
- A* maze search for min-cost routing path
 - Orderly routing along these tracks
 - Minimized used cells

T.-W. Huang, C.-H. Lin and T.-Y. Ho, " A Contamination Aware Droplet Routing Algorithm for Digital Microfluidic Biochips," *Proceedings of ACM/IEEE ICCAD 2009*

Source location

Sink location

Global routing track

Updated global routing track

Incremental ILP-Based Routing (1/3)

- Net criticality calculation
 - Determine the routing order globally
 - Consider the interferences and congestion issue between droplets
 - A droplet d_i is said to be critical if d_i has fewer possible routing solutions

$$crit(d_i) = \frac{(|E_b^i| + |E_s^i|) - |E_t^i|}{|BB_i|}$$

$$\begin{split} E_b^i &= \{c \mid c \in E_b \cap BB_i\} \\ E_s^i &= \{c \mid c \in E_{s_j} \cap BB_i, \forall d_j \in D/d_i\} \\ E_t^i &= \{c \mid c \in E_{t_j} \cap BB_i, \forall d_j \in D/d_i\} \end{split}$$

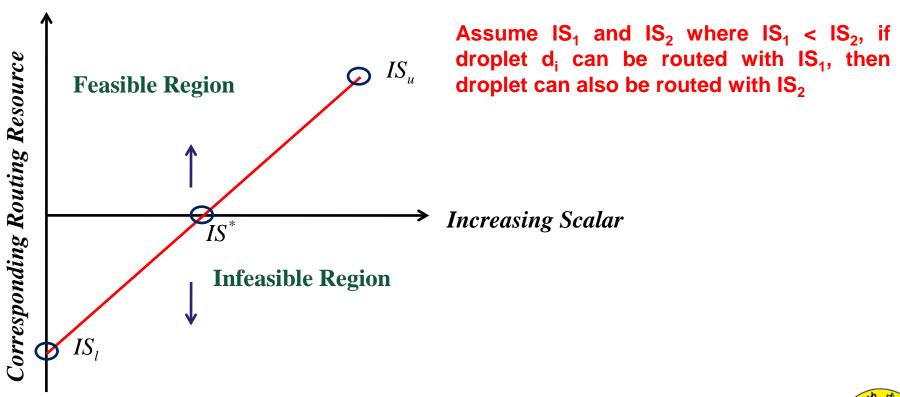
Incremental ILP-Based Routing (2/3)

Deterministic ILP

- Select an un-routed droplet
- Routing resources: M_i
 - Maximum available routing time T_l^i
 - Maximum available control pins P_l^i
- Increasing scalar: IS
 - Growth rate of routing resources

$$M_{i} = (T_{l}^{i} + \sigma_{1}IS) + (P_{l}^{i} + \sigma_{2}IS)$$

- Major goal:
 - Determine the feasibility with the given routing resources
 - Objective function:


Minimize: c

Incremental ILP-Based Routing (3/3)

- Monotonic property
 - Binary solution search method
 - Logarithmic number of searching iterations

- . Introduction
- Problem formulation
- . Our contribution
- Basic ILP formulation
- Deterministic ILP formulation
- Experimental results
- . Conclusion

Experimental Results (1/5)

Implement our algorithm in C++ language on a 2 GHz
 64-bit Linux machine with 16GB memory

. Compare with

- Network flow algorithm [P.-H Yuh et al, ICCAD'07]
- High performance [M. Cho and D. Z. Pan, TCAD'08]

Statistic of benchmarks

Benchmark	Size	#Sub	T _{max}	#Nets	#D _{max}
vitro_1	16 X 16	11	20	28	5
vitro_2	14 X 14	15	20	35	6
protein_1	21 X 21	64	20	181	6
protein_2	13 X 13	78	20	178	6

 \blacksquare Size: size of microfluidic array. \blacksquare #Sub: # of subproblems. \blacksquare T_{max}: timing constraint.

■ #Nets: total # of nets. ■ #D_{max}: maximum # of droplets among subproblems.

Experimental Results (2/5)

Comparison of the # of control pins

	Direct Addressing		Broad Addres		Two-Stage ILP			
Benchmark	[11] [4]		[11]+[10]	[4]+[10]	[11]+IILP	[4]+IILP	Ours	
	P_{avg}	P_{avg}	P_{avg}	P_{avg}	P_{avg}	P_{avg}	P_{avg}	
vitro_1	21.55	23.45	9.48	10.11	9.11	9.49	4.51	
vitro_2	15.73	16.40	8.95	10.64	8.03	9.21	5.01	
protein_1	25.28	26.38	9.52	10.55	8.54	9.25	5.43	
protein_2	12.03	12.35	8.73	8.55	7.72	7.38	4.43	
	3.82	4.03	1.90	2.06	1.73	1.83	1	

[4] M. Cho and D. Z. Pan, "A high-performance droplet routing algorithm for digital microfluidic biochips," IEEE Trans. on CAD, vol. 27, no. 10, pp. 1714-1724, Oct. 2008.

[10] T. Xu and K. Chakrabarty, "Broadcast electrode-addressing for pin-constrained multi-functional digital microuidic biochips," Proc. IEEE/ACM DAC, pp. 173-178, Jun. 2008.

Experimental Results (3/5)

. Comparison of the # of used cells

Benchmark	Direct Addressing		Broad Addre		Two-Stage ILP			
	[11] [4]		[11]+[10]	[4]+[10]	[11]+IILP	[4]+IILP	Ours	
	U.C.	U.C.	U.C.	U.C.	U.C.	U.C.	U.C.	
vitro_1	237	258	237	258	231	243	231	
vitro_2	236	246	236	246	231	229	229	
protein_1	1618	1688	1618	1688	1597	1627	1582	
protein_2	939	963	939	963	927	943	930	
	1.02	1.07	1.02	1.07	1.00	1.02	1	

[4] M. Cho and D. Z. Pan, "A high-performance droplet routing algorithm for digital microfluidic biochips," IEEE Trans. on CAD, vol. 27, no. 10, pp. 1714-1724, Oct. 2008.

[10] T. Xu and K. Chakrabarty, "Broadcast electrode-addressing for pin-constrained multi-functional digital microuidic biochips," Proc. IEEE/ACM DAC, pp. 173-178, Jun. 2008.

Experimental Results (4/5)

. Comparison of the execution time

	Direct Addressing		Broad Addres		Two-Stage ILP			
Benchmark	[11]	[4]	[11]+[10]	[4]+[10]	[11]+IILP	[4]+IILP	Ours	
	Avg. T _i	Avg. T _I	Avg. T _I	Avg. T _I	Avg. T _i	Avg. T _I	Avg. T _I	
vitro_1	13.00	14.30	13.00	14.30	12.47	13.55	12.41	
vitro_2	11.33	12.00	11.33	12.00	11.01	11.48	10.46	
protein_1	16.31	16.55	16.31	16.55	16.08	15.44	15.42	
protein_2	10.51	12.19	10.51	12.19	10.33	11.52	10.22	
	1.05	1.14	1.05	1.14	1.03	1.08	1	

[4] M. Cho and D. Z. Pan, "A high-performance droplet routing algorithm for digital microfluidic biochips," IEEE Trans. on CAD, vol. 27, no. 10, pp. 1714-1724, Oct. 2008.

[10] T. Xu and K. Chakrabarty, "Broadcast electrode-addressing for pin-constrained multi-functional digital microuidic biochips," Proc. IEEE/ACM DAC, pp. 173-178, Jun. 2008.

Experimental Results (5/5)

. Comparison of the runtime

Benchmark	Basic ILP	[11]+IILP	[4]+IILP	Ours
Benchinark	CPU (min)	CPU (sec)	CPU (sec)	CPU (sec)
vitro_1	> 7200	14.33	15.31	10.11
vitro_2	> 7200	16.49	18.38	8.32
protein_1	> 7200	28.43	34.51	30.13
protein_2	> 7200	22.16	28.33	21.38
	N.C.	1.34	1.55	1

[4] M. Cho and D. Z. Pan, "A high-performance droplet routing algorithm for digital microfluidic biochips," IEEE Trans. on CAD, vol. 27, no. 10, pp. 1714-1724, Oct. 2008.

[10] T. Xu and K. Chakrabarty, "Broadcast electrode-addressing for pin-constrained multi-functional digital microuidic biochips," Proc. IEEE/ACM DAC, pp. 173-178, Jun. 2008.

- . Introduction
- Problem formulation
- . Our contribution
- Basic ILP formulation
- Deterministic ILP formulation
- . Experimental results
- Conclusion

Conclusion

- . We proposed the first algorithm that integrates the broadcastaddressing with the droplet routing problem while simultaneously minimizing the # of control pins, # of used cells, and execution time
- A basic ILP formulation is introduced to optimally solve this problem
- A two-stage ILP-based routing algorithm is also presented to tackle the complexity of the basic ILP formulation
- Experimental results demonstrate that our algorithm achieves the best results in terms of the # of control pins, # of used cells, and execution time.

Thank You for Your Attention!

