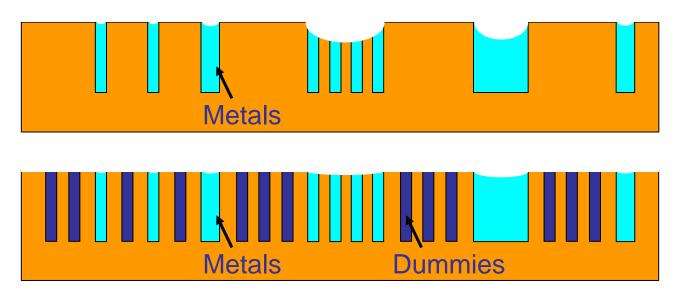
Density Gradient Minimization with Coupling-Constrained Dummy Fill for CMP Control

Huang-Yu Chen¹, Szu-Jui Chou², and Yao-Wen Chang¹

李紫岑 ¹National Taiwan University, Taiwan


Outline

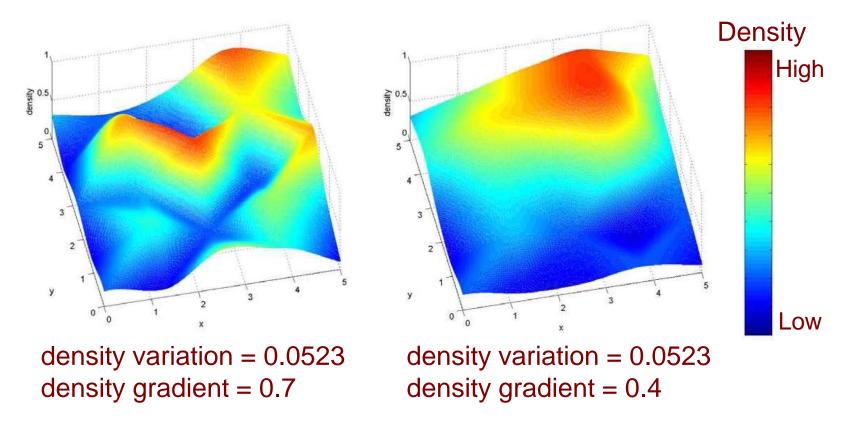
- . Introduction
- Definition of Density Gradient
- . Previous Work
- . Multilevel Gradient Driven Dummy Fill Algorithm
- . Experimental Results
- . Conclusion and Future Work

Introduction

 Dummy fill is a general method to achieve layout uniformity before CMP (chemical-mechanical polishing)

- . Objectives for dummy fill:
 - minimize induced coupling capacitance of dummies
 - minimize dummy counts
 - minimize density gradient of metal density

Density Gradient

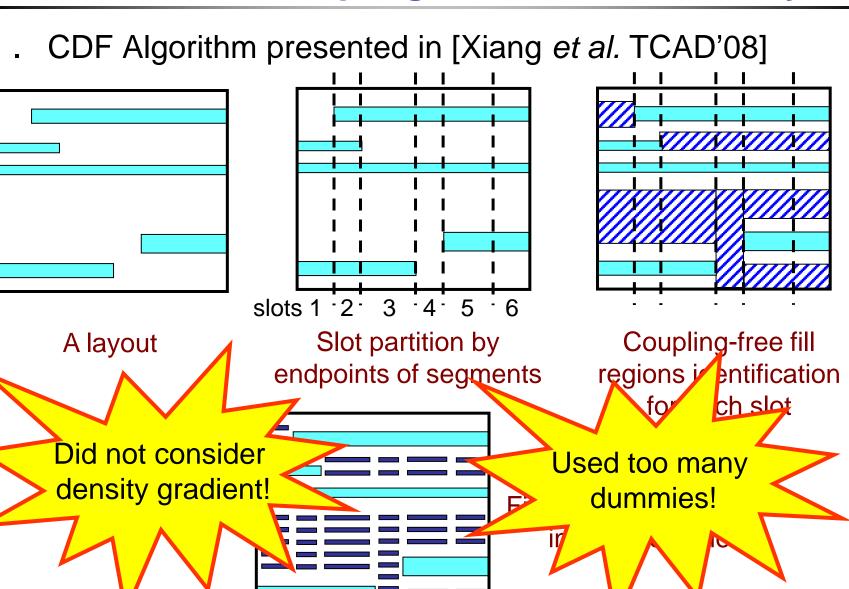

. Gradient

- means the rate of change of the function value in the direction of maximum change.
- is generally used in solving optimization problem, such as the conjugate gradient method and the gradient descent method.
- . Density gradient of a tile
 - is the maximum density difference between this tile and the adjacent tiles.
- Our work is the first work in the literature that simultaneously considers coupling constraints, dummy counts, and density gradient

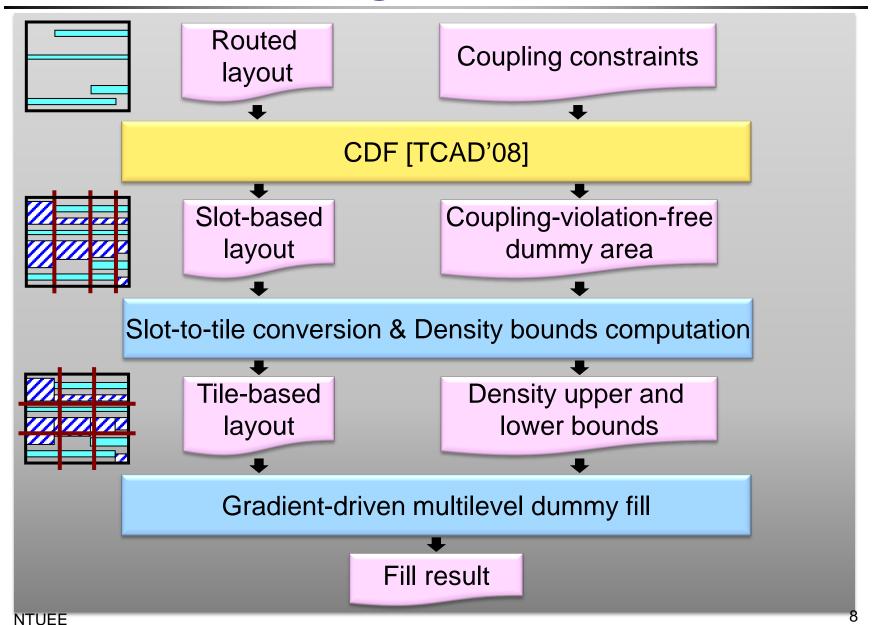
Density Variation vs. Density Gradient

. Density gradient is different from density variation, but both of them would affect the post-CMP thickness.

Considering density variation is not sufficient!

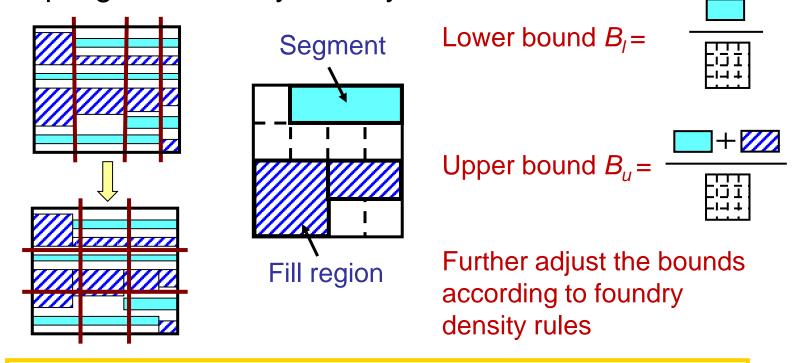

Previous Work

- Highlighted the importance of density variation
 - Chen et al., "Closing the Smoothness and Uniformity Gap in Area Fill Synthesis," ISPD'02.
- . Considered wire density control during routing
 - Li et al., "Multilevel Full-Chip Routing with Testability and Yield Enhancement," TCAD'07
 - Chen et al., "A Novel Wire-Density-Driven Full-Chip Routing System for CMP Variation Control," TCAD'09
- Formed a tradeoff between excessive coupling and lithography cost
 - Deng et al., "Coupling-Aware Dummy Metal Insertion for Lithography," ASPDAC'07.
- Found the maximum dummy insertion regions with no coupling violation
 - Xiang et al., "Fast Dummy-Fill Density Analysis With Coupling Constraints," TCAD'08.

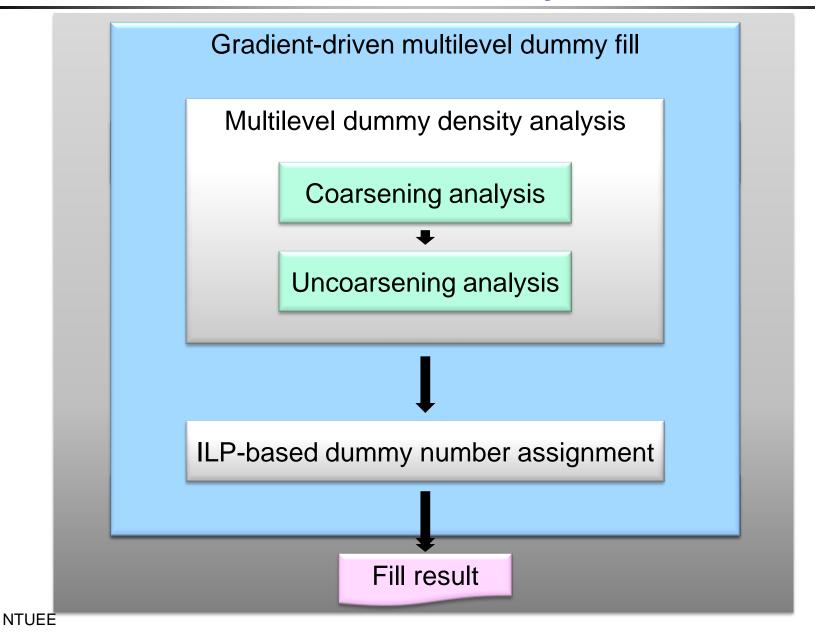


NTUEE

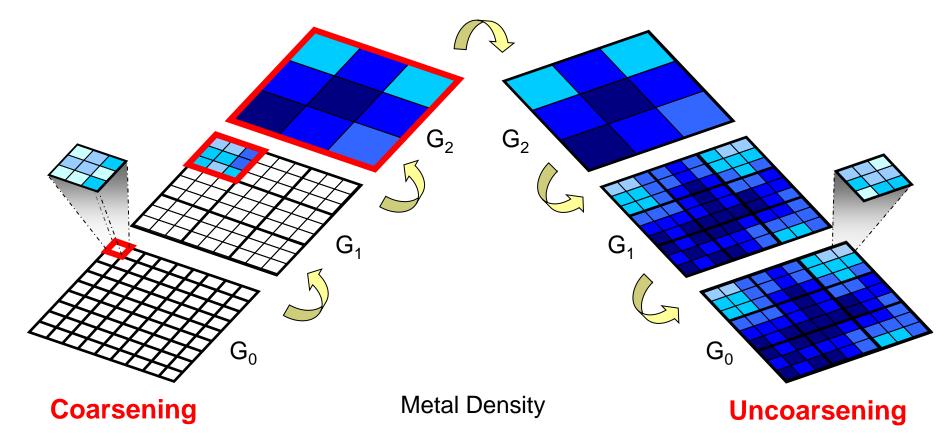
Previous Work: Coupling-Constrained Dummy Fill


Our Algorithm Flow

Slot-to-Tile Conversion and Density Bounds Computation


Convert slot-based layout to tile-based layout

Compute tile density bounds in each tile satisfying both coupling and foundry density rules



 (B_l, B_u) guarantees no coupling and density rule violations in the following stages

Gradient-Driven Dummy Fill Flow

Multilevel Dummy Density Analysis

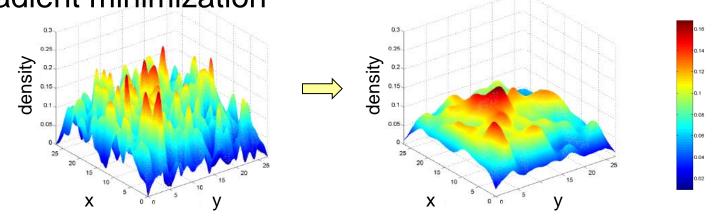
- (1) Gradient minimization by Gaussian smoothing
- (2) Density bounds update level by level

- (1) Density extraction
- (2) ILP-based dummy number assignment

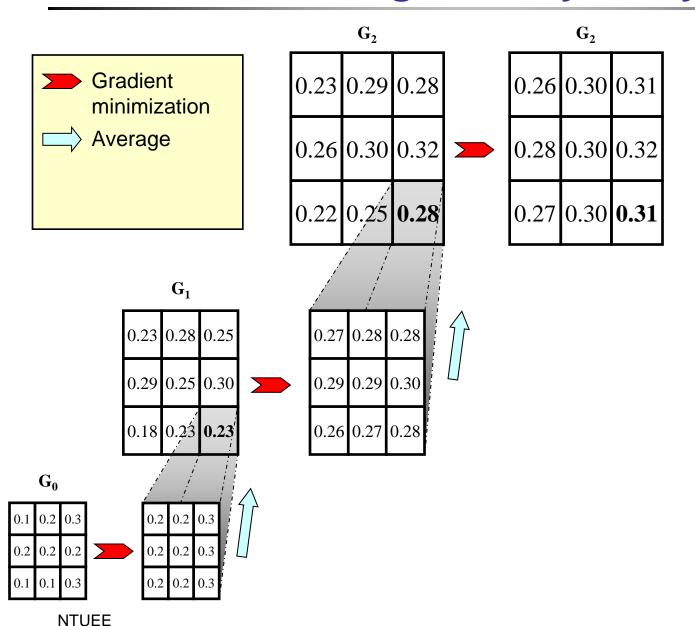
11

Coarsening: Gradient Minimization

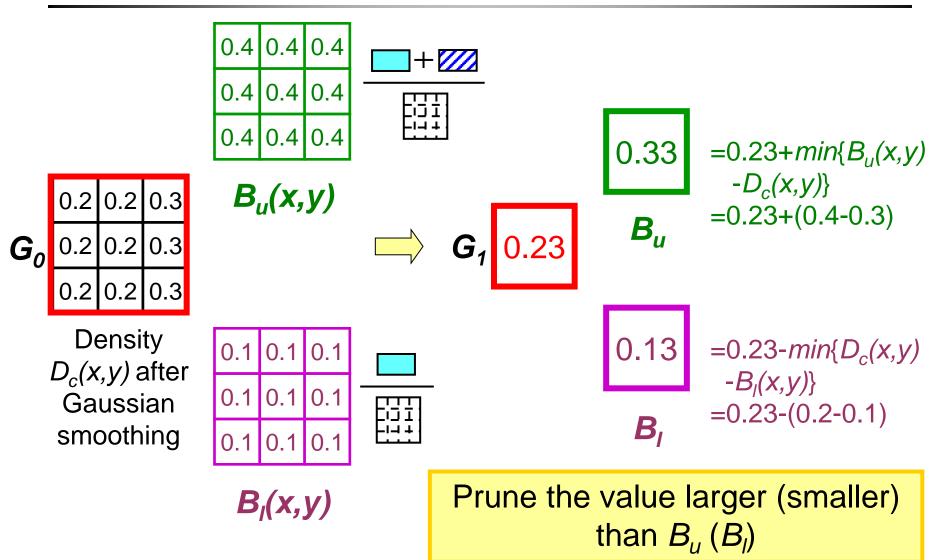
. Gaussian smoothing at tile $(\hat{x}, y) = \sum D_c(x, y)g(x, y)$

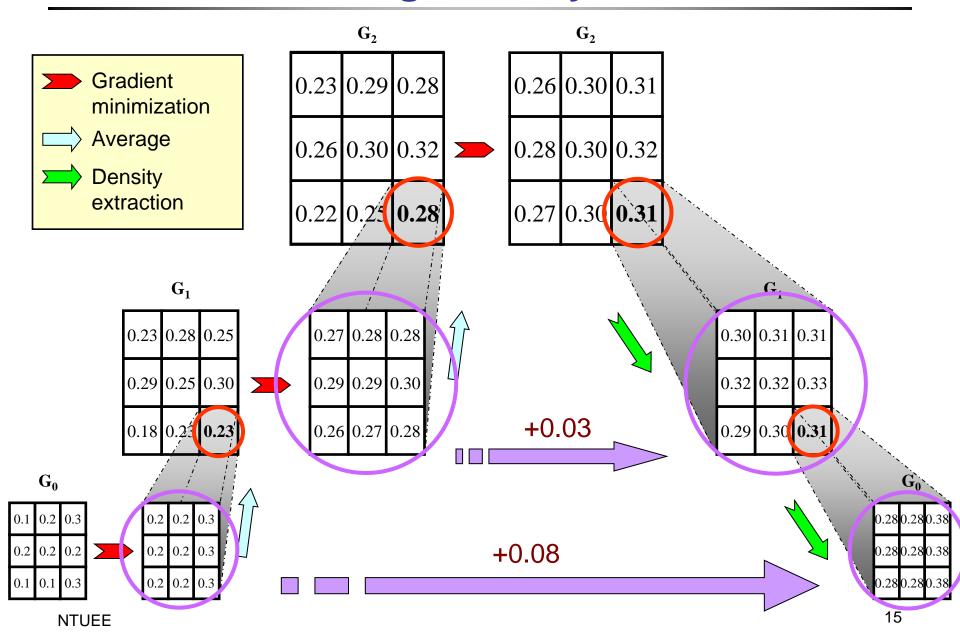

 $-D_c(x,y)$: original density

$$- D_c(x,y). \text{ original density}$$


$$- g(x,y): \text{ weighting function} = \frac{1}{2\pi\sigma^2} \exp(-\frac{(x-\hat{x})^2 + (y-y)^2}{2\sigma^2})$$

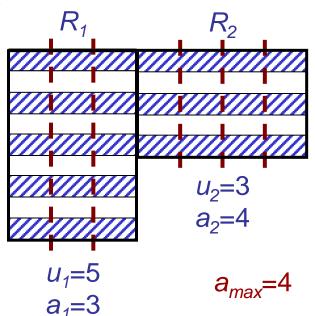
0.1	0.4	0.1	0.2	0.3	1 		0.25	0.36	0.20	0.21	0.28
0.2	0.4	0.4	0.3	0.2		Gaussian	0.27	0.36	0.35	0.28	0.26
0.3	0.3	0.2	0.2	0.1		smoothing	0.24	0.25	0.24	0.20	0.18
0.1	0.1	0.2	0.1	0.3		$(\sigma = 1.0)$	0.17	0.19	0.23	0.19	0.27
0.2	0.2	0.4	0.3	0.4	1 		0.22	0.25	0.35	0.27	0.34


Gaussian smoothing opens up a new direction for gradient minimization


Coarsening: Density Analysis

Coarsening: Tile Density Bounds Update

Uncoarsening: Density Extraction



ILP-based Dummy Number Assignment

- . Optimally insert minimal # of dummies to satisfy the desirable tile density d_d in a tile
- . For the tile with n fill regions $R_1, ..., R_n$, minimize $\sum_{i=1}^{n} r_i$

subject to
$$d_d a - \frac{1}{2} a_{\max} \le \sum_{i=1}^n a_i r_i \le d_d a + \frac{1}{2} a_{\max}$$

 $r_i \le u_i, i = 1, ..., n$

 r_i : # of dummies in R_i d_d : dummy density of tile a: tile area a_i : area of one dummy in R_i a_{max} : max $\{a_i\}$ u_i : max # of dummies in R_i

Experimental Setting

- . Programming language: C++
- . Workstation: 2.0 GHz AMD-64 with 8GB memory
- . ILP solver: lp_solve
- Parameters
 - Window size= 3×3
 - Gaussian smoothing: σ =1.0
 - Foundry density lower and upper bounds: 20% and 60%
- . Test cases: MCNC and industrial Faraday benchmarks
- Comparison with the CDFm algorithm [modified from CDF algorithm, TCAD'08] for all layers and layer 1
 - CDF algorithm: tries to insert as many dummies as possible
 - CDFm algorithm: also honors the density lower and upper bound rules

Benchmarks

. Routing results from Chen et al., ICCAD'07

Circuit	Cizo (umvum)	#Layer	#Segment	#Level	Wire Density				
Circuit	Size (μm×μm)	Avg.	Max	Std.					
Mcc1	45000×39000	4	6199	4	9.85%	47.80%	9.46%		
Mcc2	152400×152400	4	34371	4	10.80%	54.50%	9.90%		
Struct	4903×4904	3	10692	4	0.71%	5.19%	0.88%		
Primary1	7522×4988	3	6889	4	0.54%	9.10%	0.94%		
Primary2	10438×6488	3	28513	4	1.23%	10.10%	1.39%		
S5378	435×239	3	9816	3	8.68%	30.30%	5.60%		
S9234	404×225	3	8462	3	7.43%	30.80%	5.80%		
S13207	660×365	3	21891	3	8.98%	28.90%	5.53%		
S15850	705×389	3	25699	3	9.76%	30.00%	5.04%		
S38417	1144×619	3	64045	3	8.32%	32.10%	4.87%		
S38584	1295×672	3	85931	3	9.37%	28.40%	4.55%		
Dma	408.4×408.4	6	98018	5	15.60%	71.40%	16.30%		
Dsp1	706.0×706.0	6	169867	5	10.70%	55.10%	13.40%		
Dsp2	642.8×642.8	6	159525	5	11.00%	60.50%	13.20%		
Risc1	1003.6×1003.6	6	237862	5	8.74%	58.10%	12.90%		
Risc2	959.6×959.6	6	240978	5	8.82%	50.60%	11.90%		

Runtime and Inserted Dummy Counts

- Inserted dummy count is only 19% compared with CDF algorithm
- Timing overhead is only 19%

Circuit	CD)F	Ou	rs	
Circuit	#Dummy	Time (s)	#Dummy	Time (s)	
Mcc1	1,262,298	160	163,821	171	
Mcc2	20,117,831	7249	4,282,218	7292	
Struct	9,004,650	45	159,457	72	
Primary1	7,102,170	32	188,771	53	
Primary2	24,897,686	428	360,221	490	
S5378	269,916	21	53,527	22	
S9234	230,220	14	58,230	17	
S13207	657,861	73	141,723	76	
S15850	721,317	99	99 155,336		
S38417	2,100,467	330	248,582	337	
S38584	2,460,061	518	277,747	526	
Dma	1,457,877	67	321,635	101	
Dsp1	3,648,742	290	1,012,893	330	
Dsp2	2,815,009	189	778,375	231	
Risc1	9,071,800	252	3,208,787	312	
Risc2	7,235,118	396	2,626,317	446	
Comp.	1.00	1.00	0.19	1.19	

Statistics of Metal Density (MCNC)

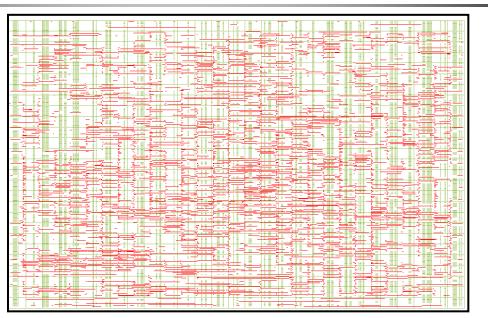
The average density gradient are reduced by 70% and 59% among all layers and of layer 1, respectively

	CDF Analysis Algorithm							Ours						
Circuit	Density Gradient among Layers			Density Gradient of Layer 1			Density Gradient among Layers			Density Gradient of Layer 1				
	Avg.	Max	Std.	Avg.	Max	Std.	Avg.	Max	Std.	Avg.	Max	Std.		
Mcc1	7.14%	35.81%	5.87%	5.28%	12.53%	12.31%	1.59%	14.42%	1.80%	1.81%	11.73%	3.62%		
Mcc2	4.40%	14.67%	2.39%	3.53%	8.16%	5.07%	2.23%	16.84%	2.54%	2.80%	12.07%	5.21%		
Struct	1.41%	5.75%	1.34%	0.56%	5.67%	2.74%	0.16%	0.33%	0.07%	0.19%	0.33%	0.13%		
Primary1	2.38%	13.09%	2.54%	1.61%	10.34%	4.60%	0.14%	0.32%	0.08%	0.17%	0.32%	0.15%		
Primary2	1.22%	3.97%	0.97%	0.20%	1.25%	2.44%	0.12%	0.25%	0.05%	0.14%	0.25%	0.10%		
S5378	5.38%	15.88%	2.53%	5.38%	12.85%	4.37%	1.99%	10.00%	0.96%	2.18%	5.36%	1.70%		
S9234	6.31%	20.79%	3.18%	6.27%	14.01%	5.52%	2.02%	8.67%	1.11%	2.25%	4.26%	1.96%		
S13207	4.19%	14.62%	1.98%	3.54%	9.24%	3.61%	1.53%	7.54%	0.91%	1.49%	5.52%	1.59%		
S15850	4.13%	12.50%	1.92%	3.64%	8.81%	3.43%	1.38%	9.90%	0.79%	1.36%	2.41%	1.38%		
S38417	2.91%	9.32%	1.42%	2.28%	6.67%	2.68%	0.93%	9.97%	0.85%	0.89%	1.53%	1.47%		
S38584	2.80%	8.97%	1.29%	2.41%	7.08%	2.34%	0.79%	8.24%	0.68%	0.79%	1.38%	1.18%		
Comp.	1.00	1.00	1.00	1.00	1.00	1.00	0.30	0.56	0.39	0.41	0.47	0.38		

Statistics of Metal Density (Faraday)

The average density gradient are reduced by 40% and 91% among all layers and of layer 1, respectively

Circuit	CDF Analysis Algorithm							Ours						
	Density	/ Gradient Layers	among	Density Gradient of Layer 1			Density Gradient among Layers			Density Gradient of Layer 1				
	Avg.	Max	Std.	Avg.	Max	Std.	Avg.	Max	Std.	Avg.	Max	Std.		
Dma	3.39%	19.50%	3.30%	1.77%	10.22%	9.01%	2.23%	21.45%	3.10%	0.60%	1.01%	8.57%		
Dsp1	2.90%	24.33%	3.69%	2.87%	24.33%	9.03%	1.49%	20.08%	2.50%	0.14%	0.57%	6.95%		
Dsp2	2.66%	26.81%	3.62%	2.85%	26.81%	8.88%	1.24%	17.27%	1.97%	0.14%	0.59%	5.53%		
Risc1	2.66%	21.15%	3.52%	2.74%	18.79%	8.62%	1.77%	21.15%	3.12%	0.14%	0.40%	8.62%		
Risc2	2.98%	26.49%	3.92%	2.67%	17.95%	9.64%	2.02%	26.49%	3.57%	0.15%	0.45%	9.88%		
Comp.	1.00	1.00	1.00	1.00	1.00	1.00	0.60	0.90	0.79	0.09	0.03	0.88		


Overall comparison (MCNC+Faraday)

Circuit		C	OF Analysi	s Algorith	m	Ours						
	Density Gradient among Layers			Density Gradient of Layer 1			Density Gradient among Layers			Density Gradient of Layer 1		
	Avg.	Max	Std.	Avg.	Max	Std.	Avg.	Max	Std.	Avg.	Max	Std.
Comp.	1.00	1.00	1.00	1.00	1.00	1.00	0.37	0.66	0.51	0.32	0.31	0.53

Comparison of S5378 Layer 1 Filling Results

CDFm algorithm

Metal density = 27.15% Fill inserted = 100%

wires

fills

Ours

Metal density = 21.97% Fill inserted = 20%

Conclusions and Future Work

- Presented an effective and efficient dummy fill algorithm considering both gradient minimization and coupling constraints
 - Reduced 63% of density gradient among all layers
 - Saved 91% dummy counts
- Gaussian smoothing is effective for gradientminimization dummy fill
 - Point out a new research direction on this topic

Future work: simultaneously gradient and coupling capacitance optimization

NTUEE