

# Accurate Clock Mesh Sizing via Sequential Quadratic Programming

Venkata Rajesh Mekala, Yifang Liu, Xiaoji Ye, Jiang Hu, Peng Li Department of ECE Texas A&M University



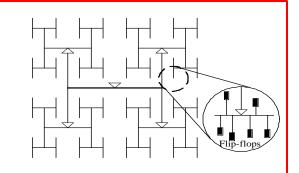


#### **OUTLINE**

- Introduction
- Previous Works
- Problem Formulation
- Algorithm Overview
- Results
- Conclusions

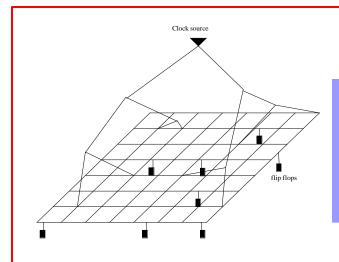


#### Clock Architectures



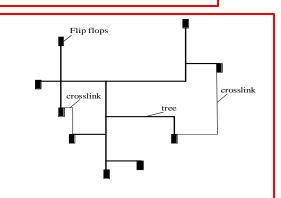
#### **Clock Tree**

- low cost (wiring, power, cap)
- higher skew, jitter than mesh
- widely used in ASIC designs
- clock gating easy to incorporate



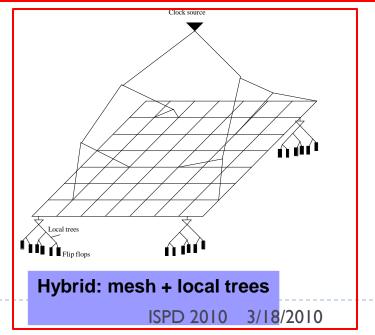
#### **Clock Mesh**

- excellent for low skew, jitter
- high power, area, capacitance
- difficult to analyze
- clock gating not easy
- used in modern processors



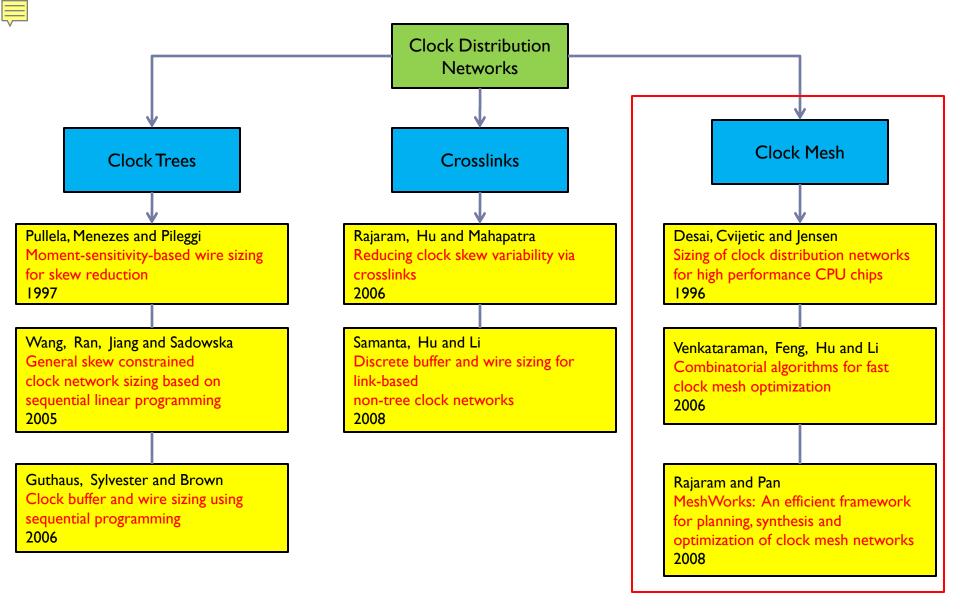
#### **Hybrid: tree + cross-links**

- low cost (wiring, power, cap)
- smaller skew, jitter than tree\*
- difficult to analyze



#### Clock Mesh

- Clock mesh architecture is very effective in reducing skew variation.
- Clock mesh is difficult in analyzing with sufficient accuracy.
- It dissipates higher power compared to other architectures.
- The challenge is to design the mesh with less power meeting the skew constraints.





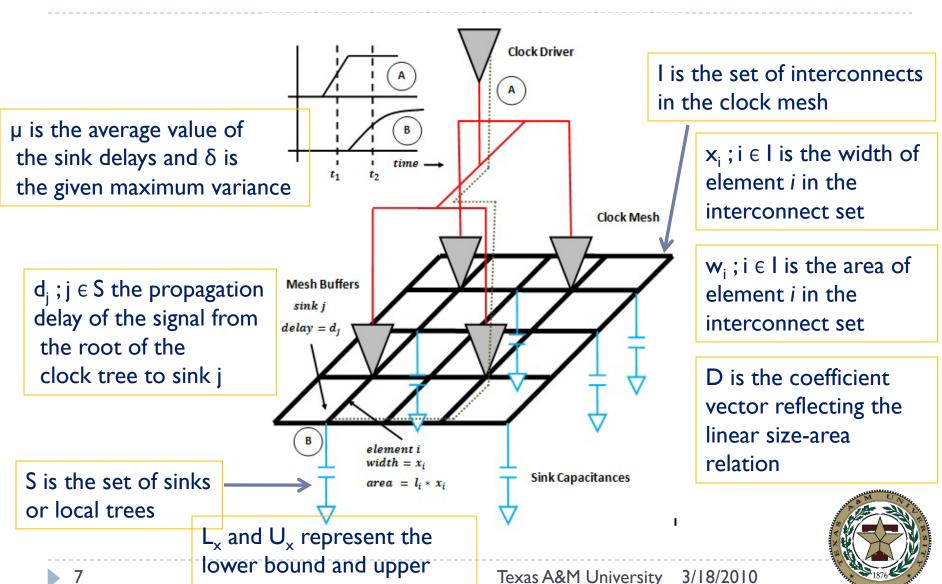
#### Motivation & Our Contributions

- Current-source based gate modeling approach to speedup the accurate analysis of clock mesh.
- Efficient adjoint sensitivity analysis to provide desirable sensitivities.
- Algorithm based on rigorous SQP.
- First clock mesh sizing method that does systematic solution search and is based on accurate delay model



#### Problem Formulation

bound vectors of the wires





#### Problem Formulation

total clock mesh area

Minimize:

$$w = \sum_{i \in I} w_i = \mathbf{x}^T D,$$

$$\sigma^2 = \sum_{j \in S} (d_j - \mu)^2 \le \delta,$$

skew constraint in the variance form

$$L_{\mathbf{x}} \le \mathbf{x} \le U_{\mathbf{x}},$$

Higher wire area leads to a higher load capacitance for the clock buffers which in Constraint in the quadratic form is a differentiable function widths turn implies a higher power dissipation.



- Lagrangian of the original problem:
- Gradient vector of the Lagrangian function

$$\mathcal{L}(\mathbf{x}, \lambda) = \mathbf{x}^T D - \lambda(\delta - \sigma^2).$$

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \lambda) = D + \lambda \nabla_{\mathbf{x}} \sigma^2.$$

 $\nabla_{\mathbf{x}}\sigma^2$  is be obtained by circuit simulation and adjoint sensitivity analysis



- Lagrangian of the original problem:
- Gradient vector of the Lagrangian function

$$\mathcal{L}(\mathbf{x}, \lambda) = \mathbf{x}^T D - \lambda(\delta - \sigma^2).$$

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \lambda) = D + \lambda \nabla_{\mathbf{x}} \sigma^2.$$

The adjoint sensitivity analysis gives us the values of

$$\frac{\partial \sigma^2}{\partial R}$$
 and  $\frac{\partial \sigma^2}{\partial C}$ 



- Lagrangian of the original problem:
- Gradient vector of the Lagrangian function

$$\mathcal{L}(\mathbf{x}, \lambda) = \mathbf{x}^T D - \lambda(\delta - \sigma^2).$$

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \lambda) = D + \lambda \nabla_{\mathbf{x}} \sigma^2.$$

The sensitivities with respect to wire widths are calculated with the help of chain rule:

$$\frac{\partial \sigma^2}{\partial X} = \left(\frac{\partial \sigma^2}{\partial R}.\frac{\partial R}{\partial X}\right) + \left(\frac{\partial \sigma^2}{\partial C}.\frac{\partial C}{\partial X}\right)$$



- Lagrangian of the original problem:
- Gradient vector of the Lagrangian function
- Necessary conditions for any optimal point of the problem – KKT conditions

$$\mathcal{L}(\mathbf{x}, \lambda) = \mathbf{x}^T D - \lambda(\delta - \sigma^2).$$

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \lambda) = D + \lambda \nabla_{\mathbf{x}} \sigma^2.$$

$$D + \lambda \nabla_{\mathbf{x}} \sigma^2 = 0$$
,  $\leftarrow$ 

$$\delta - \sigma^2 \ge 0$$
.

Common way to solve this equation is by Newton's method.



 $D + \lambda \nabla_{\mathbf{x}} \sigma^2 = 0$ 

Let the Newton step in iteration k of solving the equation be:

$$\begin{bmatrix} \mathbf{p}_{\mathbf{x},k} \\ \mathbf{p}_{\lambda,k} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_{k+1} \\ \lambda_{k+1} \end{bmatrix} - \begin{bmatrix} \mathbf{x}_k \\ \lambda_k \end{bmatrix}$$

x,  $\lambda$  are variables in the equation.

 $p_{x,k}$  and  $p_{\lambda,k}$  are the vectors representing change in width of wires and Lagrangian multiplier.



 $D + \lambda \nabla_{\mathbf{x}} \sigma^2 = 0$ 

- Let the Newton step in iteration k of solving the equation be:
- Jacobian of the equation is:
- Hessian of the Lagrangian function:
- Newton step calculation implies that  $p_{x,k}$  and  $p_{\lambda,k}$  satisfy the following system:

$$\begin{bmatrix} \mathbf{p}_{\mathbf{x},k} \\ \mathbf{p}_{\lambda,k} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_{k+1} \\ \lambda_{k+1} \end{bmatrix} - \begin{bmatrix} \mathbf{x}_k \\ \lambda_k \end{bmatrix}$$

$$\left[\begin{array}{cc} \nabla_{\mathbf{x}\mathbf{x}}^2 \mathcal{L}(\mathbf{x}, \lambda) & \nabla_{\mathbf{x}} \sigma^2 \end{array}\right]$$

$$H = \nabla_{\mathbf{x}\mathbf{x}}^2 \mathcal{L}(\mathbf{x}, \lambda)$$

$$\left[\begin{array}{cc} H_k & \nabla_{\mathbf{x}} \sigma_k^2 \end{array}\right] \left[\begin{array}{c} \mathbf{p}_{\mathbf{x},k} \\ \mathbf{p}_{\lambda,k} \end{array}\right] = \left[\begin{array}{cc} -D - \lambda_k \nabla_{\mathbf{x}} \sigma_k^2 \end{array}\right]$$



- Newton step calculation implies that p<sub>x,k</sub> and p<sub>λ,k</sub> satisfy the following system:
- Adjusting the above equation gives us:
- This equation is solved by:

$$\begin{bmatrix} H_k & \nabla_{\mathbf{x}} \sigma_k^2 \end{bmatrix} \begin{bmatrix} \mathbf{p}_{\mathbf{x},k} \\ \mathbf{p}_{\lambda,k} \end{bmatrix} = \begin{bmatrix} -D - \lambda_k \nabla_{\mathbf{x}} \sigma_k^2 \end{bmatrix}$$

$$H_k \mathbf{p}_{\mathbf{x},k} + D + \lambda_{k+1} \nabla_{\mathbf{x}} \sigma_k^2 = 0$$

- Minimize:  $\frac{1}{2}\mathbf{p}_{\mathbf{x}}^TH\mathbf{p}_{\mathbf{x}} + D^T\mathbf{p}_{\mathbf{x}}$
- ▶ Subject to:  $\delta \sigma^2 \ge 0$



## Solving the QP sub-problem

The QP sub-problem to be solved as a part of SQP is:

Minimize:

$$\frac{1}{2}\mathbf{p}_{\mathbf{x}}^TH\mathbf{p}_{\mathbf{x}} + D^T\mathbf{p}_{\mathbf{x}}$$

Subject to:

$$\delta - (\sigma^2 + (\nabla_{\mathbf{x}}\sigma^2)^T \mathbf{p}_{\mathbf{x}}) \ge 0$$

and

$$L_{\mathbf{x}} \leq \mathbf{x} \leq U_{\mathbf{x}}$$



#### Solving the QP sub-problem

The QP sub-problem to be solved as a part of SQP is:

Minimize:

$$\frac{1}{2}\mathbf{p}_{\mathbf{x}}^{T}H\mathbf{p}_{\mathbf{x}} + D^{T}\mathbf{p}_{\mathbf{x}}$$

Subject to:

and

$$\delta - (\sigma^2 + (\nabla_{\mathbf{x}}\sigma^2)^T \mathbf{p_x}) \ge 0$$

$$L_{\mathbf{x}} \le \mathbf{x} \le U_{\mathbf{x}}$$

the sensitivities with respect to wire widths are calculated with the help of chain rule:

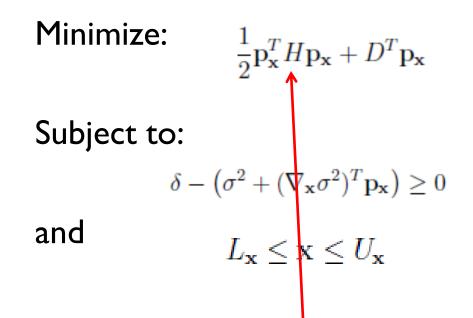
$$\frac{\partial \sigma^2}{\partial X} = \left(\frac{\partial \sigma^2}{\partial R} \cdot \frac{\partial R}{\partial X}\right) + \left(\frac{\partial \sigma^2}{\partial C} \cdot \frac{\partial C}{\partial X}\right)$$

through sensitivity analysis we obtain the gradient.



#### Solving the QP sub-problem

The QP sub-problem to be solved as a part of SQP is:



we use quasi-newton (BFGS) method to approximate the hessian in each iteration



## Sensitivity Analysis

- Sensitivity information of the original circuit obtained by convolution-like computation between transient waveforms of the original and the adjoint circuit.
- Compact gate model provides up to two orders of magnitude speedup over SPICE simulation while maintaining the same level of accuracy.

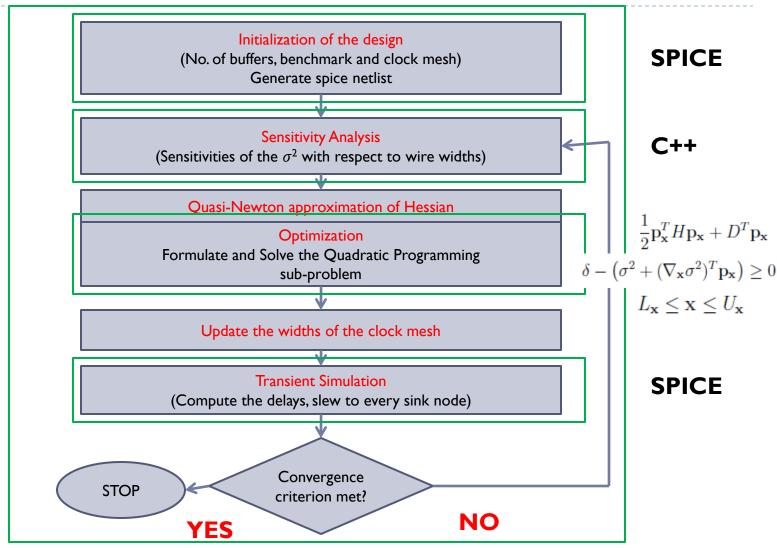
P. Li, Z. Feng and E. Acar. "Characterizing multistage nonlinear drivers and variability for accurate timing and noise analysis". In IEEE Trans. Very Large Scale Integration, pp 205 - 214, November 2007.

X.Ye and P. Li. "An application-specic adjoint sensitivity analysis framework for clock mesh sensitivity computation". In Proc. of IEEE International Symposium on Quality Electronic Design, pp 634 - 640, 2009.

ISPD 2010 3/18/2010



## CMSSQP Framework



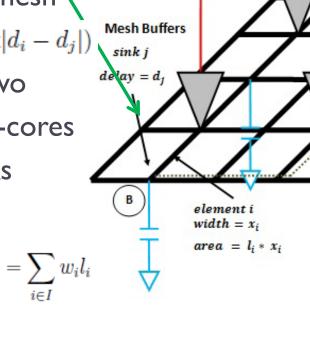


#### Results

#### **Experimental Setup**

- > 65nm technology transistor models for the buffers
- > (m rows X n columns) mesh
- $\triangleright$  Max skew  $(\forall (i, j \in S) \text{ Max} |d_i d_j|)$
- Linux platform having two Intel Xeon E5410 quad-cores
- > ISCAS, ISPD benchmarks
- Widths limited

Total area of the clock mesh



time



Clock Driver

Clock Mesh

Sink Capacitances



## Initial clock mesh design

| H-Spice Results |        |         |                 |          |             |  |  |
|-----------------|--------|---------|-----------------|----------|-------------|--|--|
| Benchmark       | No. of | Size of | Initial         |          |             |  |  |
|                 | sinks  | mesh    | (before CMSSQP) |          |             |  |  |
|                 |        |         | Max Skew        | Max Slew | Area        |  |  |
|                 |        |         | (ps)            | (ps)     | $(\mu m^2)$ |  |  |
| ispd09f11       | 121    | 12X12   | 12.3            | 70.8     | 17160       |  |  |
| ispd09f12       | 117    | 12X12   | 16.9            | 55.2     | 20192       |  |  |
| ispd09f21       | 117    | 16X16   | 20.9            | 67.5     | 31590       |  |  |
| ispd09f22       | 91     | 16X16   | 16.2            | 51.5     | 17264       |  |  |
| s1423           | 74     | 6X6     | 14.4            | 49.8     | 12439       |  |  |
| s5378           | 179    | 13X13   | 7.4             | 26.2     | 27189       |  |  |
| s15850          | 597    | 24X24   | 14.9            | 37.4     | 62903       |  |  |
| r1              | 267    | 16X16   | 12.3            | 35.8     | 198589      |  |  |
| r2              | 598    | 30X30   | 22.3            | 59.2     | 499557      |  |  |
| r3              | 862    | 30X30   | 12.3            | 34.8     | 520200      |  |  |
| r4              | 1903   | 40X40   | 22.3            | 51.0     | 910821      |  |  |
| r5              | 3101   | 32X32   | 25.0            | 59.0     | 828123      |  |  |
| Average         |        |         | 16.4            | 49.9     | 262168.9    |  |  |

Table I. Summary of initial clock mesh design results



# Results after executing CMSSQP

| H-Spice Results |        |         |                |          |             |  |  |
|-----------------|--------|---------|----------------|----------|-------------|--|--|
| Benchmark       | No. of | Size of | Final          |          |             |  |  |
|                 | sinks  | mesh    | (after CMSSQP) |          |             |  |  |
|                 |        |         | Max Skew       | Max Slew | Area        |  |  |
|                 |        |         | (ps)           | (ps)     | $(\mu m^2)$ |  |  |
| ispd09f11       | 121    | 12X12   | 12.2           | 71       | 9914        |  |  |
| ispd09f12       | 117    | 12X12   | 17.4           | 52.1     | 11426       |  |  |
| ispd09f21       | 117    | 16X16   | 22.9           | 67.3     | 21473       |  |  |
| ispd09f22       | 91     | 16X16   | 19.9           | 51.1     | 14404       |  |  |
| s1423           | 74     | 6X6     | 22             | 55.2     | 8614        |  |  |
| s5378           | 179    | 13X13   | 9.9            | 25.4     | 18888       |  |  |
| s15850          | 597    | 24X 24  | 17.4           | 42.3     | 47150       |  |  |
| r1              | 267    | 16X16   | 14.9           | 37.2     | 123931      |  |  |
| r2              | 598    | 30X30   | 29.7           | 66.7     | 363002      |  |  |
| r3              | 862    | 30X30   | 14.8           | 35       | 301505      |  |  |
| r4              | 1903   | 40X40   | 29.9           | 61.4     | 552229      |  |  |
| r5              | 3101   | 32X32   | 25.0           | 57.9     | 613754      |  |  |
| Average         |        |         | 19.7           | 51.9     | 173857.5    |  |  |

ISPD 2010 3/18/2010



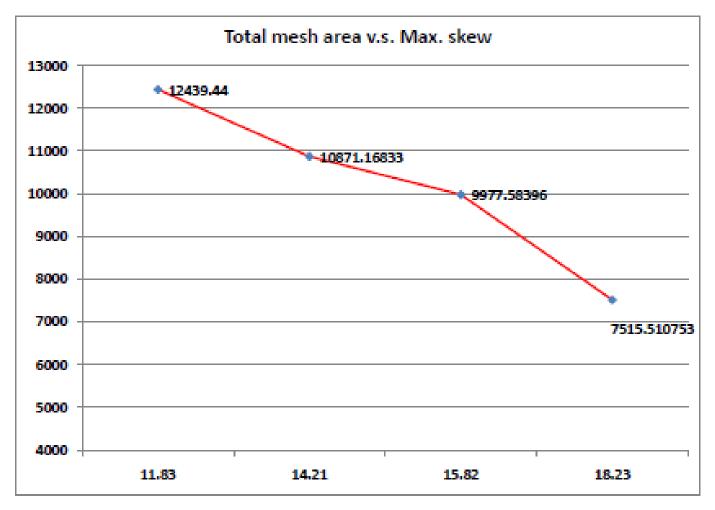
# Summary: Reduction in area

| H-Spice Results |        |         |         |                |  |  |  |
|-----------------|--------|---------|---------|----------------|--|--|--|
| Benchmark       | No. of | Size of | Runtime | Area reduction |  |  |  |
|                 | sinks  | mesh    | (s)     | (%)            |  |  |  |
|                 |        |         |         |                |  |  |  |
|                 |        |         |         |                |  |  |  |
| ispd09f11       | 121    | 12X12   | 465     | 42.2           |  |  |  |
| ispd09f12       | 117    | 12X12   | 480     | 43.4           |  |  |  |
| ispd09f21       | 117    | 16X16   | 640     | 32.0           |  |  |  |
| ispd09f22       | 91     | 16X16   | 550     | 16.6           |  |  |  |
| s1423           | 74     | 6X6     | 188     | 30.7           |  |  |  |
| s5378           | 179    | 13X13   | 322     | 30.5           |  |  |  |
| s15850          | 597    | 24X24   | 1430    | 25.0           |  |  |  |
| r1              | 267    | 16X16   | 1197    | 37.6           |  |  |  |
| r2              | 598    | 30X30   | 2954    | 27.3           |  |  |  |
| r3              | 862    | 30X30   | 3115    | 42.0           |  |  |  |
| r4              | 1903   | 40X40   | 10540   | 39.7           |  |  |  |
| r5              | 3101   | 32X32   | 15440   | 25.9           |  |  |  |
| A               | verage |         | 3110    | 33             |  |  |  |



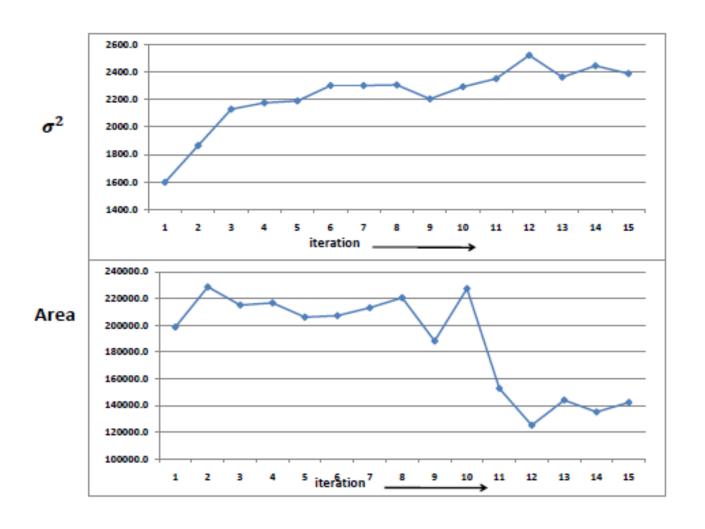
# Area-skew tradeoff by varying $\delta$





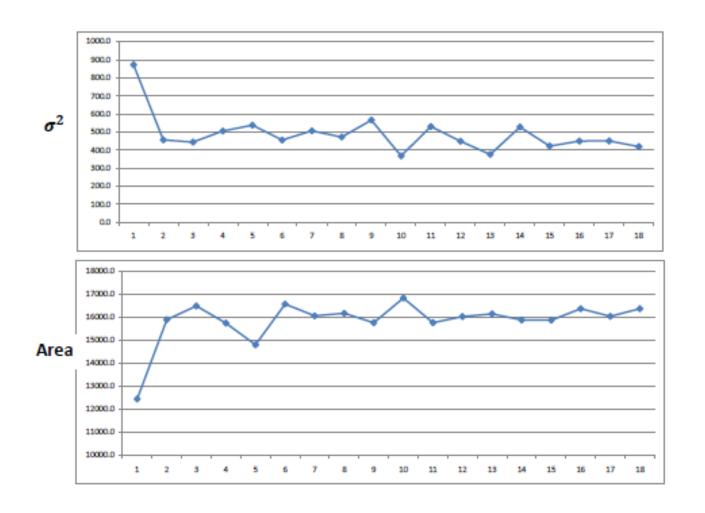


# Case(a): $(\sigma^2 < \delta)$ , $\sigma^2$ , total clock mesh area in each iteration





# Case(b): $(\sigma^2 > \delta)$ , $\sigma^2$ , total clock mesh area in each iteration





#### Conclusions & Future work

- Presented an algorithm for reduction of clock mesh area satisfying specified skew constraints in a clock mesh.
- Robust in dealing with any complex clock mesh network.
- First clock mesh sizing method that does systematic solution search and is based on accurate delay model.
- Experimental results achieved about 33% reduction in clock mesh area.
- Can be extended to size interconnects, mesh buffers simultaneously.



# **Thanks**