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Presenter
Presentation Notes
1. Good evening every one
2. I Welcome you all for the presentation
3. The topic of the research work is “Clock Distribution Network Optimization by Sequential Quadratic Programming”
4. Just to introduce myself again, I am Venkata Rajesh Mekala, My advisor is Dr. Jiang Hu, My Major is Computer Engineering, will be graduating in May 2010
5. I will proceed and introduce you to the outline of this presentation



OUTLINE
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 Introduction
 Previous Works
 Problem Formulation
 Algorithm Overview
 Results
 Conclusions

Presenter
Presentation Notes
The outline is simple in structure
I shall introduce you to the Clock Distribution architectures, the corresponding metrics to understand the clock distribution architectures like clock skew and power
We will then dig into some previous works happened in the area of our research
Understand the problem formulation
The flow chart describing the algorithm
I will be describing the results we obtained by running our algorithm on various benchmarks
Finally I conclude my speech with the possible scope of extensions to my work



Clock source

Flip flops

Local trees

Clock Architectures

Clock Tree
• low cost (wiring, power, cap)
• higher skew, jitter than mesh 
• widely used in ASIC designs
• clock gating easy to incorporate

Flip-flops

Flip flops

tree

crosslink
crosslink

flip flops

Clock source

Hybrid: tree + cross-links
• low cost (wiring, power, cap)
• smaller skew, jitter than tree*
• difficult to analyze

Hybrid: mesh + local trees

Clock Mesh
• excellent for low skew, jitter
• high power, area, capacitance
• difficult to analyze
• clock gating not easy
• used in modern processors

3/18/20103 ISPD 2010

Presenter
Presentation Notes
Comparing the clock tree and clock mesh, the clock mesh can achieve 
very low clock skew, jitter whereas the clock tree is not competent to a clock 
mesh in achieving the same skew.
2.  One disadvantage of the clock mesh is that it dissipates higher power 
because of the large scale of interconnect wires.
3.  There aren’t any good analysis done on the clock mesh to understand the 
delay distribution in the mesh architectures.
There is a tradeoff between the redundancy introduced in a CDN and the 
achievable skew, power. Crosslinks are an intermediate in between clock tree 
and clock mesh.




Clock Mesh
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 Clock mesh architecture is very effective in reducing 
skew variation.

 Clock mesh is difficult in analyzing with sufficient 
accuracy.

 It dissipates higher power compared to other 
architectures.

 The challenge is to design the mesh with less power 
meeting the skew constraints.
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Clock Distribution 
Networks

Clock Trees Crosslinks Clock Mesh

Pullela, Menezes and Pileggi
Moment-sensitivity-based wire sizing 
for skew reduction
1997

Guthaus,  Sylvester and Brown
Clock buffer and wire sizing using
sequential programming
2006

Wang,  Ran,  Jiang and Sadowska
General skew constrained
clock network sizing based on 
sequential linear programming
2005

Rajaram,  Hu and Mahapatra
Reducing clock skew variability via
crosslinks
2006

Samanta,  Hu and Li
Discrete buffer and wire sizing for 
link-based
non-tree clock networks
2008

Desai, Cvijetic and Jensen
Sizing of clock distribution networks
for high performance CPU chips
1996

Rajaram and Pan
MeshWorks:  An efficient framework 
for planning, synthesis and 
optimization of clock mesh networks
2008

Venkataraman,  Feng,  Hu and Li
Combinatorial algorithms for fast
clock mesh optimization
2006

Presenter
Presentation Notes
Lets look at some of the previous works on the clock distribution networks.
Most of the previous works on a clock tree are based on sizing the clock tree using SQP or SLP. In all these works either a first order delay model is used and also the SQP is not rigorous. They basically break down the sizing problem into a series of quadratic programming problems and solve.
The earlier works on crosslinks focused on achieving the required skew and power by introducing redundancy into a clock tree network. The algorithms were mostly based on heuristics.
The previous works on clock mesh are focused on solving the clock mesh optimization problem using heuristics or greedy algorithms.



Motivation & Our Contributions
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 Current-source based gate modeling approach to 
speedup the accurate analysis of clock mesh.

 Efficient adjoint sensitivity analysis to provide desirable 
sensitivities.

 Algorithm based on rigorous SQP.
 First clock mesh sizing method that does systematic 

solution search and is based on accurate delay model

Presenter
Presentation Notes
We will discuss some of the short comings on the earlier works and our contributions towards overcoming them in this particular slide. 
As we discussed, an accurate yet fast delay models are absent in the previous works.
Almost all of the approaches included breaking down the problem in quadratic programming sub-problems using heuristics and solve them.
Even if they used SQP, it is not a rigorous one.
One the pro side of this research work, we use current-source based gate modeling approach to speedup the accurate analysis of the clock mesh.
An efficient adjoint sensitivity analysis is used to calculate the sensitivities of the desirable elements in the clock mesh.
Also, we use a rigorous SQP, in opposition to not a rigorous SQP in the previous works.



Problem Formulation
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I is the set of interconnects
in the clock mesh

xi ; i Є I is the width of 
element i in the 
interconnect set

wi ; i Є I is the area of 
element i in the 
interconnect set

S is the set of sinks
or local trees

dj ; j Є S the propagation
delay of the signal from
the root of the
clock tree to sink j D is the coefficient 

vector reflecting the 
linear size-area 
relation

µ is the average value of
the sink delays and δ is
the given maximum variance

Lx and Ux represent the 
lower bound and upper 
bound vectors of the wires

Presenter
Presentation Notes
I describe the different notations by taking the help of this picture.
Read out the different notations of the clock mesh.



Problem Formulation
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total clock mesh area

skew constraint in the variance 
form

lower bound, upper bound vectors 
of the wire widthsHigher wire area leads to a higher load capacitance for the clock buffers which in

turn implies a higher power dissipation.Constraint in the quadratic form is a differentiable function

Presenter
Presentation Notes
The problem to solve considering the clock mesh architecture which we discussed previously is to minimize the total area of the clock mesh. The notations are the same which I described them before.
The constraints are the skew constraint in the delay variance form. The skew constraint in the delay variance form has certain advantages that the variance form is differentiable.
Also there is a constraint on the lower and upper bound of the wire width vectors.
So, in total the objective is to minimize the total area of the clock mesh by non-uniform sizing of the widths of the wire segments within a clock mesh subject to the skew constraint in the delay variance form.



Solving the Problem
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 Lagrangian of the original 
problem:

 Gradient vector of the 
Lagrangian function

is be obtained by circuit 
simulation and adjoint sensitivity 
analysis

Presenter
Presentation Notes
1. We now proceed to the steps in solving the problem. We take the lagrangian of the problem. Lagrangian of the problem is defined as the one shown in the figure.
2. The gradient of the lagrangian function is given as the one given in the equation shown.
3. Here the delta sigmasquare is obtained using the adjoint sensitivity analysis which will be described in the future slides.



Solving the Problem
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 Lagrangian of the original 
problem:

 Gradient vector of the 
Lagrangian function

The adjoint sensitivity analysis 
gives us the values of

Presenter
Presentation Notes
1. The adjoint sensitivity analysis which was developed by Dr. Li and Xiaoji give us the sensitivities of the sigmasquare with respect to the resistance and capacitance of the wire segments. Details of these can be found in the references which I mention in few slides.



Solving the Problem
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 Lagrangian of the original 
problem:

 Gradient vector of the 
Lagrangian function

The sensitivities with respect to 
wire widths are calculated with the 
help of chain rule:

Presenter
Presentation Notes
1. So, given the sensitivities of the sigmasquare function with respect to the resistance and capacitance of the wire segments. The sensitivities with respect to the wire widths are obtained using the chain rule shown in the figure.



Solving the Problem
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 Lagrangian of the original 
problem:

 Gradient vector of the 
Lagrangian function

 Necessary conditions for 
any optimal point of the 
problem – KKT 
conditions

Common way to solve this 
equation is by Newton’s 

method.

Presenter
Presentation Notes
Now we use the Karush-Kuhn-Tucker conditions for the lagrangian function to obtain the optimal point of the problem.
These are also called the famous KKT conditions for achieving the optimal point of the equation.
We have the gradient = 0 and the constraint should be satisfied.
These are shown in the figure.
A common way to solve this equation is by Newtons method.



Solving the Problem
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 Let the Newton step in 
iteration k of solving the 
equation be:

x, λ are variables in the 
equation.
px,k and pλ,k are the vectors 
representing change in width 
of wires and Lagrangian 
multiplier.

Presenter
Presentation Notes
Newtons method involves solving the equation in iterations. So to solve the equation mentioned on the top, let us take the notation of px,k and pl,k as the difference between the variable values between iterations k+1 and k. They are denoted in the figure.
As shown, x, l are the variables in the equation.
Px,k and pl,k are the vectors representing the change in the width of wires and lagrangian multiplier respectively.



Solving the Problem
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 Let the Newton step in 
iteration k of solving the 
equation be:

 Jacobian of the equation 
is:

 Hessian of the Lagrangian 
function:

 Newton step calculation 
implies that px,k and pλ,k
satisfy the following 
system:

Presenter
Presentation Notes
Now we compute the Jacobian of the lagrangian function. Given by the matrix shown in the figure.
Represent double derivative of the lagrangian function as the Hessian, capital H shown in the figure.
We have the equation as shown in the figure. It simply says that the second derivative matrix multiplied by the step gives us the first derivative, which is nothing but the gradient which we already computed.



Solving the Problem

3/18/2010ISPD 201015

 Newton step calculation 
implies that px,k and pλ,k
satisfy the following 
system:

 Adjusting the above 
equation gives us:

 This equation is solved by:
 Minimize:

 Subject to:  

Presenter
Presentation Notes
Simple adjustment of this equation gives us the equation shown here.
This equation is solved by minimizing the equation shown in the figure subject to the skew constraint.



Solving the QP sub-problem
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 The QP sub-problem to 
be solved as a part of SQP 
is:

Minimize:

Subject to:

and

Presenter
Presentation Notes
1. This statement is important so I want to pronounce this as it is. It states that By transforming a newton iteration, which solves the KKT conditions into a quadratic programming problem, one iteration of solving the original problem is turned into a QP sub-problem as following:



Solving the QP sub-problem
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 The QP sub-problem to 
be solved as a part of SQP 
is:

Minimize:

Subject to:

and

through sensitivity analysis we 
obtain the gradient.

the sensitivities with respect to 
wire widths are calculated with the 
help of chain rule:

Presenter
Presentation Notes
1. Here, we obtain the delta sigmasquare by using the sensitivity analysis.



Solving the QP sub-problem
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 The QP sub-problem to 
be solved as a part of SQP 
is:

Minimize:

Subject to:

and

we use quasi-newton (BFGS ) 
method to approximate the 
hessian in each iteration

Presenter
Presentation Notes
Also, we use the quasi Newton method for obtaining the hessian approximation using the BFGS standard method. The BFGS is a standard method to calculate the double derivative approximation.
We could have obtained the Hessian by a similar means of finding out the gradient using sensitivity analysis, but the computation of double gradient is costly. So, we revert to approximating the hessian from the information we have at iteration k using the BFGS method.



Sensitivity Analysis
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 Sensitivity information of the original circuit obtained by 
convolution-like computation between transient 
waveforms of the original and the adjoint circuit.

 Compact gate model provides up to two orders of 
magnitude speedup over SPICE simulation while 
maintaining the same level of accuracy.

P. Li, Z. Feng and E. Acar. “Characterizing multistage nonlinear drivers and
variability for accurate timing and noise analysis". In IEEE Trans. Very Large
Scale Integration, pp 205 - 214, November 2007.

X. Ye and P. Li.  “An application-specic adjoint sensitivity analysis framework
for clock mesh sensitivity computation". In Proc. of IEEE International 
Symposium on Quality Electronic Design, pp 634 - 640, 2009.

Presenter
Presentation Notes
The sensitivity analysis which is a critical step in solving the problem is developed by Dr. Li and Xiaoji Ye.
The details of the computation are obtained from the references listed below.
To touch the sensitivity analysis on the surface, we have a convolution-like-computation between the transient waveforms of the original circuit and the adjoint circuit which is framed by formulating certain devices from the original circuit.
Also, the compact gate models used from the reference shown below provides upto two orders of magnitude speedup over SPICE simulation results while maintaining the same level of accuracy.



CMSSQP Framework
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Initialization of the design
(No. of buffers, benchmark and clock mesh)

Generate spice netlist

Sensitivity Analysis
(Sensitivities of the 𝜎2 with respect to wire widths)

Quasi-Newton approximation of Hessian

Optimization
Formulate and Solve the Quadratic Programming

sub-problem

Update the widths of the clock mesh

Transient Simulation
(Compute the delays, slew to every sink node)

Convergence 
criterion met?STOP

C++

MOSEK

SPICE

YES NO

SPICE

Presenter
Presentation Notes
The major steps of the algorithm are listed below.




Results

3/18/2010ISPD 201021

 Experimental Setup
 65nm technology transistor

models for the buffers
 (m rows X n columns) mesh
 Max skew
 Linux platform having two

Intel Xeon E5410 quad-cores
 ISCAS, ISPD benchmarks
 Widths limited

Presenter
Presentation Notes
The experimental setup details are shown in this slide.
We use the 65nm BPTM technology models for the buffers driving the clock mesh.
A clock mesh of m rows cross n columns is a mesh consisting of m rows of wires and n columns of wires
The maximum skew between all the sink pairs is computed as for all i, j belonging to the sink set, we obtain the maximum of differences between the delays.
We use a linux platform having two Intel Xeon E5410 quad-cores for the simulations.
The total area of the clock mesh is described using the formula given in the picture.



Initial clock mesh design
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Presenter
Presentation Notes
The initial clock mesh design results are as shown in this figure.
The results mentioned are with respect to spice simulations.
The first column represents the benchmark name.
Second column represents the number of sinks in the clock mesh.
Third column represents the size of the clock mesh designed for the corresponding benchmark.
Fourth, fifth, sixth columns represent the maximum skew among all the sink pairs, maximum slew among all the sinks and the total area of the clock mesh.



Results after executing CMSSQP
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Presenter
Presentation Notes
1. After executing the CMSSQP algorithm, we get the results as shown. Note that the columns terminology is the same as described for the initial mesh design.



Summary: Reduction in area
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Presenter
Presentation Notes
1. This slide summarizes the reduction in area of the CMSSQP algorithm and the total runtime.



Area-skew tradeoff by varying δ
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ISPD:
ispd09f11

Presenter
Presentation Notes
This graph represents the area- skew tradeoff taken for one of the benchmarks. As we can observe the total area of the clock mesh depends on the skew constraint.
If we allow the skew constraint to be a little relaxed, the reduction in area is significant.
We can approximately say that the reduction in area is proportional to the skew constraint.



Case(a): (σ2 < δ), σ2 , total clock mesh area in 
each iteration
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Presenter
Presentation Notes
To describe the two cases of working of the CMSSQP algorithm. We show it in two graphs.
This graphs shows the picture where the sigmasquare is less than delta.
As we can see the sigmasquare slowly converges to the value of delta and saturates itself.
Meanwhile we obtain a reduction in area of the clock mesh because of the relaxation in the clock skew constraint.



Case(b): (σ2 > δ), σ2 , total clock mesh area in 
each iteration
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Presenter
Presentation Notes
This graphs shows the picture where sigmasquare is greater than delta.
As we can see, the sigmasquare gradually converges to the value of delta. However, in this case there is an increase in area as the skew constraint is tight.




Conclusions & Future work
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 Presented an algorithm for reduction of clock mesh area 
satisfying specified skew constraints in a clock mesh.

 Robust in dealing with any complex clock mesh network.
 First clock mesh sizing method that does systematic 

solution search and is based on accurate delay model.
 Experimental results achieved about 33% reduction in 

clock mesh area.
 Can be extended to size interconnects, mesh buffers 

simultaneously.

Presenter
Presentation Notes
We now conclude the presentation by noting down the key features.
We presented an algorithm for reduction of clock mesh area. Reduction of clock mesh area achieves a reduction in power. The clock mesh area is taken as a metric to measure the clock mesh power.
The CMSSQP algorithm is robust in dealing with an of the CDNs, the benchmarks which we took varied in complexity from the number of sinks from a mere 100 to 3000.
The methodology developed is generic. That means that if any of the other problems with an objective, constraint functions are as shown for the problem formulation here. They could be solved by the same algorithm.
Experimental results suggest that we can obtain an average reduction in clock mesh area of about 33%.
This work can be extended to size the clock mesh wire segments and the mesh buffers also driving the clock mesh simultaneously. We expect to obtain quite a significant reduction in area by doing this.
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Thanks

Presenter
Presentation Notes
I thank each and every one for helping me out in the research work presented here.
I especially like to thank Dr. Jiang Hu, Dr. Peng Li for their support.
I specially thank Yifang and Xiaoji for their help throughout the course of the project.
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