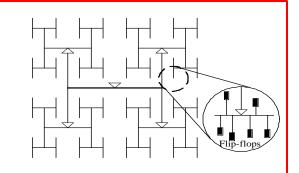


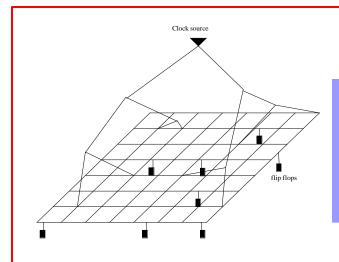
Accurate Clock Mesh Sizing via Sequential Quadratic Programming

Venkata Rajesh Mekala, Yifang Liu, Xiaoji Ye, Jiang Hu, Peng Li Department of ECE Texas A&M University

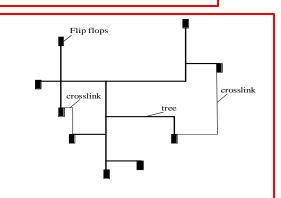


OUTLINE

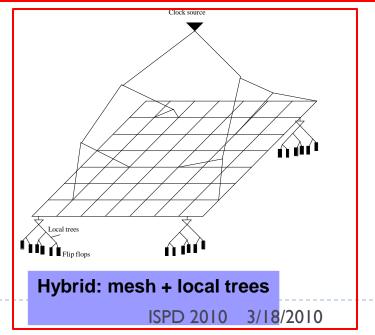
- Introduction
- Previous Works
- Problem Formulation
- Algorithm Overview
- Results
- Conclusions



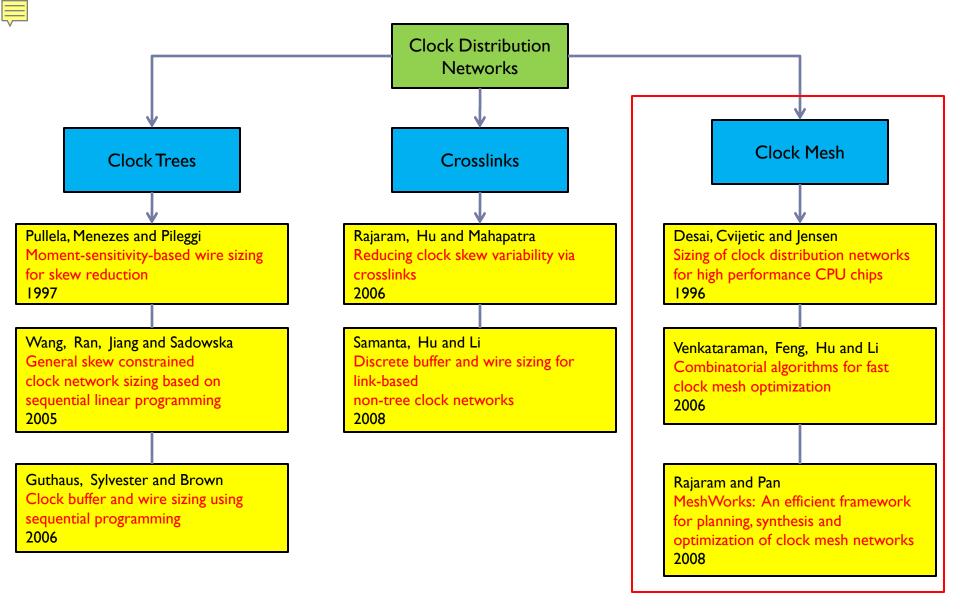
Clock Architectures


Clock Tree

- low cost (wiring, power, cap)
- higher skew, jitter than mesh
- widely used in ASIC designs
- clock gating easy to incorporate


Clock Mesh

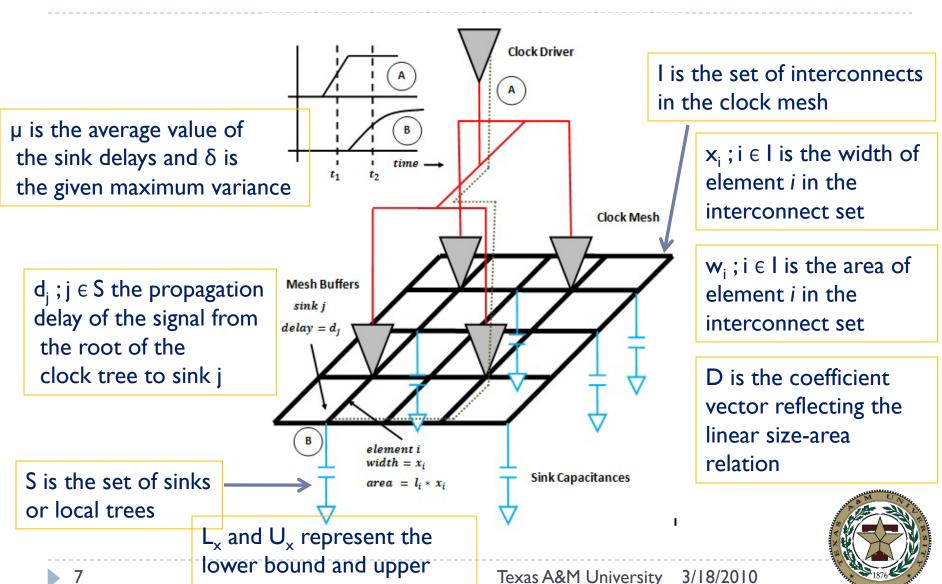
- excellent for low skew, jitter
- high power, area, capacitance
- difficult to analyze
- clock gating not easy
- used in modern processors


Hybrid: tree + cross-links

- low cost (wiring, power, cap)
- smaller skew, jitter than tree*
- difficult to analyze

Clock Mesh

- Clock mesh architecture is very effective in reducing skew variation.
- Clock mesh is difficult in analyzing with sufficient accuracy.
- It dissipates higher power compared to other architectures.
- The challenge is to design the mesh with less power meeting the skew constraints.


Motivation & Our Contributions

- Current-source based gate modeling approach to speedup the accurate analysis of clock mesh.
- Efficient adjoint sensitivity analysis to provide desirable sensitivities.
- Algorithm based on rigorous SQP.
- First clock mesh sizing method that does systematic solution search and is based on accurate delay model

Problem Formulation

bound vectors of the wires

Problem Formulation

total clock mesh area

Minimize:

$$w = \sum_{i \in I} w_i = \mathbf{x}^T D,$$

$$\sigma^2 = \sum_{j \in S} (d_j - \mu)^2 \le \delta,$$

skew constraint in the variance form

$$L_{\mathbf{x}} \le \mathbf{x} \le U_{\mathbf{x}},$$

Higher wire area leads to a higher load capacitance for the clock buffers which in Constraint in the quadratic form is a differentiable function widths turn implies a higher power dissipation.

- Lagrangian of the original problem:
- Gradient vector of the Lagrangian function

$$\mathcal{L}(\mathbf{x}, \lambda) = \mathbf{x}^T D - \lambda(\delta - \sigma^2).$$

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \lambda) = D + \lambda \nabla_{\mathbf{x}} \sigma^2.$$

 $\nabla_{\mathbf{x}}\sigma^2$ is be obtained by circuit simulation and adjoint sensitivity analysis

- Lagrangian of the original problem:
- Gradient vector of the Lagrangian function

$$\mathcal{L}(\mathbf{x}, \lambda) = \mathbf{x}^T D - \lambda(\delta - \sigma^2).$$

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \lambda) = D + \lambda \nabla_{\mathbf{x}} \sigma^2.$$

The adjoint sensitivity analysis gives us the values of

$$\frac{\partial \sigma^2}{\partial R}$$
 and $\frac{\partial \sigma^2}{\partial C}$

- Lagrangian of the original problem:
- Gradient vector of the Lagrangian function

$$\mathcal{L}(\mathbf{x}, \lambda) = \mathbf{x}^T D - \lambda(\delta - \sigma^2).$$

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \lambda) = D + \lambda \nabla_{\mathbf{x}} \sigma^2.$$

The sensitivities with respect to wire widths are calculated with the help of chain rule:

$$\frac{\partial \sigma^2}{\partial X} = \left(\frac{\partial \sigma^2}{\partial R}.\frac{\partial R}{\partial X}\right) + \left(\frac{\partial \sigma^2}{\partial C}.\frac{\partial C}{\partial X}\right)$$

- Lagrangian of the original problem:
- Gradient vector of the Lagrangian function
- Necessary conditions for any optimal point of the problem – KKT conditions

$$\mathcal{L}(\mathbf{x}, \lambda) = \mathbf{x}^T D - \lambda(\delta - \sigma^2).$$

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \lambda) = D + \lambda \nabla_{\mathbf{x}} \sigma^2.$$

$$D + \lambda \nabla_{\mathbf{x}} \sigma^2 = 0$$
, \leftarrow

$$\delta - \sigma^2 \ge 0$$
.

Common way to solve this equation is by Newton's method.

 $D + \lambda \nabla_{\mathbf{x}} \sigma^2 = 0$

Let the Newton step in iteration k of solving the equation be:

$$\begin{bmatrix} \mathbf{p}_{\mathbf{x},k} \\ \mathbf{p}_{\lambda,k} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_{k+1} \\ \lambda_{k+1} \end{bmatrix} - \begin{bmatrix} \mathbf{x}_k \\ \lambda_k \end{bmatrix}$$

x, λ are variables in the equation.

 $p_{x,k}$ and $p_{\lambda,k}$ are the vectors representing change in width of wires and Lagrangian multiplier.

 $D + \lambda \nabla_{\mathbf{x}} \sigma^2 = 0$

- Let the Newton step in iteration k of solving the equation be:
- Jacobian of the equation is:
- Hessian of the Lagrangian function:
- Newton step calculation implies that $p_{x,k}$ and $p_{\lambda,k}$ satisfy the following system:

$$\begin{bmatrix} \mathbf{p}_{\mathbf{x},k} \\ \mathbf{p}_{\lambda,k} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_{k+1} \\ \lambda_{k+1} \end{bmatrix} - \begin{bmatrix} \mathbf{x}_k \\ \lambda_k \end{bmatrix}$$

$$\left[\begin{array}{cc} \nabla_{\mathbf{x}\mathbf{x}}^2 \mathcal{L}(\mathbf{x}, \lambda) & \nabla_{\mathbf{x}} \sigma^2 \end{array}\right]$$

$$H = \nabla_{\mathbf{x}\mathbf{x}}^2 \mathcal{L}(\mathbf{x}, \lambda)$$

$$\left[\begin{array}{cc} H_k & \nabla_{\mathbf{x}} \sigma_k^2 \end{array}\right] \left[\begin{array}{c} \mathbf{p}_{\mathbf{x},k} \\ \mathbf{p}_{\lambda,k} \end{array}\right] = \left[\begin{array}{cc} -D - \lambda_k \nabla_{\mathbf{x}} \sigma_k^2 \end{array}\right]$$

- Newton step calculation implies that p_{x,k} and p_{λ,k} satisfy the following system:
- Adjusting the above equation gives us:
- This equation is solved by:

$$\begin{bmatrix} H_k & \nabla_{\mathbf{x}} \sigma_k^2 \end{bmatrix} \begin{bmatrix} \mathbf{p}_{\mathbf{x},k} \\ \mathbf{p}_{\lambda,k} \end{bmatrix} = \begin{bmatrix} -D - \lambda_k \nabla_{\mathbf{x}} \sigma_k^2 \end{bmatrix}$$

$$H_k \mathbf{p}_{\mathbf{x},k} + D + \lambda_{k+1} \nabla_{\mathbf{x}} \sigma_k^2 = 0$$

- Minimize: $\frac{1}{2}\mathbf{p}_{\mathbf{x}}^TH\mathbf{p}_{\mathbf{x}} + D^T\mathbf{p}_{\mathbf{x}}$
- ▶ Subject to: $\delta \sigma^2 \ge 0$

Solving the QP sub-problem

The QP sub-problem to be solved as a part of SQP is:

Minimize:

$$\frac{1}{2}\mathbf{p}_{\mathbf{x}}^TH\mathbf{p}_{\mathbf{x}} + D^T\mathbf{p}_{\mathbf{x}}$$

Subject to:

$$\delta - (\sigma^2 + (\nabla_{\mathbf{x}}\sigma^2)^T \mathbf{p}_{\mathbf{x}}) \ge 0$$

and

$$L_{\mathbf{x}} \leq \mathbf{x} \leq U_{\mathbf{x}}$$

Solving the QP sub-problem

The QP sub-problem to be solved as a part of SQP is:

Minimize:

$$\frac{1}{2}\mathbf{p}_{\mathbf{x}}^{T}H\mathbf{p}_{\mathbf{x}} + D^{T}\mathbf{p}_{\mathbf{x}}$$

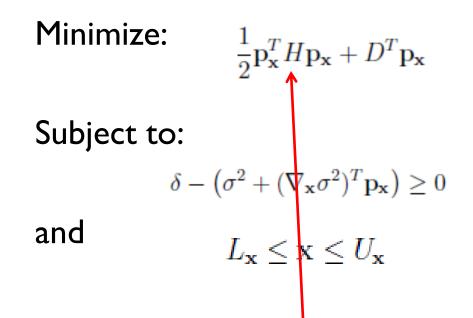
Subject to:

and

$$\delta - (\sigma^2 + (\nabla_{\mathbf{x}}\sigma^2)^T \mathbf{p_x}) \ge 0$$

$$L_{\mathbf{x}} \le \mathbf{x} \le U_{\mathbf{x}}$$

the sensitivities with respect to wire widths are calculated with the help of chain rule:


$$\frac{\partial \sigma^2}{\partial X} = \left(\frac{\partial \sigma^2}{\partial R} \cdot \frac{\partial R}{\partial X}\right) + \left(\frac{\partial \sigma^2}{\partial C} \cdot \frac{\partial C}{\partial X}\right)$$

through sensitivity analysis we obtain the gradient.

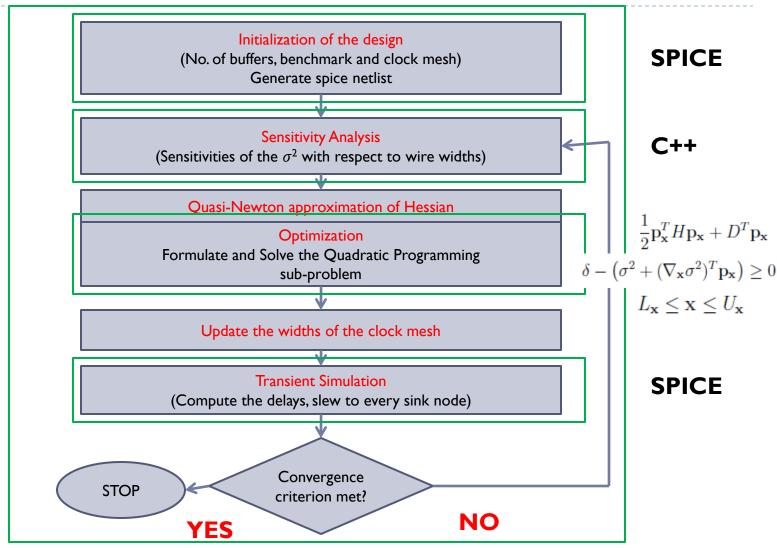
Solving the QP sub-problem

The QP sub-problem to be solved as a part of SQP is:

we use quasi-newton (BFGS) method to approximate the hessian in each iteration

Sensitivity Analysis

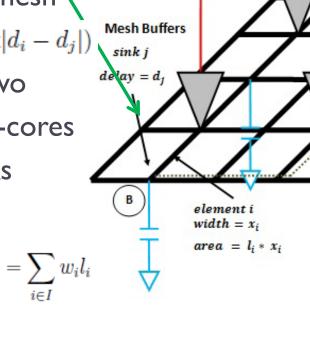
- Sensitivity information of the original circuit obtained by convolution-like computation between transient waveforms of the original and the adjoint circuit.
- Compact gate model provides up to two orders of magnitude speedup over SPICE simulation while maintaining the same level of accuracy.


P. Li, Z. Feng and E. Acar. "Characterizing multistage nonlinear drivers and variability for accurate timing and noise analysis". In IEEE Trans. Very Large Scale Integration, pp 205 - 214, November 2007.

X.Ye and P. Li. "An application-specic adjoint sensitivity analysis framework for clock mesh sensitivity computation". In Proc. of IEEE International Symposium on Quality Electronic Design, pp 634 - 640, 2009.

ISPD 2010 3/18/2010

CMSSQP Framework



Results

Experimental Setup

- > 65nm technology transistor models for the buffers
- > (m rows X n columns) mesh
- \triangleright Max skew $(\forall (i, j \in S) \text{ Max} |d_i d_j|)$
- Linux platform having two Intel Xeon E5410 quad-cores
- > ISCAS, ISPD benchmarks
- Widths limited

Total area of the clock mesh

time

Clock Driver

Clock Mesh

Sink Capacitances

Initial clock mesh design

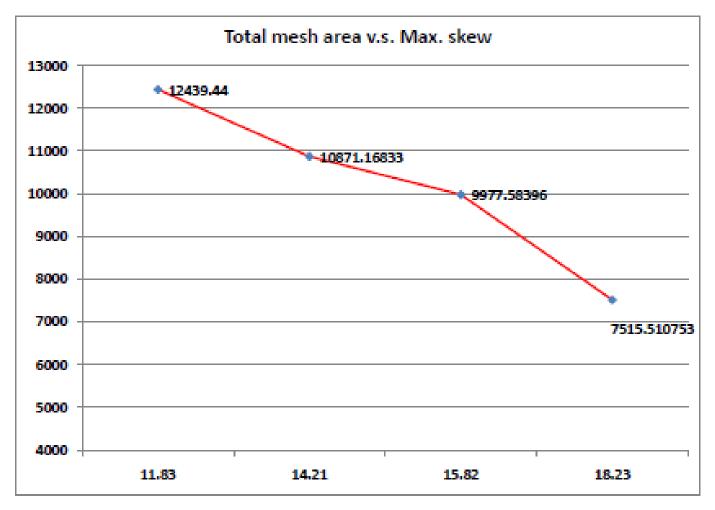
H-Spice Results							
Benchmark	No. of	Size of	Initial				
	sinks	mesh	(before CMSSQP)				
			Max Skew	Max Slew	Area		
			(ps)	(ps)	(μm^2)		
ispd09f11	121	12X12	12.3	70.8	17160		
ispd09f12	117	12X12	16.9	55.2	20192		
ispd09f21	117	16X16	20.9	67.5	31590		
ispd09f22	91	16X16	16.2	51.5	17264		
s1423	74	6X6	14.4	49.8	12439		
s5378	179	13X13	7.4	26.2	27189		
s15850	597	24X24	14.9	37.4	62903		
r1	267	16X16	12.3	35.8	198589		
r2	598	30X30	22.3	59.2	499557		
r3	862	30X30	12.3	34.8	520200		
r4	1903	40X40	22.3	51.0	910821		
r5	3101	32X32	25.0	59.0	828123		
Average			16.4	49.9	262168.9		

Table I. Summary of initial clock mesh design results

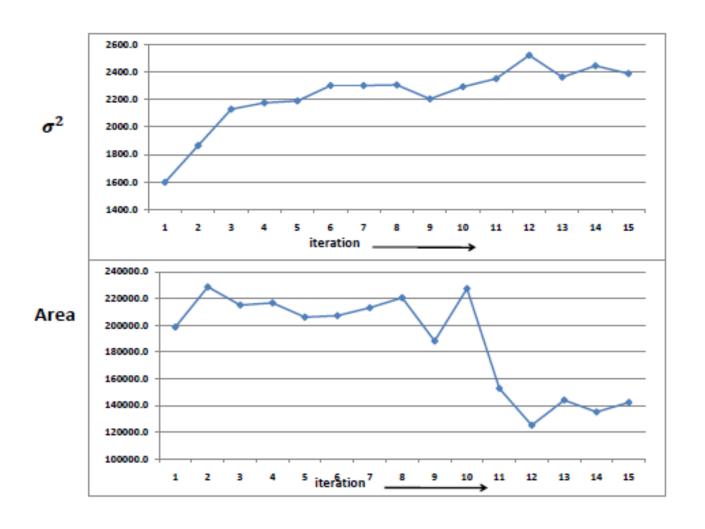
Results after executing CMSSQP

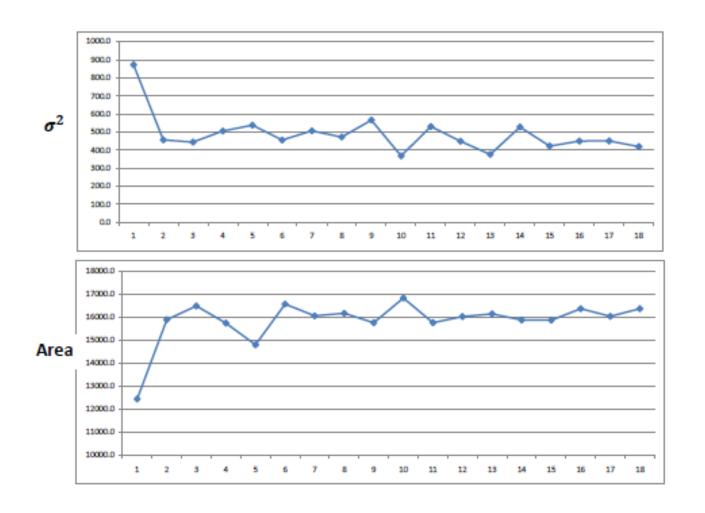
H-Spice Results							
Benchmark	No. of	Size of	Final				
	sinks	mesh	(after CMSSQP)				
			Max Skew	Max Slew	Area		
			(ps)	(ps)	(μm^2)		
ispd09f11	121	12X12	12.2	71	9914		
ispd09f12	117	12X12	17.4	52.1	11426		
ispd09f21	117	16X16	22.9	67.3	21473		
ispd09f22	91	16X16	19.9	51.1	14404		
s1423	74	6X6	22	55.2	8614		
s5378	179	13X13	9.9	25.4	18888		
s15850	597	24X 24	17.4	42.3	47150		
r1	267	16X16	14.9	37.2	123931		
r2	598	30X30	29.7	66.7	363002		
r3	862	30X30	14.8	35	301505		
r4	1903	40X40	29.9	61.4	552229		
r5	3101	32X32	25.0	57.9	613754		
Average			19.7	51.9	173857.5		

ISPD 2010 3/18/2010


Summary: Reduction in area

H-Spice Results							
Benchmark	No. of	Size of	Runtime	Area reduction			
	sinks	mesh	(s)	(%)			
ispd09f11	121	12X12	465	42.2			
ispd09f12	117	12X12	480	43.4			
ispd09f21	117	16X16	640	32.0			
ispd09f22	91	16X16	550	16.6			
s1423	74	6X6	188	30.7			
s5378	179	13X13	322	30.5			
s15850	597	24X24	1430	25.0			
r1	267	16X16	1197	37.6			
r2	598	30X30	2954	27.3			
r3	862	30X30	3115	42.0			
r4	1903	40X40	10540	39.7			
r5	3101	32X32	15440	25.9			
A	verage		3110	33			


Area-skew tradeoff by varying δ



Case(a): $(\sigma^2 < \delta)$, σ^2 , total clock mesh area in each iteration

Case(b): $(\sigma^2 > \delta)$, σ^2 , total clock mesh area in each iteration

Conclusions & Future work

- Presented an algorithm for reduction of clock mesh area satisfying specified skew constraints in a clock mesh.
- Robust in dealing with any complex clock mesh network.
- First clock mesh sizing method that does systematic solution search and is based on accurate delay model.
- Experimental results achieved about 33% reduction in clock mesh area.
- Can be extended to size interconnects, mesh buffers simultaneously.

Thanks