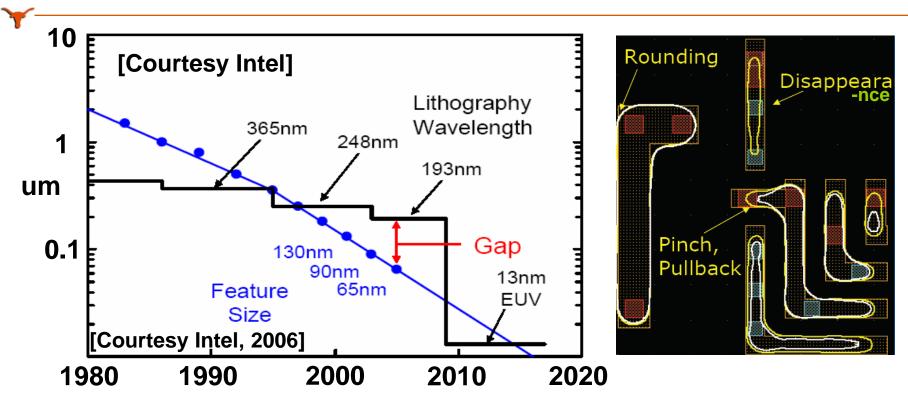


Total Sensitivity Based DFM Optimization of Standard Library Cells

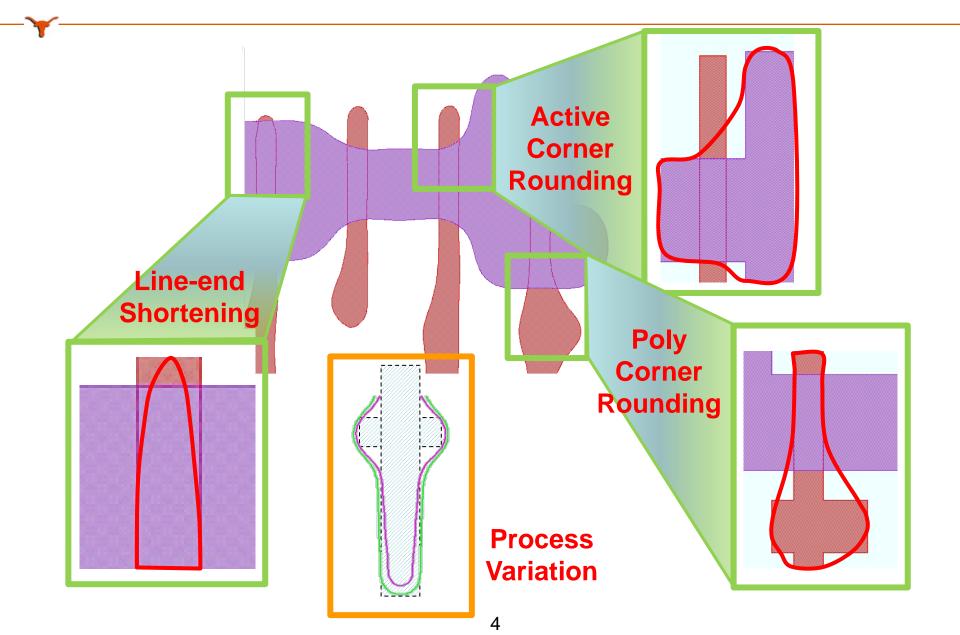
Yongchan Ban, Savithri Sundareswaran*, and David Z. Pan

*Freescale Semiconductor, Austin, TX



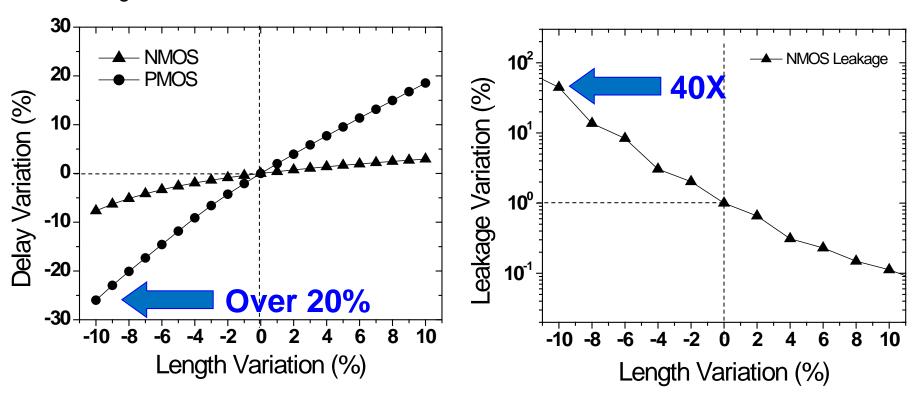
Outline

- , N /
 - Motivation
 - Our Contribution
 - Total Sensitivity
 - Device criticality based sensitivity
 - Lithography proximity induced sensitivity
 - Process variation induced sensitivity
 - Total Sensitivity Based Layout Optimization
 - Experimental Results
 - Conclusions



Current Lithography Challenges

- Optical lithography (193nm) will continue for several years.
 - Immersion, RET (Resolution Enhancement Technique, e.g. OPC)
 - DPL (Double Patterning Lithography)
- Next Generation Lithography (e.g. EUV)
 - Economical/material/technical challenges


Gate Variation @Standard Cell

Impact of Gate Length Variation

♦ ΔL_{gate} is up to 10% @45nm node.

• The small improvement of ΔL_{gate} reduction can leads to significant decrease of delay and leakage variations.

Standard Cell Layout Optimization

- Since a lot of identical cells will be used repeatedly, any small changes can result in significant improvements.
- ♦ Restricted design-rules in industry [Choi'07 SPIE, Liebmann'09 SPIE]
 - Rule based and simple
 - Large number of rules and expensive rule checking
 - RDR is starting to fail in their attempt to use a discrete modeling approach on a continuous systems.
- ♦ Lithography model based optimization [Cote'04 ISQED, Tang'08 SPIE]
 - Robust layout for nominal lithography
 - No consider device criticality in circuit level
 - No single metric for both lithography proximity and process variation
- New model-based approach is needed.

Our Contributions

Timing Criticality

The variation for a high sensitive device should be as small as possible.

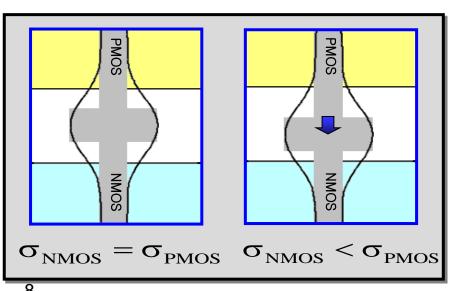
Process Criticality

 Minimize the difference between fastest and slowest process corner

Total Delay Sensitivity Modeling

- Circuit Topological Delay Sensitivity
- Lithography Proximity Induced Sensitivity
- Process Variation Induced Sensitivity
- → Delay, Leakage and Process Robust Layout

Device Criticality Based Sensitivity



$$\Delta d^{\alpha} = \sum_{i} \frac{\partial d^{\alpha}}{\partial L_{i}} \Delta L_{i}$$

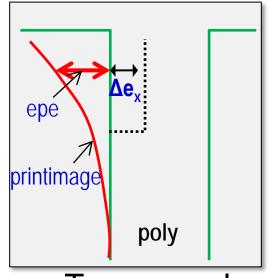
Total delay sensitivity index, Ψ:

$$\Psi = \sum_{\alpha} \omega^{\alpha} \cdot \Delta d^{\alpha} = \sum_{i} \sigma \Delta L_{i}$$

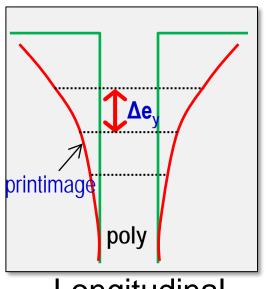
- The devices within the cell can be ranked.
- Circuit induced sensitivity -> σ

Lithography Proximity Sensitivity

- Transversal (ΔL_x) variation and Longitudinal (ΔL_v) variation
- ΔL_x : EPE as a function of Δe_x .

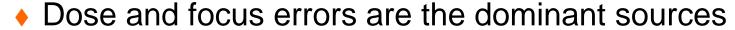

$$\Delta L_{x,i} = \frac{\partial L_{x,i}}{\partial e_{x,i}} \Delta e_{x,i}$$

ΔL_v is changed from different conduction


$$\Delta L_{y} = \frac{\partial L_{y}}{\partial e_{y}} \Delta e_{y} = \Delta L_{i} \quad \left(\frac{\partial L_{y}}{\partial e_{y}}\right) \propto f(\Delta L_{x}, \omega)$$

ω is a weighting factor of narrow width effect

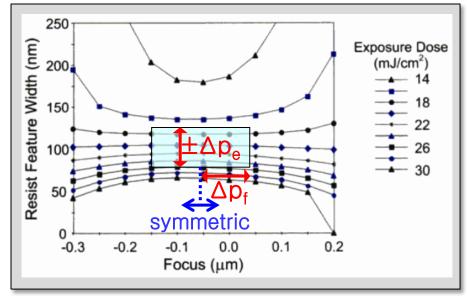
Lithography proximity Induced sensitivity >> y


Transversal

Longitudinal

Process Variation Induced Sensitivity

$$\Delta L = \frac{\partial L}{\partial \ln p_e} \% \Delta p_e + \frac{\partial^2 L}{\partial p_f^2} \Delta p_f^2$$


• Given focus level, Δp_f , ΔL can be simplified:

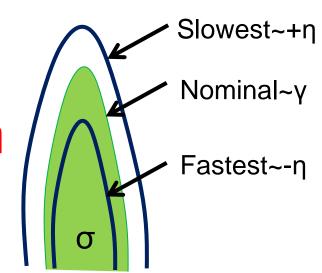
$$\Delta L = \frac{\partial L}{\partial \ln p_e} \Big|_{F_0} [1 + \alpha \cdot \Delta p_f^2] \cdot \% \Delta p_e$$

$$= \frac{\partial L}{\partial \ln p_e} \Big|_{\Delta p_f} \cdot \% \, \Delta p_e$$

Process induced sensitivity

$$\rightarrow \eta$$

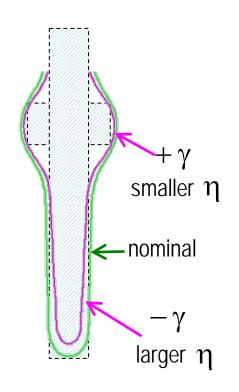
Three Metrics of Sensitivity

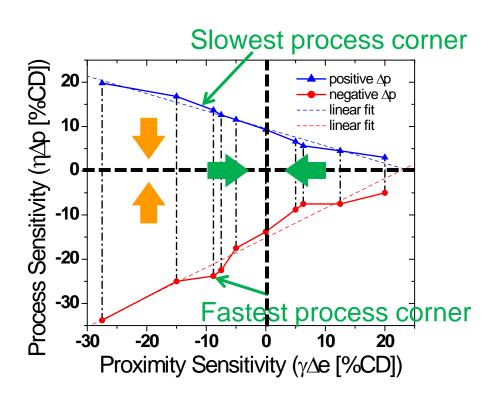

$$\Psi = \sum_{i} \sigma \cdot \Delta L_{i}$$

◆ Lithography Proximity Sensitivity → γ

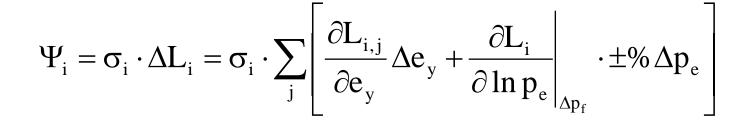
$$\Delta L_i = \frac{\partial L_y}{\partial e_y} \Delta e_y$$

Process induced sensitivity → η

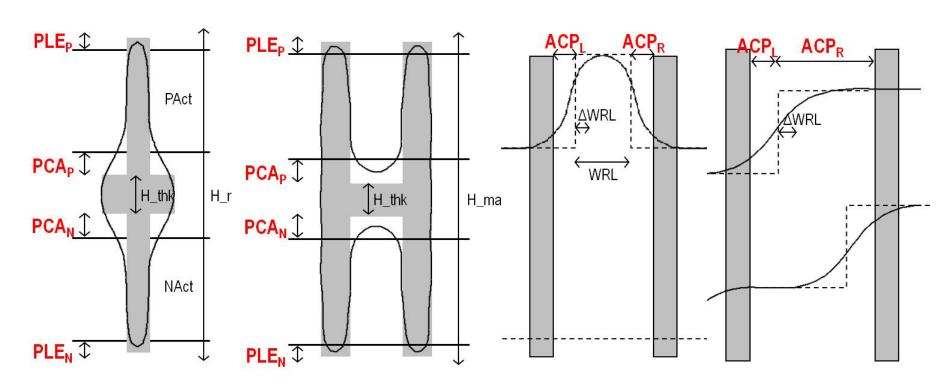

$$\Delta L_i = \frac{\partial L}{\partial \ln p_e} \bigg|_{\Delta p_f} \cdot \pm \% \, \Delta p_e$$



Correlation Between pand n


- The process sensitivity (η) is highly correlated with the lithography proximity sensitivity (γ).
- Once γ is calculated, we can estimate η.
- We should minimize the process gap (Slowest Fastest).

Total Sensitivity

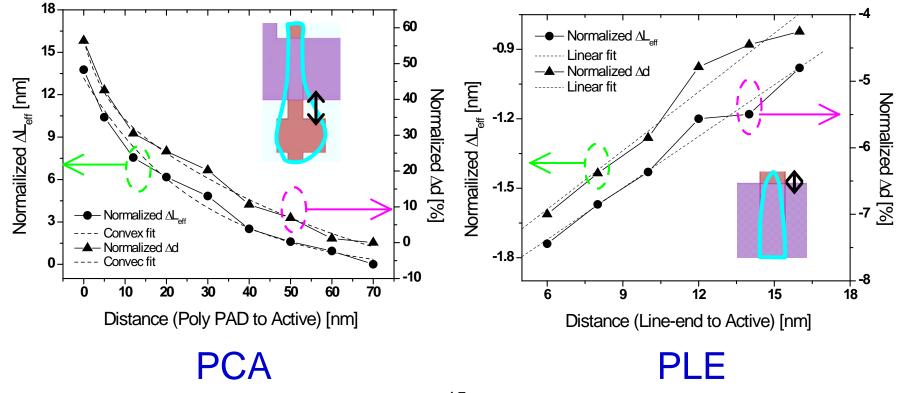

$$= \sigma_{i} \cdot (\gamma_{i} + \eta_{i}) \Big|_{\Delta e_{y}, \pm \% \Delta p_{e}} \begin{cases} \sigma_{i} : device_criticality \\ \gamma_{i} : proximity_sensitivity \\ \eta_{i} : process_sensitivity \end{cases}$$

- Device criticality aware layout
- Process-robust layout

Poly / Active Layer Optimization

- Poly corner to active (PCA) → positive ΔL_{gate}
- Poly line-end (PLE) -> negative ΔL_{gate}
- Active corner to poly (ACP) \rightarrow positive ΔW_{gate}

Poly Layout Optimization

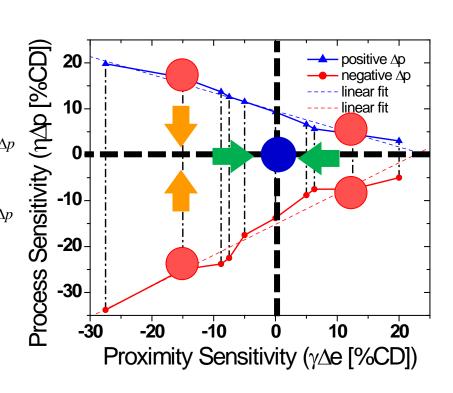

Active Layout Optimization

Poly Layer Optimization

- PCA shows a convex form $(-1/\sqrt{x})$ in our DRC range.
- PLE has a positive linear trend in a certain range.

$$\gamma_{ij} \ge a \cdot \sqrt{PCA_i} + b \cdot PLE_i + c$$
 $\eta_{ij} \ge d \cdot \Delta p_i \cdot \gamma_{ij} + e$

Poly Layer Optimization


min:
$$\left|\Delta d_{ij,\max}\right| + \left|\Delta d_{ij,\min}\right|$$

$$\text{s.t.: } \Delta d_{ij,\max} \geq \sigma_i \sum_{j \in S(i)} (\gamma_{ij} + \left|\eta_{ij}\right|) \Big|_{\Delta e_y,\% \Delta p}$$

$$\Delta d_{ij,\min} \leq \sigma_i \sum_{j \in S(i)} (\gamma_{ij} - \left|\eta_{ij}\right|) \Big|_{\Delta e_y,\% \Delta p}$$

$$\gamma_{ij} \geq a \cdot \sqrt{PCA_i} + b \cdot PLE_i + c$$

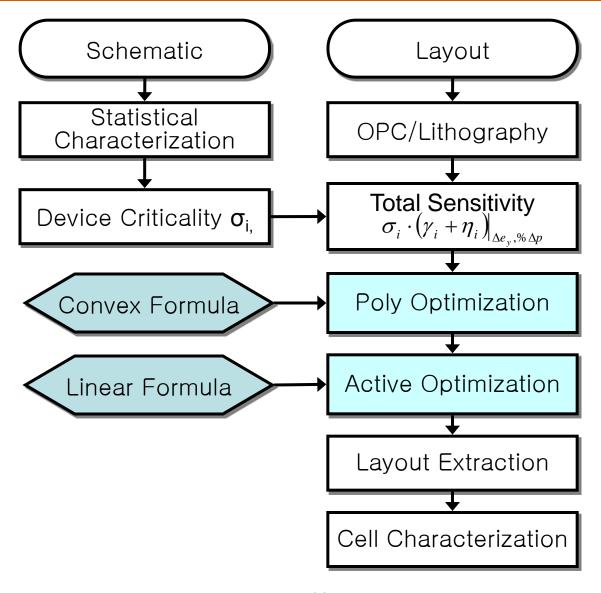
$$\eta_{ij} \geq d \cdot \Delta p_i \cdot \gamma_{ij} + e$$
Probably the probability of the



- The objective is to minimize the maximal delay variation.
- Since γ_{ii} is convex, we can obtain optimal PCA and PLE.

Active Layer Optimization

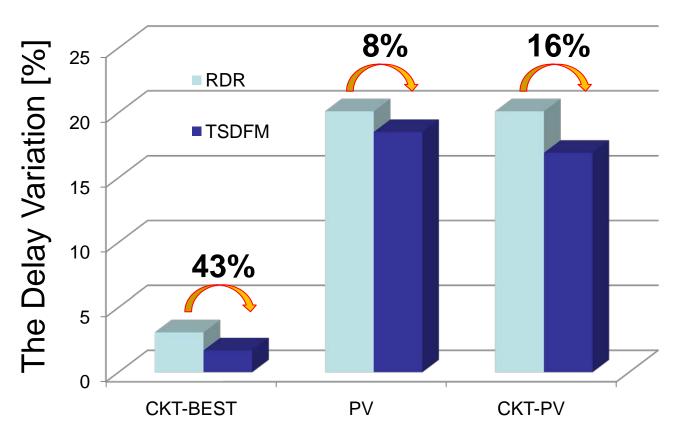
 ACP has a positive linear trend with the distance of active corner to poly.


$$\min : \Delta d_{ij,\max} \ge \sigma_i \sum_{j \in S(i)} \gamma_{ij} \Big|_{\Delta e_j}$$

s.t.:
$$\gamma_{ij} \ge a \cdot ACP_i + b$$

- The objective is to minimize gate proximity.
- γ_{ij} is linear, we can obtain optimal ACP.

Overall Flow


Experiment Results: Setup

- Impletemeted in Tcl/Perl
- Industrial 45nm ASIC designs
- Calibre-WB for model based OPC/Litho
- H-Spice for timing/characterization
- Two Layout Optimizations
 - Conventional restricted design rule (RDR) approach (CONV)
 - Total sensitivity based layout optimization (TSDFM)

Delay Variation

- ◆ ∆delay @best process is relatively low (around 3%)
- Up to 24% reduction in the delay difference between the fastest and the slowest process corner.

^{*} Average delay for entire cells

Leakage Variation

- ◆ The local maximum leakage is decreased up to 91.9% in a cell and as much as 57.5% on average.
- Despite the small improvement of ΔL, we can see the huge amount of improvement on leakage current.

Cell	ΔL	Leakage	ΔL	Leakage	Improve
	CONV		TSDFM		%
C1	-2.26	2.289E-08	-1.27	5.407E-09	85.12
C2	-1.28	5.434E-09	-0.94	4.619E-09	26.45
C3	-1.83	6.747E-09	-1.19	5.203E-09	35.13
C4	-2.90	3.082E-08	-1.08	4.940E-09	90.91
C5	-1.43	5.789E-09	-1.33	5.546E-09	7.07
C6	-1.86	6.808E-09	-0.54	3.639E-09	71.12
C7	-2.03	2.002E-08	-1.78	6.630E-09	75.78
C8	-2.76	2.917E-08	-1.18	5.178E-09	89.46
C9	-2.29	2.332E-08	-1.54	6.046E-09	82.38
C10	-2.79	2.945E-08	-2.54	2.637E-08	11.37

Conclusions

- Total sensitivity (device criticality, nominal lithography proximity, process variation)
- The process sensitivity is highly correlated with the lithography induced sensitivity.
- Optimization is done by reducing the gap between the fastest and slowest delay corner. (up to 25% reduction of Δdelay and 92% decrease of leakage)
- Future works
 - Metal proximity & interconnect optimization
 - S/D contact optimization

Acknowledgments

This work is supported in part by SRC, NSF CAREER Award, and equipment donations from Intel.

Back-up slide

$$\Delta d_{i} = \frac{\partial d}{\partial L_{i}} \Delta L_{i} \qquad \Delta d^{\alpha} = \sum_{i} \frac{\partial d^{\alpha}}{\partial L_{i}} \Delta L_{i}$$

Total delay sensitivity index, Ψ:

$$\Psi = \sum_{\alpha} \omega^{\alpha} \cdot \Delta d^{\alpha} = \sum_{i} \sum_{\alpha} \omega^{\alpha} \cdot \frac{\partial d^{\alpha}}{\partial L_{i}} \Delta L_{i} = \sum_{i} \sigma \Delta L_{i}$$

- The devices within the cell can be ranked.
- Circuit induced sensitivity → σ

Device → ↓ Delay Arc	N_1	N_2	P_1	P_2
$A(r) \to X(f)$	$\sigma^1_{\stackrel{N}{2}1}$	$\sigma^1_{\substack{N_2\\2}}$	$\sigma^1_{\stackrel{P}{2}_1}$	$\sigma^1_{P_2}$
$B(r) \to X(f)$ $A(f) \to X(r)$	$\sigma_{N_1}^2$ $\sigma_{N_4}^3$	$\sigma_{N_2}^2$ $\sigma_{N_2}^3$	$\sigma_{P_1}^z$ $\sigma_{P_4}^3$	$\sigma_{P_2}^2$ $\sigma_{P_2}^3$
$B(f) \to X(r)$	$\sigma_{N_1}^{4}$	$\sigma_{N_2}^4$	$\sigma_{P_1}^{4^1}$	$\sigma_{P_2}^{4^2}$
Device Criticality Metric, γ_i	$\sum_{\alpha} \sigma_{N_1}^{\alpha}$	$\sum_{\alpha} \sigma_{N_2}^{\alpha}$	$\sum_{\alpha} \sigma_{P_1}^{\alpha}$	$\sum_{\alpha} \sigma_{P_2}^{\alpha}$