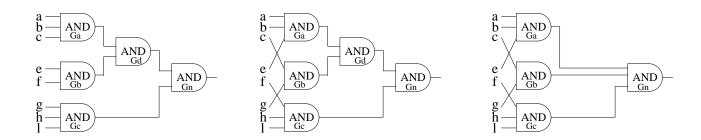
Logical and Physical Restructuring of Fan-in Trees

Hua Xiang Haoxing Ren Louise Trevillyan Lakshmi Reddy+ Ruchir Puri Minsik Cho


IBM T.J. Watson Research Center
+IBM EDA Lab. STG

Introduction

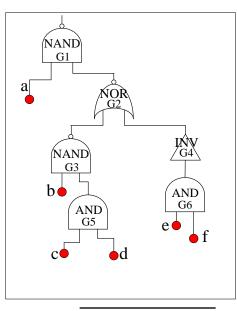
- As feature sizes shrink and design complexity increases, the use of integrated logic synthesis and physical design is expanding.
- Tree restructure for SFFT (Symmetric-Function Fan-in Tree)
 - Trees are created during logic synthesis without placement information
 - Tree placement may be far from optimal since tree structure is fixed during physical design
 - Tree restructure can produce a more placeable and wire-efficient design.

Symmetric-Function Fan-in Tree (SFFT)

- A symmetric-function fan-in tree is a fanout-free logic cone
 - Compute a symmetric function
 - All of the leaf nets in its support set are commutative
 - The tree can be implemented with various structures of a uniform set of gates (i.e., AND, OR, XOR)

$$F=a\cdot b\cdot c\cdot e\cdot f\cdot g\cdot h\cdot l$$

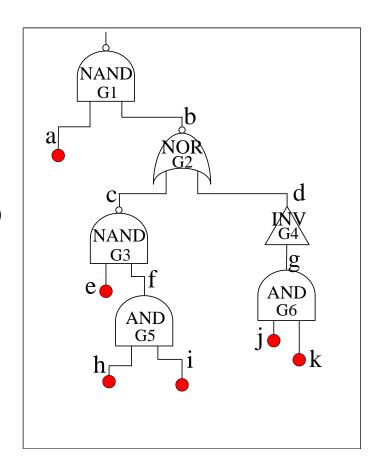
- SFFT trees are frequently found in designs, especially when the design originated as two-level logic
- Rebuild SFFT trees based on the placement information to reduce wire length


Tree Restructure

- Algorithm outline
 SFFT_Restructure (*TreeRoot*, *Threshold*)
 - 1. Identify SFFT tree with root *TreeRoot*
 - 2. Get the locations of all leaf pins and root pin
 - 3. If #leaf pins < *Threshold*
 - 4. Apply Dynamic programming based algorithm
 - 5. else
 - 6. Apply Steiner-Tree based restructure algorithm
 - 7. Output the new SFFT tree

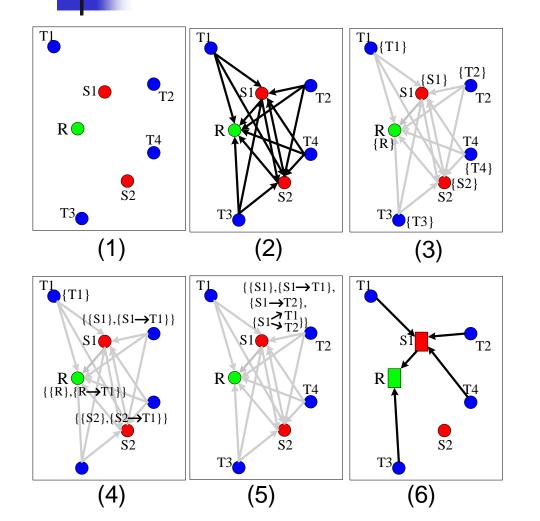
AND SFFTs

- Possible gates in AND SFFTs
 - Any gates whose logic can be expressed by AND/NOT operations


Gate Type	Function
AND	$F = a \cdot b$
NAND	$F = \overline{a \cdot b}$
OR	$F = \overline{a \cdot b}$
NOR	$F = \overline{a \cdot b}$
NOT	$F = \overline{a}$
BUF	F = a

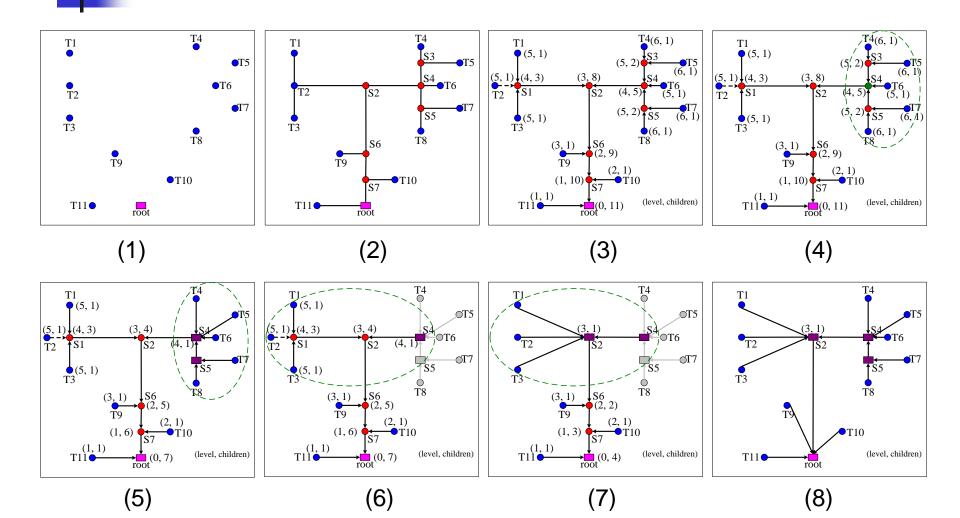
$$F = a \cdot b \cdot c \cdot d \cdot e \cdot f$$

Stack-based Tree Identification


- Build look-up table to convert gates to AND/NOT gates
- Build the initial stack based on the tree root
- Traverse from top to bottom to identify tree nodes
- Traverse stops
 - Multiple-pin net
 - Infeasible gates
 - Invalid logic

Tree Restructure

- Rebuild SFFT trees for shorter wire length
 - Keep the leaf input nets and root output net unchanged
 - Remove all internal gates/nets
 - Use AND/NOT gates to rebuild the tree
- Restructure algorithms
 - Dynamic programming based restructure
 - Optimal solution for a given tree
 - Long runtime
 - Steiner-Tree based restructure
 - The new tree follows the shape of a Steiner Tree for shorter wire length
 - Build sub-trees with DP based tree restructure
 - Balance quality and runtime


DP based Tree Restructure

SFFT_DP (*TreeRoot*)

- 1. Build connectivity graph
- 2. Let each leaf/Steiner node be a tree, and push them to *Queue*
- 3. While (!Queue.empty) {
- 4. $subtree = Queue.pop_front$
- 5. for parent node **P** of subtree.TreeRoot
- 6. merge trees related to **P** with *subtree*
- 7. prune redundant trees
- 8. push the new trees in *Queue*
- 9. }
- 10. Return a tree at *TreeRoot* with max leaf set and min wire length

Steiner Tree based Restructure

Experimental Results

- Algorithms were implemented in C, and have been integrated into a physical-synthesis system
- Tested on linux workstations (2.6GHz)
- Test cases were derived from industrial designs

Items	Test1	Test2	Test3	
GateThreshold	4	4	4	
SizeThreshold	8	8	11	
Runtime	90s	131s	414s	
ChangedNets	20129 (3.58%)	28954(3.84%)	90752 (8.15%)	
TotalTrees	577	761	3617	
MaxTree	709	471	243	
ANDTrees	208	478	3535	
ORTrees	369	283	82	
XORTrees	0	0	0	

Restructuring Results with Re-placement

Items	Test1			Test2			Test3			Average
	Org	Restruct	Change	Org	Restruct	Change	Org	Restruct	Change	Change
STWL	4767328	3928756	-17.59%	8387826	4954639	-40.93%	55900403	34348299	-38.55%	-32.36%
TWL	61964038	60440335	-2.46%	73155265	71641961	-2.07%	125058151	112698170	-9.88%	-4.80%
AEC	47.43	46.17	-2.66%	54.35	53.34	-1.86%	60.36	55.75	-7.63%	-4.05%
ANC	49.31	49.03	-0.56%	45.31	44.79	-1.15%	64.57	61.63	-4.56%	-2.09%
AEC20	83.00	82.25	-0.91%	93.49	92.12	-1.47%	108.32	101.06	-6.70%	-3.03%
ANC20	88.43	87.09	-1.51%	96.70	95.43	-1.31%	133.60	127.61	-4.49%	-2.44%
Net90	53463	44543	-16.68%	123313	118995	-3.50%	316319	266259	-15.83%	-12.00%
Net100	12211	6339	-48.09%	68033	57473	-15.52%	264194	214013	-18.99%	-27.53%

STWL: Total wire length of SFFT trees

TWL: Total wire length

AEC: Average edge congestions
ANC: Average net congestions

AEC20: Average Edge Congestions of top 20% congested edges ANC20: AEC20: Average Net Congestions of top 20% congested nets

Net 90: Number of nets whose congestion $\geq 90\%$ Net 100: Number of nets whose congestion $\geq 100\%$

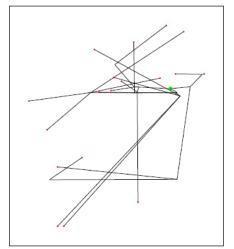
Experimental Results (cont)

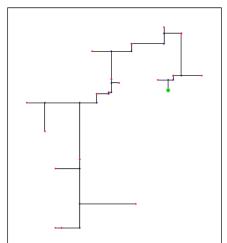
Restructuring Results with Legalization

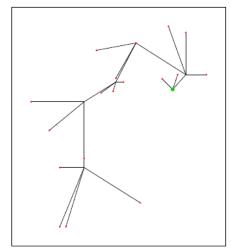
Items	Test1			Test2			Test3			Average
	Org	Restruct	Change	Org	Restruct	Change	Org	Restruct	Change	Change
STWL	4767328	2763617	-42.03%	8387826	4276455	-49.02%	55900403	22363738	-59.99%	-50.35%
TWL	61964038	61276845	-1.11%	73155265	71909245.84	-1.70%	125058151	118369793	-5.35%	-2.72%
AEC	47.43	47.06	-0.77%	54.35	53.62	-1.35%	60.36	58.09	-3.75%	-1.96%
ANC	49.31	48.89	-0.84%	45.31	44.57	-1.62%	64.57	62.94	-2.53%	-1.66%
AEC20	83.00	82.77	-0.28%	93.49	92.75	-0.79%	108.32	104.12	-3.88%	-1.65%
ANC20	88.43	88.08	-0.39%	96.70	96.02	-0.70%	133.60	129.15	-3.33%	-1.47%
Net90	53463	51665	-3.36%	123313	118856	-3.61%	316319	297009	-6.10%	-4.36%
Net100	12211	10290	-15.73%	68033	63601	-6.51%	264194	240637	-8.92%	-10.39%

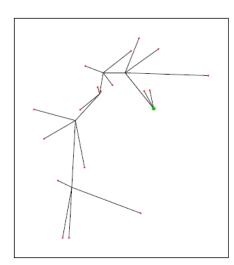
STWL: Total wire length of SFFT trees

TWL: Total wire length


AEC: Average edge congestions
ANC: Average net congestions


AEC20: Average Edge Congestions of top 20% congested edges ANC20: AEC20: Average Net Congestions of top 20% congested nets


Net 90: Number of nets whose congestion $\geq 90\%$ Net 100: Number of nets whose congestion $\geq 100\%$



Experimental Results (cont)

(a) Original Tree

Wire Length: 5627

(b) Steiner Tree

Wire length: 1594

(c) Restructured Tree

Wire Length: 2719

(d) Legalized Tree

Wire Length: 2523

Conclusion

- SFFT tree is a fanout-free cone of logic that computes a symmetric function, so that all of the leaf nets in its support set are commutative.
- Propose efficient algorithms to identify SFFT trees and restructure them.
- SFFT tree restructure helps to get better tree shapes, reduce wire length and congestion on some designs.