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Presentation Notes
1. Good evening every one
2. I Welcome you all for the presentation
3. The topic of the research work is “Clock Distribution Network Optimization by Sequential Quadratic Programming”
4. Just to introduce myself again, I am Venkata Rajesh Mekala, My advisor is Dr. Jiang Hu, My Major is Computer Engineering, will be graduating in May 2010
5. I will proceed and introduce you to the outline of this presentation
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Presentation Notes
The outline is simple in structure
I shall introduce you to the Clock Distribution architectures, the corresponding metrics to understand the clock distribution architectures like clock skew and power
We will then dig into some previous works happened in the area of our research
Understand the problem formulation
The flow chart describing the algorithm
I will be describing the results we obtained by running our algorithm on various benchmarks
Finally I conclude my speech with the possible scope of extensions to my work


Clock Architectures
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Presenter
Presentation Notes
Comparing the clock tree and clock mesh, the clock mesh can achieve 
very low clock skew, jitter whereas the clock tree is not competent to a clock 
mesh in achieving the same skew.
2.  One disadvantage of the clock mesh is that it dissipates higher power 
because of the large scale of interconnect wires.
3.  There aren’t any good analysis done on the clock mesh to understand the 
delay distribution in the mesh architectures.
There is a tradeoff between the redundancy introduced in a CDN and the 
achievable skew, power. Crosslinks are an intermediate in between clock tree 
and clock mesh.



Clock Mesh
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Clock mesh architecture is very effective in reducing
skew variation.

Clock mesh is difficult in analyzing with sufficient
accuracy.

It dissipates higher power compared to other
architectures.

The challenge is to design the mesh with less power
meeting the skew constraints.
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Lets look at some of the previous works on the clock distribution networks.
Most of the previous works on a clock tree are based on sizing the clock tree using SQP or SLP. In all these works either a first order delay model is used and also the SQP is not rigorous. They basically break down the sizing problem into a series of quadratic programming problems and solve.
The earlier works on crosslinks focused on achieving the required skew and power by introducing redundancy into a clock tree network. The algorithms were mostly based on heuristics.
The previous works on clock mesh are focused on solving the clock mesh optimization problem using heuristics or greedy algorithms.


Motivation & Our Contributions

» Current-source based gate modeling approach to
speedup the accurate analysis of clock mesh.

» Efficient adjoint sensitivity analysis to provide desirable
sensitivities.

» Algorithm based on rigorous SQP.

» First clock mesh sizing method that does systematic
solution search and is based on accurate delay model
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We will discuss some of the short comings on the earlier works and our contributions towards overcoming them in this particular slide. 
As we discussed, an accurate yet fast delay models are absent in the previous works.
Almost all of the approaches included breaking down the problem in quadratic programming sub-problems using heuristics and solve them.
Even if they used SQP, it is not a rigorous one.
One the pro side of this research work, we use current-source based gate modeling approach to speedup the accurate analysis of the clock mesh.
An efficient adjoint sensitivity analysis is used to calculate the sensitivities of the desirable elements in the clock mesh.
Also, we use a rigorous SQP, in opposition to not a rigorous SQP in the previous works.


Problem Formulation

Clock Driver

| is the set of interconnects
in the clock mesh

M is the average value of
the sink delays and & is
the given maximum variance

X ;1 € | is the width of
element i in the
interconnect set

Clock Mesh

w, ;i € | is the area of
element i in the
interconnect set

dl ,] € S the Pl‘Opagation Mesh Buffers
sink j

delay of the signal from

the root of the

clock tree to sink j

delay = dj

D is the coefficient
vector reflecting the
linear size-area
relation

element i
width = x;

S is the set of sinks —— > area = I+ x; sl e
or local trees v %‘:’ .
L, and U, represent the
lower bound and upper
bound vectors of the wires
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I describe the different notations by taking the help of this picture.
Read out the different notations of the clock mesh.


Problem Formulation

Minimize:

s, t.
) ) - lower bound, upper boiind vectors
ngheraV|re area I.eaqis to a higher load capa th PF.)
. nstraint in t e\gua détlc orm is O tNE wirs widths
turn implies a higher power dissipation.
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The problem to solve considering the clock mesh architecture which we discussed previously is to minimize the total area of the clock mesh. The notations are the same which I described them before.
The constraints are the skew constraint in the delay variance form. The skew constraint in the delay variance form has certain advantages that the variance form is differentiable.
Also there is a constraint on the lower and upper bound of the wire width vectors.
So, in total the objective is to minimize the total area of the clock mesh by non-uniform sizing of the widths of the wire segments within a clock mesh subject to the skew constraint in the delay variance form.


Solving the Problem

» Lagrangian of the original Lx.A) = xTD — A(§ — 0?).
problem:

» Gradient vector of the

. . ViL(x,A) = D + \V, o2
Lagrangian function

IS be obtained by circuit

simulation and adjoint sensitivity
analysis
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1. We now proceed to the steps in solving the problem. We take the lagrangian of the problem. Lagrangian of the problem is defined as the one shown in the figure.
2. The gradient of the lagrangian function is given as the one given in the equation shown.
3. Here the delta sigmasquare is obtained using the adjoint sensitivity analysis which will be described in the future slides.


Solving the Problem

» Lagrangian of the original Lx.A) = xTD — A(§ — 0?).
problem:

» Gradient vector of the

. . ViL(x,A) = D + \V, o2
Lagrangian function

The adjoint sensitivity analysis
gives us the values of

e A=
S and 5%
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1. The adjoint sensitivity analysis which was developed by Dr. Li and Xiaoji give us the sensitivities of the sigmasquare with respect to the resistance and capacitance of the wire segments. Details of these can be found in the references which I mention in few slides.


Solving the Problem

» Lagrangian of the original Lx.A) = xTD — A(§ — 0?).
problem:

» Gradient vector of the

. . ViL(x,A) = D + \V, o2
Lagrangian function

The sensitivities with respect to

wire widths are calculated with the
help of chain rule:

do? _ (352 BR) N (852 BC)

aX oOR 90X aC oxXx
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1. So, given the sensitivities of the sigmasquare function with respect to the resistance and capacitance of the wire segments. The sensitivities with respect to the wire widths are obtained using the chain rule shown in the figure.


Solving the Problem

» Lagrangian of the original
problem:

» Gradient vector of the
Lagrangian function

» Necessary conditions for
any optimal point of the

problem — KKT
conditions

L(x,\) =x"D — X\ — 0?).

ViL(x,A) = D + \V, o2

D+ AV,0?=0. <
§—a? > 0.

Common way to solve this

equation is by Newton’s
method.

ISPD 2010 3/18/2010



Presenter
Presentation Notes
Now we use the Karush-Kuhn-Tucker conditions for the lagrangian function to obtain the optimal point of the problem.
These are also called the famous KKT conditions for achieving the optimal point of the equation.
We have the gradient = 0 and the constraint should be satisfied.
These are shown in the figure.
A common way to solve this equation is by Newtons method.


Solving the Problem

» Let the Newton step in -1 T T
. . . px,k Xk+1 Xk
iteration k of solving the = -

1 Pk )‘k+1 Mg
equation be: L |

% A are variables in the
equation.
P,k and p, | are the vectors

representing change in width
of wires and Lagrangian
multiplier.
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Newtons method involves solving the equation in iterations. So to solve the equation mentioned on the top, let us take the notation of px,k and pl,k as the difference between the variable values between iterations k+1 and k. They are denoted in the figure.
As shown, x, l are the variables in the equation.
Px,k and pl,k are the vectors representing the change in the width of wires and lagrangian multiplier respectively.


Solving the Problem

» Let the Newton step in
iteration k of solving the
equation be:

» Jacobian of the equation
IS:

» Hessian of the Lagrangian
function:

» Newton step calculation
implies that p,, and p, ,
satisfy the following
system:

D+ MW, 02=0

Px.k

Pa.k

Xk+1

A1

X

Ak

[ VI L(x,\) Vo2 ]

H —

[ HF.‘ "':-"xcff. ]

|
|

V2 _L(x,\)

Px .k —‘
Pk J

[ —D — lﬁ.?xﬂﬁ ]
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Now we compute the Jacobian of the lagrangian function. Given by the matrix shown in the figure.
Represent double derivative of the lagrangian function as the Hessian, capital H shown in the figure.
We have the equation as shown in the figure. It simply says that the second derivative matrix multiplied by the step gives us the first derivative, which is nothing but the gradient which we already computed.


Solving the Problem

» Newton step calculation
. . . lr Px k -‘
implies that p,, and p, , [ H, Vyo? ] - [ ) J W v ]
satisfy the following | s
system:

» Adjusting the above

: . Hipxi+ D+ )ta~—1?xff£ =0
equation gives us:

» This equation is solved by:

1 .. .
» Minimize: Epiﬂpx—ﬂf Px

» Subjectto: d—0c =0
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Simple adjustment of this equation gives us the equation shown here.
This equation is solved by minimizing the equation shown in the figure subject to the skew constraint.


Solving the QP sub-problem

» The QP sub-problem to Minimize: ipi.pr + DT,
be solved as a part of SQP 2

> Subject to:

5 — (0% + (Vx0?)"px) 2 0

and L, <x < U,
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1. This statement is important so I want to pronounce this as it is. It states that By transforming a newton iteration, which solves the KKT conditions into a quadratic programming problem, one iteration of solving the original problem is turned into a QP sub-problem as following:


Solving the QP sub-problem

» The QP sub-problem to Minimize: 1
be solved as a part of SQP 2

> Subject to:

5 — (0% + (Vx0?)"px) 2 0

and L, <x < U,

the sensitivities with respect to

wire widths are calculated with the through sensitivity analysis we
help of chain rule: obtain the gradient.

Ho? B (852 BR) N (852 BCJ
0X ‘OR AX ac " ox
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1. Here, we obtain the delta sigmasquare by using the sensitivity analysis.


Solving the QP sub-problem

» The QP sub-problem to Minimize: 1,
be solved as a part of SQP 278
is:

and

we use quasi-newton (BFGS )

method to approximate the
hessian in each iteration
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Also, we use the quasi Newton method for obtaining the hessian approximation using the BFGS standard method. The BFGS is a standard method to calculate the double derivative approximation.
We could have obtained the Hessian by a similar means of finding out the gradient using sensitivity analysis, but the computation of double gradient is costly. So, we revert to approximating the hessian from the information we have at iteration k using the BFGS method.


Sensitivity Analysis

» Sensitivity information of the original circuit obtained by
convolution-like computation between transient
waveforms of the original and the adjoint circuit.

» Compact gate model provides up to two orders of
magnitude speedup over SPICE simulation while
maintaining the same level of accuracy.

P.Li, Z. Feng and E. Acar.“Characterizing multistage nonlinear drivers and
variability for accurate timing and noise analysis". In IEEE Trans.Very Large
Scale Integration, pp 205 - 214, November 2007.

X.Ye and P.Li. “An application-specic adjoint sensitivity analysis framework
for clock mesh sensitivity computation”. In Proc. of IEEE International
Symposium on Quality Electronic Design, pp 634 - 640, 2009.
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The sensitivity analysis which is a critical step in solving the problem is developed by Dr. Li and Xiaoji Ye.
The details of the computation are obtained from the references listed below.
To touch the sensitivity analysis on the surface, we have a convolution-like-computation between the transient waveforms of the original circuit and the adjoint circuit which is framed by formulating certain devices from the original circuit.
Also, the compact gate models used from the reference shown below provides upto two orders of magnitude speedup over SPICE simulation results while maintaining the same level of accuracy.


CMSSQP Framework

Initialization of the design
(No. of buffers, benchmark and clock mesh) SPlCE

Generate spice netlist
1

v

Sensitivity Analysis C++
(Sensitivities of the g2 with respect to wire widths)

v

Quasi-Newton approximation of Hessian

1 4
Optimization 3 P:Ic Hpy + D"py
Formulate and Solve the Quadratic Programming ] ) -
sub-problem 0 — (t}' + (Vxa”) Px) >0

7 Ly <x < Uy
Update the widths of the clock mesh

. 4
Transient Simulation SP|CE

(Compute the delays, slew to every sink node)

Convergence
criterion met?

YES NO
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The major steps of the algorithm are listed below.



Re SLlltS /:/§7® v Clock Driver
» Experimental Setup E /

65nm technology transistor n oo /-

models for the buffers \

(m rows X n columns) mesh \
Max skew (¥(i, j € S) Max|d; — d;|)

Mesh Buffers

Linux platform having two
Intel Xeon E5410 quad-cores
ISCAS, ISPD benchmarks

Widths limited e

area = [; = x; Sink Capacitances
Total area of the clock mesh — E wl;
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The experimental setup details are shown in this slide.
We use the 65nm BPTM technology models for the buffers driving the clock mesh.
A clock mesh of m rows cross n columns is a mesh consisting of m rows of wires and n columns of wires
The maximum skew between all the sink pairs is computed as for all i, j belonging to the sink set, we obtain the maximum of differences between the delays.
We use a linux platform having two Intel Xeon E5410 quad-cores for the simulations.
The total area of the clock mesh is described using the formula given in the picture.


Initial clock mesh design

H-Spice Results
Benchmark | No. of | Size of Initial
sinks mesh (before CMSSQP)
Max Skew | Max Slew Area
(ps) (ps) (ppn?)
1spd0Ofl 1 121 12X 12 12.3 T0.8 17160
ispd00f]12 117 12X 12 16.9 55.2 20192
15pd00f21 117 16X 16 20.9 67.5 31590
ispd0Of22 01 16X 16 16.2 51.5 17264
21423 74 6X6 14.4 40.8 12439
=h3 T8 179 13X 13 7.4 26.2 27189
215850 57T 24X 24 14.9 art.4 62003
rl 26T 16X 16 12.3 3h.8 198580
r2 HO8 30X 30 22.3 50.2 499557
r3 862 30330 12.3 34.5 520200
rd 1903 40 40 22.3 51.0 010821
rh 3101 3232 25.0 50.0 228123
Average 16.4 499 | 262168.9

Table [. Summary of initial clock mesh design results
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The initial clock mesh design results are as shown in this figure.
The results mentioned are with respect to spice simulations.
The first column represents the benchmark name.
Second column represents the number of sinks in the clock mesh.
Third column represents the size of the clock mesh designed for the corresponding benchmark.
Fourth, fifth, sixth columns represent the maximum skew among all the sink pairs, maximum slew among all the sinks and the total area of the clock mesh.


Results after executing CMSSQP

H-Spice Results
Benchmark | No. of | Size of Final
sinks mesh (after CMSSQP)
Max Skew | MNMax Slew Area
(ps) (ps) (pm?)
ispd9f11 121 12X 12 12.2 T 0014
1spd 912 117 12X 12 17.4 821 11426
ispd 921 117 16X 16 22.9 67.3 21473
ispd 022 01 16X 16 19.9 al.1 14404
21423 T 6X6 22 55.2 BG14
=h3 T8 170 13X 13 0.9 25.4 18888
= 15850 nOT 24X 24 17.4 42.3 47150
rl 267 16X 16 14.9 ar.2 123931
r2 HOS8 30X 30 20.7 66.7 363002
r3 BG2 30X 30 14.8 35 301505
rd 1903 40X 40 20.9 61.4 5h2229
rh 3101 3232 25.0 a7.0 613754
Average 19.7 21.9 | 173857.5
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1. After executing the CMSSQP algorithm, we get the results as shown. Note that the columns terminology is the same as described for the initial mesh design.


Summary: Reduction in area

24

H-Spice Results

Benchmark | No. of | Size of | Runtime | Area reduction
sinks mesh (=) (%)

1=pd 0911 121 12X12 465 422
1=pd09f12 117 12X12 480 43.4
1=pd 0921 117 16X 16 640 32.0
1spd 09122 01 16X16 a0l 16.6
51423 T4 66 188 30.7
shdTH 179 13X13 322 30.5
515850 K0T 24X 24 1430 25.0

rl 267 16X16 1197 37.6

r2 HOR 30330 2054 27.3

ra 862 0330 3115 42.0

rd 1903 40340 10540 30.7

ra 3101 J32X32 1 5440 25.9
Average 3110 33
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1. This slide summarizes the reduction in area of the CMSSQP algorithm and the total runtime.


Area-skew tradeoff by varying 6

Total mesh area v.s. Max. skew
13000
-12439.42
ISPD: 0 ~_
ispd09fl | | 11000 116833
100040
9000 \
8000
~
7000 7515.510753
6000
5000
4000
11,83 1421 15,82 18.23
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This graph represents the area- skew tradeoff taken for one of the benchmarks. As we can observe the total area of the clock mesh depends on the skew constraint.
If we allow the skew constraint to be a little relaxed, the reduction in area is significant.
We can approximately say that the reduction in area is proportional to the skew constraint.


Case(a): (0% < §), 02, total clock mesh area in

each iteration
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To describe the two cases of working of the CMSSQP algorithm. We show it in two graphs.
This graphs shows the picture where the sigmasquare is less than delta.
As we can see the sigmasquare slowly converges to the value of delta and saturates itself.
Meanwhile we obtain a reduction in area of the clock mesh because of the relaxation in the clock skew constraint.


Case(b): (02 > §), 02, total clock mesh area in
each iteration

o
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This graphs shows the picture where sigmasquare is greater than delta.
As we can see, the sigmasquare gradually converges to the value of delta. However, in this case there is an increase in area as the skew constraint is tight.



Conclusions & Future work

» Presented an algorithm for reduction of clock mesh area
satisfying specified skew constraints in a clock mesh.

» Robust in dealing with any complex clock mesh network.

» First clock mesh sizing method that does systematic
solution search and is based on accurate delay model.

» Experimental results achieved about 33% reduction in
clock mesh area.

» Can be extended to size interconnects, mesh buffers
simultaneously.
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We now conclude the presentation by noting down the key features.
We presented an algorithm for reduction of clock mesh area. Reduction of clock mesh area achieves a reduction in power. The clock mesh area is taken as a metric to measure the clock mesh power.
The CMSSQP algorithm is robust in dealing with an of the CDNs, the benchmarks which we took varied in complexity from the number of sinks from a mere 100 to 3000.
The methodology developed is generic. That means that if any of the other problems with an objective, constraint functions are as shown for the problem formulation here. They could be solved by the same algorithm.
Experimental results suggest that we can obtain an average reduction in clock mesh area of about 33%.
This work can be extended to size the clock mesh wire segments and the mesh buffers also driving the clock mesh simultaneously. We expect to obtain quite a significant reduction in area by doing this.
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Thanks
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I thank each and every one for helping me out in the research work presented here.
I especially like to thank Dr. Jiang Hu, Dr. Peng Li for their support.
I specially thank Yifang and Xiaoji for their help throughout the course of the project.
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