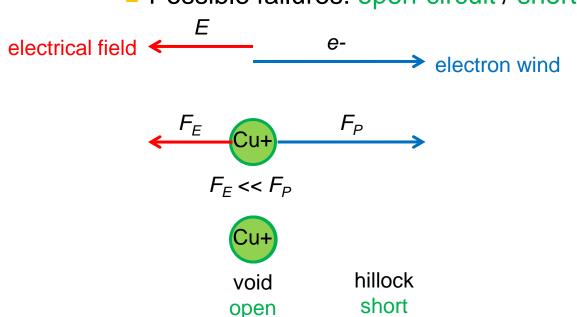
國立交通大學電子工程學系

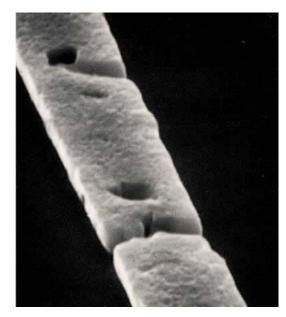
OPTIMAL WIRING TOPOLOGY FOR ELECTROMIGRATION AVOIDANCE CONSIDERING MULTIPLE LAYERS AND OBSTACLES

IRIS HUI-RU JIANG HUA-YU CHANG CHIH-LONG CHANG

Introduction to EM

Problem & properties

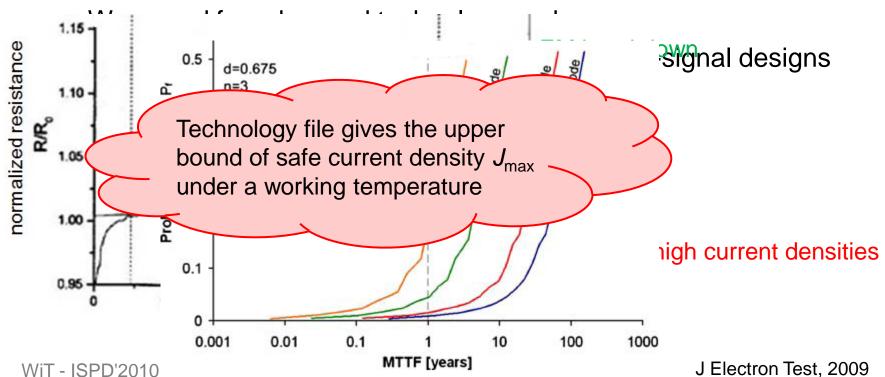

Our approach


Experimental results

Conclusion

Electromigration (EM)

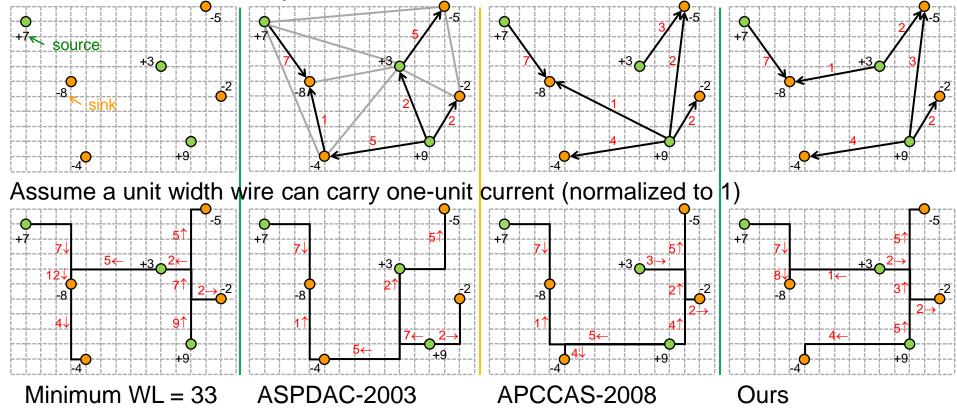
- An extremely dense electron flow (electron wind) knocks off atoms within the wire and moves them away
- This transport leaves a gap at one end and increase the stress at the other
 - Possible failures: open-circuit / short-circuit



SANYO Semiconductor Co., Ltd.

EM is a wear-out failure

- Triggered after being used for a period of time
- Measured in terms of mean time to failure (MTTF)
 - Black's equation, TED-1969
 - Current density and working temperature



EM simulation/analysis

- Because EM occurs only after a circuit has been used for a period of time, the defect chips cannot be filtered out during product testing.
- It is desired to characterize the realistic current values for each terminal/wire and to identify the wires that are potentially threatened by EM.
- Wiring topology for EM

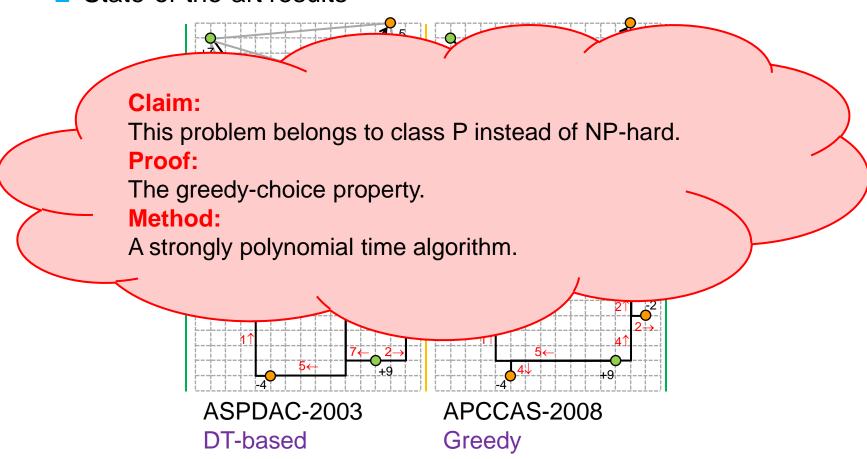
- EM analysis/estimation
- □ Wiring topology for EM <-
 - A thin wire should be widened for EM safety.
 - Conventional EM fixing is applied at post-layout, which may use many routing resources and layout changes.
 - If a good wiring topology considering EM is applied to a router, we may immune EM with much fewer routing resources.
 - □ e.g.,
 - Adler & Barke, DATE-2000
 - Adler et. al, DAC-2000
 - Lienig & Jerke, ASPDAC-2003
 - Yan & Chen, APCCAS-2008

- The routing resource is measured by the total wire area.
 - The wire width is determined by EM-safe current density instead of minimum printable width.

Area = 144

Area = 142 (optimal)

WiT - ISPD'2010


Area = 182

Area = 154

Prior works tended towards heuristics

Area = 154

State-of-the-art results

Area = 144

WiT - ISPD'2010

Introduction to EM

Problem & properties

Our approach

Experimental results

Conclusion

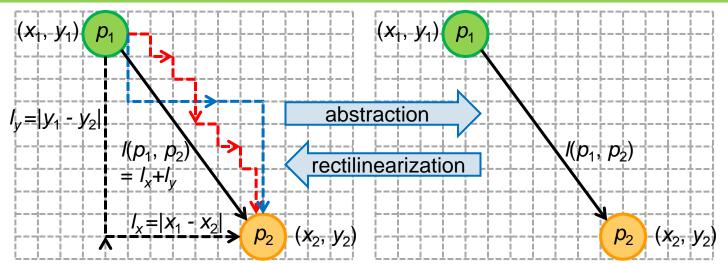
Wiring Topology for EM Avoidance (TEA)

Input

- A set $S = \{s_1, s_2, ..., s_m\}$ of m current sources
- A set $T = \{t_1, t_2, ..., t_n\}$ of n current sinks
 - Each current source i (sink j) is associated with its flow
- The maximum tolerable current density J_{max}
- \blacksquare The minimum feasible wire width w_{\min} for each routing layer/via

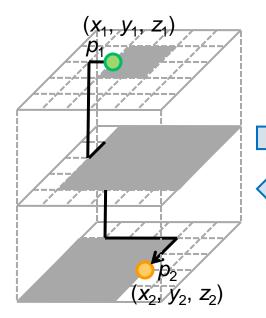
Output

A wiring topology to connect all current sources and sinks in S+T

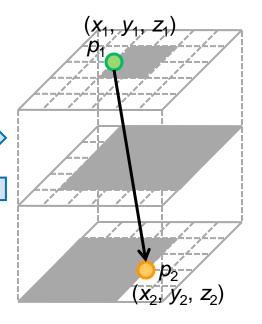

IRIS H.-R. JIANG

- Minimum total wire area of its detailed routing tree
- Sufficient current for each wire segment: $f \propto w$
- Kirchhoff's current conservation law

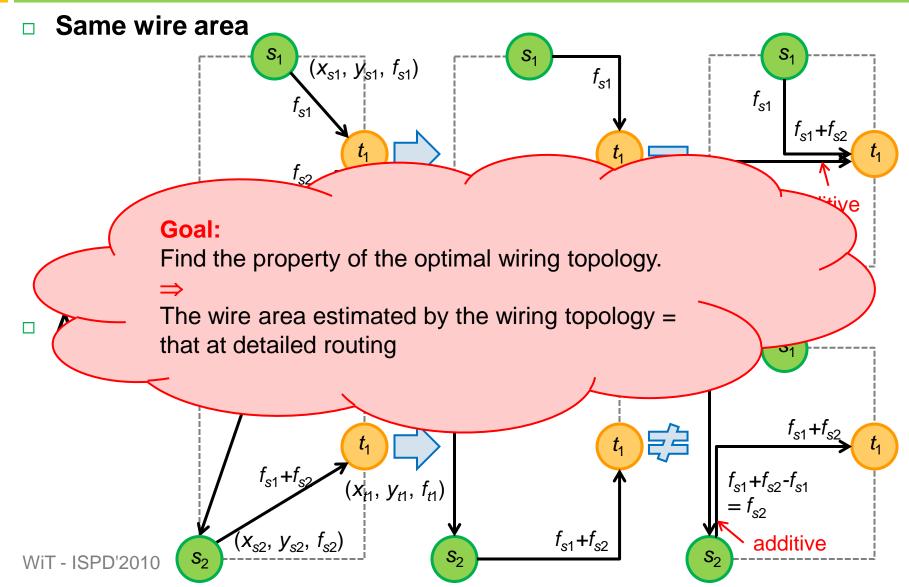
Remarks:


- $f \propto w$: The wire width offering one unit current is a layer-specific constant.
- The current values can be DC, RMS, peak, average currents under different EM conditions and for various signal types.
- Feasibility: $\sum f_{si} + \sum f_{tj} = 0$

2DNo obstacles


□ **3D**With obstacles

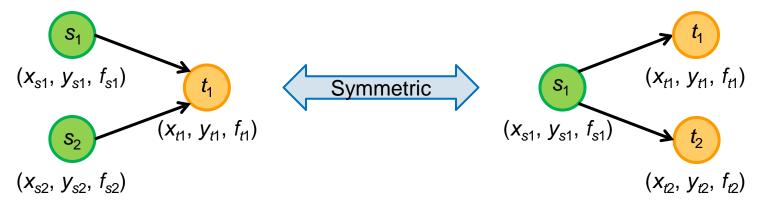
the minimum accumulated area cost for one unit current



abstraction

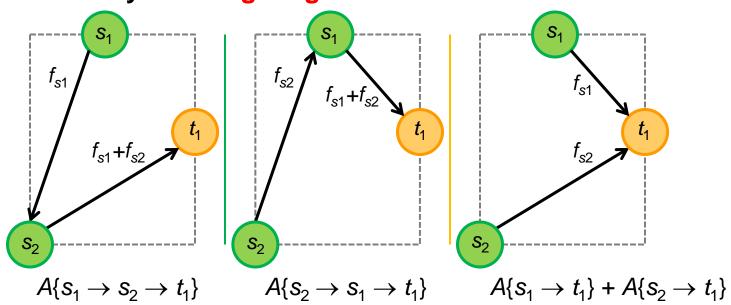
rectilinearization

WiT - ISPD'2010


The Greedy-Choice Property (1/3)

IRIS H.-R. JIANG

The generic form: 2 sources s_1 , s_2 and 1 sink t_1 .


$$f_{s1} + f_{s2} + f_{t1} = 0$$

We prove the greedy-choice property

The Greedy-Choice Property (2/3)

Prove by exchange argument.

- Axes are independent.
- Consider 3 points z_1 , z_2 and z_3 on an axis: fix z_1 and z_3 , move z_2 $\Rightarrow |z_1 z_2| + |z_2 z_3| \ge |z_1 z_3|$

IRIS H.-R. JIANG

$$\Rightarrow |Z_1 - Z_2| + |Z_2 - Z_3| \ge |Z_1 - Z_3|$$

$$- (Z_2) - (Z_1) - (Z_2) - (Z_3) - (Z_2) \rightarrow Z$$

 Corollary: The greedy-choice property holds at a general multilayer space with obstacles.

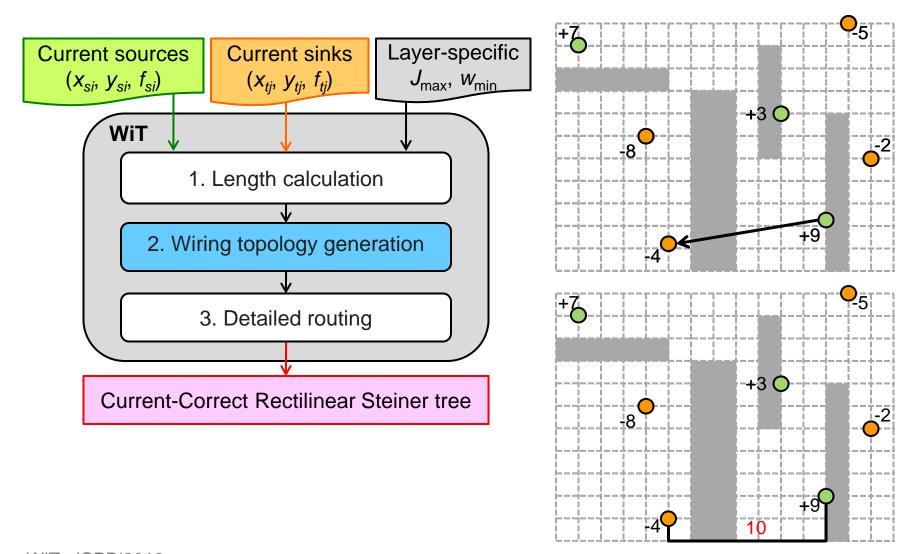
The greedy-choice property

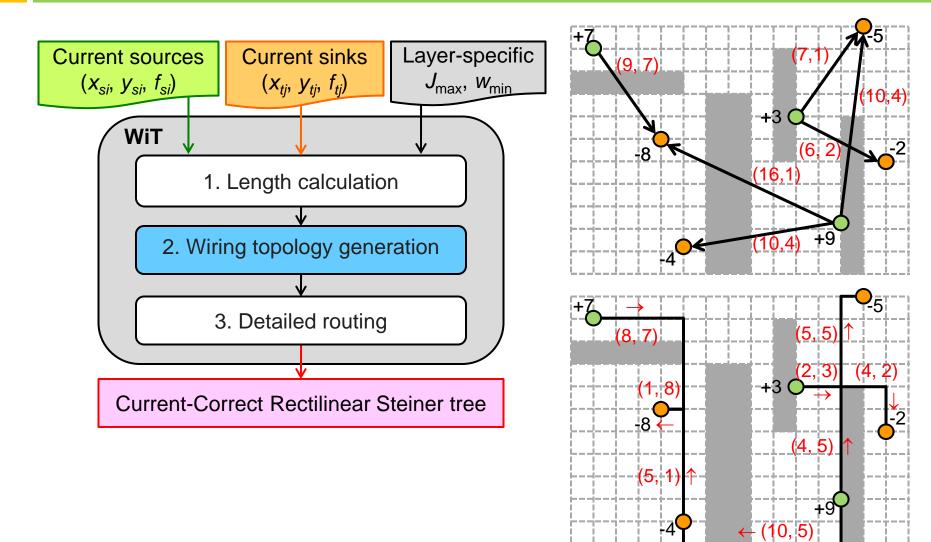
- We can consider wire connections only from sources to sinks.
- The wire area keeps the same after the slant edges of the greedychoice property are rectilinearized.

Outline

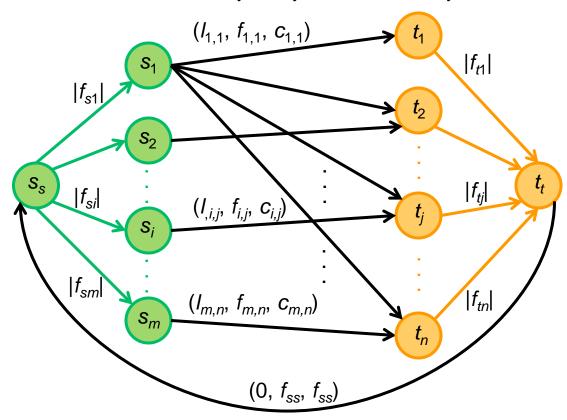
16 IRIS H.-R. JIANG

Introduction to EM

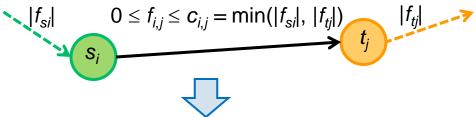

Problem & properties


Our approach

Experimental results

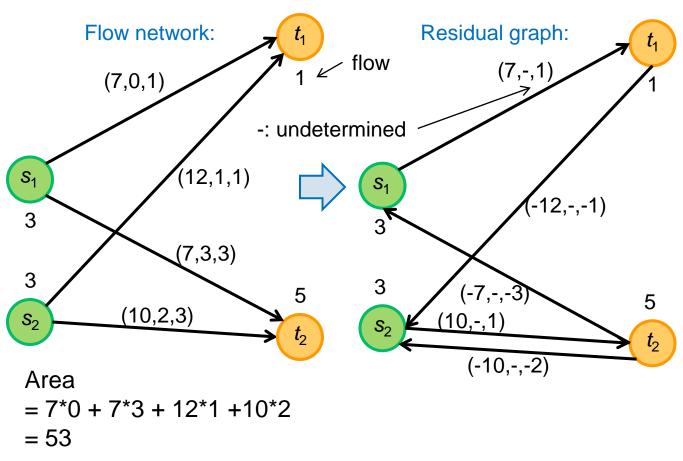

Conclusion

Overview of WiT (1/2)


- Triple: (wirelength, flow, capacity)
 - Feasible flow: $0 \le f_{i,j} \le c_{i,j} = \min(|f_{si}|, |f_{tj}|)$

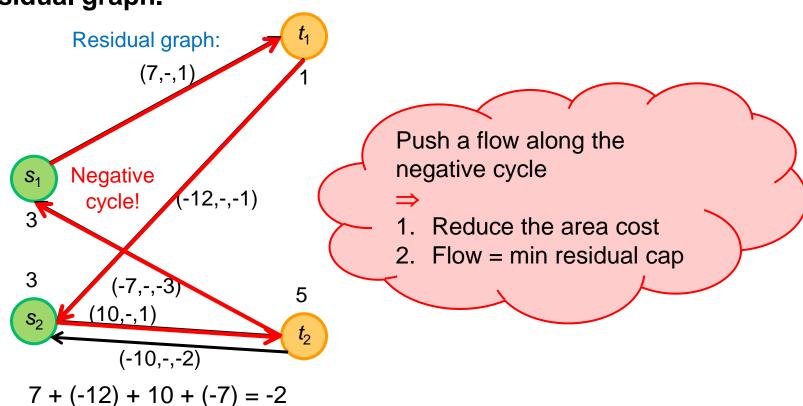
Residual Graph

- Forward edge: push flow
- **Backward edge: return flow**

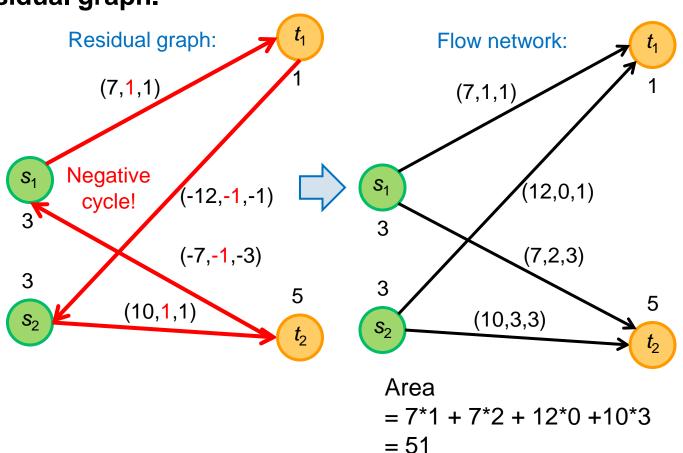


Residual graph:
$$c'_{i,j} = c_{i,j} - f_{i,j}, \ l'_{i,j} = +l_{i,j}$$

$$c'_{i,j} = -f_{i,j}, \ l'_{i,j} = -l_{i,j}$$


Wire Area Optimization

Triple: (wirelength, flow, capacity)


Negative Cycle Detection (1/2)

Theorem: Negative-Cycle Removal: If the flow assignment of a flow network is optimal, there exists no negative cycles in its residual graph.

Negative Cycle Detection (2/2)

Theorem: Negative-Cycle Removal: If the flow assignment of a flow network is optimal, there exists no negative cycles in its residual graph.

The WiT Algorithm

24 IRIS H.-R. JIANG

WiT(S, T)

- 1. construct the flow network and calculate paths and lengths
- 2. if the given flow at sources/sinks is legal then
- 3. find an initial flow assignment
- 4. while there exists a negative cycle in the residual graph do
- 5. remove the negative cycle
- 6. update the flow network
- 7. update the residual graph
- 8. rectilinearize the wiring topology by stored paths

Initial solution:

- For efficiency, we select the greedy method.
- For effectiveness, we choose the minimum wirelength as the greedy rule.

Introduction to EM

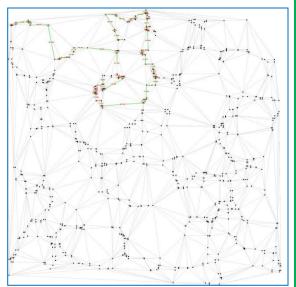
Problem & properties

Our approach

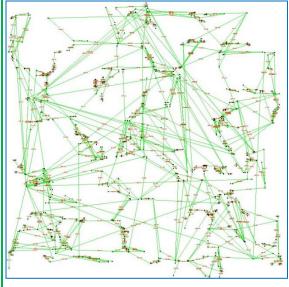
Experimental results

Conclusion

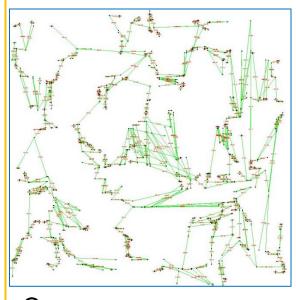
Results


26 IRIS H.-R. JIANG

Implementation:


- C++ language with LEDA package
- NB with an Intel® Core™2 CPU T9400 of 2.53 GHz frequency and 4 GB memory under Windows Vista™ Business 64 bit Service Pack 1 OS.

Testcase		INP1	INP2	INP3	INP4	IND1	IND2	IND3	IND4	IND5	RT01	RT02	RT03	RT04	RT05
#Terminals		7	16	10	16	10	10	10	25	33	75	180	303	475	850
ASPDAC-2003	Area	154	122	210	32	6,661	79,400	FAIL	23,112	31,466	FAIL	FAIL	FAIL	FAIL	FAIL
	Runtime (s)	0.001	0.002	0.001	0.002	0.038	0.016	-	0.016	0.040	-	-	-	-	-
APCCAS-2008	Area	144	98	128	40	5,319	79,000	6,181	16,000	20,814	189,437	10,638,884	3,360,716	6,475,941	59,207,240
	Runtime (s)	0.001	0.002	0.001	0.002	0.001	0.001	0.001	0.003	0.005	0.120	4.958	45.553	297.806	8,573.453
	Refined area	142	90	116	32	5,301	74,200	5,513	13,728	17,044	144,071	7,151,286	2,325,806	4,205,757	37,318,054
	Gain	2	8	12	8	18	4,800	668	2,272	3,770	45,366	3,487,598	1,034,910	2,270,184	21,889,186
	#Iterations	1	2	1	1	1	3	15	20	29	147	622	1,938	4,288	9,238
	Refine runtime (s)	0.000	0.000	0.001	0.000	0.000	0.001	0.001	0.002	0.003	0.028	0.496	4.741	28.883	440.429
WiT	Initial area	142	94	116	32	5,301	78,200	5,629	15,092	19,624	156,489	8,139,250	2,840,420	4,831,845	45,677,120
	Initial runtime (s)	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.015	0.042	0.109	0.425
	Final area	142	90	116	32	5,301	74,200	5,513	13,728	17,044	144,071	7,151,286	2,325,806	4,205,757	37,318,054
	Gain	0	4	0	0	0	4,000	116	1,364	2,580	12,418	987,964	514,614	626,088	8,359,066
	#Iterations	0	1	0	0	0	3	2	17	37	78	415	949	1,197	3,487
	Total runtime (s)	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.016	0.297	1.794	6.489	89.497


- Efficient initial solution.
- We can refine any initial solution to the optimal.

ASPDAC-2003 FAILED

APCCAS-2008 Area = 59,207,240

Ours Area = 37,318,054

- In this paper, we focus on wiring topology generation for avoiding electromigration for power networks or signal nets in analog and mixed-signal designs.
- The major contribution is that we claim this problem belongs to class P instead of class NP-hard.
- Based on the proof of the greedy-choice property, we successfully model this problem on a multi-source multi-sink flow network and then can solve it in a strongly polynomial time.
- Experimental results prove the efficiency and effectiveness of our algorithm.

29

Thank You!

Iris Hui-Ru Jiang huiru.jiang@gmail.com

Backup slides

Multi-Source Multi-Sink Circuits?

- Q: What kind of design has multiple sources and sinks?
- A: Usual in analog or mixed signal designs, power network, etc.

Non-uniform Temperature Distribution

- Q: What if non-uniform temperature distribution within a chip?
- A: This abstraction still works with given temperature distribution map.