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Electromigration

 Electromigration (EM)
 An extremely dense electron flow (electron wind) knocks off 

atoms within the wire and moves them away
 This transport leaves a gap at one end and increase the stress at 

the other
 Possible failures: open-circuit / short-circuit
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Electromigration Is a Reliability Issue

 EM is a wear-out failure
 Triggered after being used for a period of time
 Measured in terms of mean time to failure (MTTF)
 Black’s equation, TED-1969

 Current density and working temperature
 Worsened for advanced technology nodes
 Signal nets / power network in analog / mixed-signal designs
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high current densities

EM breakdown

J Electron Test, 2009

Technology file gives the upper 
bound of safe current density Jmax
under a working temperature
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EM Reliability (1/2)

 EM simulation/analysis
 Because EM occurs only after a circuit has been used for a 

period of time, the defect chips cannot be filtered out during 
product testing.

 It is desired to characterize the realistic current values for each 
terminal/wire and to identify the wires that are potentially 
threatened by EM.

 Wiring topology for EM
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EM Reliability (2/2)

 EM analysis/estimation
 Wiring topology for EM

 A thin wire should be widened for EM safety.
 Conventional EM fixing is applied at post-layout, which may use 

many routing resources and layout changes.
 If a good wiring topology considering EM is applied to a router, 

we may immune EM with much fewer routing resources.
 e.g.,
 Adler & Barke, DATE-2000
 Adler et. al, DAC-2000
 Lienig & Jerke, ASPDAC-2003
 Yan & Chen, APCCAS-2008
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EM Routing

 The routing resource is measured by the total wire area.
 The wire width is determined by EM-safe current density instead 

of minimum printable width.
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Our Contribution

 Prior works tended towards heuristics
 State-of-the-art results
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Outline
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Wiring Topology for EM Avoidance (TEA)

 Input
 A set S = {s1, s2, …, sm} of m current sources
 A set T = {t1, t2, …, tn} of n current sinks
 Each current source i (sink j) is associated with its flow

 The maximum tolerable current density Jmax
 The minimum feasible wire width wmin for each routing layer/via

 Output
 A wiring topology to connect all current sources and sinks in S+T
 Minimum total wire area of its detailed routing tree 
 Sufficient current for each wire segment: f ∝ w
 Kirchhoff’s current conservation law

 Remarks:
 f ∝ w: The wire width offering one unit current is a layer-specific 

constant.
 The current values can be DC, RMS, peak, average currents 

under different EM conditions and for various signal types.
 Feasibility: ∑fsi + ∑ftj = 0
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Wirelength: Abstraction

 2D

 3D
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Wire Area: Superposition

 Same wire area 

 Area may vary 
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The Greedy-Choice Property (1/3)

 The generic form: 2 sources s1, s2 and 1 sink t1. 
 fs1 + fs2 + ft1 = 0

 We prove the greedy-choice property 
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The Greedy-Choice Property (2/3)

 Prove by exchange argument.

 Axes are independent.
 Consider 3 points z1, z2 and z3 on an axis: fix z1 and z3, move z2

⇒ |z1 - z2| + |z2 - z3| ≥ |z1 - z3|

 A{s1 → s2 → t1} or A{s2 → s1 → t1} ≥ A{s1 → t1} + A{s2 → t1} 

WiT - ISPD'2010
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The Greedy-Choice Property (3/3)

 Corollary: The greedy-choice property holds at a general multi-
layer space with obstacles.
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The greedy-choice property
⇒
1. We can consider wire connections 

only from sources to sinks.
2. The wire area keeps the same 

after the slant edges of the greedy-
choice property are rectilinearized.
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Flow Network

 Triple: (wirelength, flow, capacity)
 Feasible flow: 0 ≤ fi,j ≤ ci,j = min(|fsi|, |ftj|)

WiT - ISPD'2010

19

|ft1|
t1

s1

s2

tjsi

t2

tn
sm

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

|fs1|

|fsi| |ftj|

|fsm| |ftn|

ss tt

(l1,1, f1,1, c1,1)

(l,i,j, fi,j, ci,j)

(lm,n, fm,n, cm,n)

.

.

.

(0, fss, fss)



IRIS H.-R. JIANG

Residual Graph

 Forward edge: push flow
 Backward edge: return flow
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Wire Area Optimization

 Triple: (wirelength, flow, capacity)
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Negative Cycle Detection (1/2) 

 Theorem: Negative-Cycle Removal: If the flow assignment of a 
flow network is optimal, there exists no negative cycles in its 
residual graph. 
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Negative Cycle Detection (2/2)

 Theorem: Negative-Cycle Removal: If the flow assignment of a 
flow network is optimal, there exists no negative cycles in its 
residual graph. 
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The WiT Algorithm

 Initial solution:
 For efficiency, we select the greedy method.
 For effectiveness, we choose the minimum wirelength as the 

greedy rule.
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WiT(S, T)
1.  construct the flow network and calculate paths and lengths
2.  if the given flow at sources/sinks is legal then
3.      find an initial flow assignment
4.  while there exists a negative cycle in the residual graph do
5.      remove the negative cycle
6.      update the flow network
7.      update the residual graph
8.  rectilinearize the wiring topology by stored paths
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Results

 Implementation:
 C++ language with LEDA package
 NB with an Intel® Core™2 CPU T9400 of 2.53 GHz frequency and 4 

GB memory under Windows Vista™ Business 64 bit Service Pack 1 
OS.

 Efficient initial solution.
 We can refine any initial solution to the optimal.
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Testcase INP1 INP2 INP3 INP4 IND1 IND2 IND3 IND4 IND5 RT01 RT02 RT03 RT04 RT05 
#Terminals 7 16 10 16 10 10 10 25 33 75 180 303 475 850 

ASPDAC-2003 Area 154 122 210 32 6,661 79,400 FAIL 23,112 31,466 FAIL FAIL FAIL FAIL FAIL 
Runtime (s) 0.001 0.002 0.001 0.002 0.038 0.016 - 0.016 0.040 - - - - - 

APCCAS-2008 

Area 144 98 128 40 5,319 79,000 6,181 16,000 20,814 189,437 10,638,884 3,360,716 6,475,941 59,207,240 
Runtime (s) 0.001 0.002 0.001 0.002 0.001 0.001 0.001 0.003 0.005 0.120 4.958 45.553 297.806 8,573.453 
Refined area 142 90 116 32 5,301 74,200 5,513 13,728 17,044 144,071 7,151,286 2,325,806 4,205,757 37,318,054 

Gain 2 8 12 8 18 4,800 668 2,272 3,770 45,366 3,487,598 1,034,910 2,270,184 21,889,186 
#Iterations 1 2 1 1 1 3 15 20 29 147 622 1,938 4,288 9,238 

Refine runtime (s) 0.000 0.000 0.001 0.000 0.000 0.001 0.001 0.002 0.003 0.028 0.496 4.741 28.883 440.429 

WiT 

Initial area 142 94 116 32 5,301 78,200 5,629 15,092 19,624 156,489 8,139,250 2,840,420 4,831,845 45,677,120 
Initial runtime (s) <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.015 0.042 0.109 0.425 

Final area 142 90 116 32 5,301 74,200 5,513 13,728 17,044 144,071 7,151,286 2,325,806 4,205,757 37,318,054 
Gain 0 4 0 0 0 4,000 116 1,364 2,580 12,418 987,964 514,614 626,088 8,359,066 

#Iterations 0 1 0 0 0 3 2 17 37 78 415 949 1,197 3,487 
Total runtime (s) <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.016 0.297 1.794 6.489 89.497 
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RT05: 850 Terminals

WiT - ISPD'2010

27

APCCAS-2008
Area = 59,207,240

ASPDAC-2003
FAILED

Ours
Area = 37,318,054 
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Conclusion

 In this paper, we focus on wiring topology generation for 
avoiding electromigration for power networks or signal nets in 
analog and mixed-signal designs.

 The major contribution is that we claim this problem belongs to 
class P instead of class NP-hard.

 Based on the proof of the greedy-choice property, we 
successfully model this problem on a multi-source multi-sink 
flow network and then can solve it in a strongly polynomial 
time.

 Experimental results prove the efficiency and effectiveness of 
our algorithm.
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Multi-Source Multi-Sink Circuits?

 Q: What kind of design has multiple sources and sinks?
 A: Usual in analog or mixed signal designs, power network, etc.
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Non-uniform Temperature Distribution

 Q: What if non-uniform temperature distribution within a chip?
 A: This abstraction still works with given temperature 

distribution map.
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