
Logical and Physical
Restructuring of Fan-in Trees

Hua Xiang Haoxing Ren Louise Trevillyan
Lakshmi Reddy+ Ruchir Puri Minsik Cho

IBM T.J. Watson Research Center
+IBM EDA Lab. STG

Introduction
 As feature sizes shrink and design complexity

increases, the use of integrated logic synthesis
and physical design is expanding.

 Tree restructure for SFFT (Symmetric-Function
Fan-in Tree)
 Trees are created during logic synthesis without

placement information
 Tree placement may be far from optimal since tree

structure is fixed during physical design
 Tree restructure can produce a more placeable and

wire-efficient design.

Symmetric-Function Fan-in Tree (SFFT)

 A symmetric-function fan-in tree is a fanout-free logic cone
 Compute a symmetric function
 All of the leaf nets in its support set are commutative
 The tree can be implemented with various structures of a uniform set of

gates (i.e., AND, OR, XOR)

 SFFT trees are frequently found in designs, especially when the design
originated as two-level logic

 Rebuild SFFT trees based on the placement information to reduce wire
length

AND

AND

AND

AND

AND

Ga

Gb

Gc

Gn

Gd

b
a
c

e
f
g
h
l

AND

AND

AND

AND

AND

Ga

Gb

Gc

Gn

Gd

b
a
c

e
f
g
h
l

AND

AND

AND

AND

Ga

Gb

Gc

Gn

b
a
c

e
f
g
h
l

F=a·b·c·e·f·g·h·l

Tree Restructure

 Algorithm outline
SFFT_Restructure (TreeRoot, Threshold)
1. Identify SFFT tree with root TreeRoot
2. Get the locations of all leaf pins and root pin
3. If #leaf pins < Threshold
4. Apply Dynamic programming based algorithm
5. else
6. Apply Steiner-Tree based restructure algorithm
7. Output the new SFFT tree

AND SFFTs
 Possible gates in AND SFFTs

 Any gates whose logic can be expressed by
AND/NOT operations

F = a·b·c·d·e·f

Gate Type Function

AND

NAND

OR

NOR

NOT

BUF

F = a

F = a·b

F = a·b

F = a

F = a·b
F = a·b

b

f

NAND
G1

a

INV

NOR
G2

NAND
G3

AND
G6

e

G4

AND
G5

dc

 Build look-up table to convert
gates to AND/NOT gates

 Build the initial stack based on
the tree root

 Traverse from top to bottom to
identify tree nodes

 Traverse stops
 Multiple-pin net
 Infeasible gates
 Invalid logic

Stack-based Tree Identification

b

d

NAND
G1

a

INV

NOR
G2

NAND
G3

AND
G6

G7
OR

e
g

h

f

G4.
.

AND
G5

i
NAND

G8

and

Latch
G9

c

j
.
.

k
..

.. .

b

d

NAND
G1

a

INV

NOR
G2

NAND
G3

AND
G6

G7
OR

e
g

h

f

G4.
.

AND
G5

i
NAND

G8

and

andLatch
G9

c

j
.
.

k
..

.. .

and
notb

d

NAND
G1

a

INV

NOR
G2

NAND
G3

AND
G6

G7
OR

e
g

h

f

G4.
.

AND
G5

i
NAND

G8

and

and
not

Latch
G9

c

j
.
.

k
..

.. .

b

d

NAND
G1

a

INV

NOR
G2

NAND
G3

AND
G6

G7
OR

e
g

h

f

G4.
.

AND
G5

i
NAND

G8

and

and
not

Latch
G9

c

j
.
.

k
..

.. .

and

not
not

and

b

d

NAND
G1

a

INV

NOR
G2

NAND
G3

AND
G6

G7
OR

e
g

h

f

G4.
.

AND
G5

i
NAND

G8

and

and
not

Latch
G9

c

j
.
.

k
..

.. .

and
and

b

d

NAND
G1

a

INV

NOR
G2

NAND
G3

AND
G6

G7
OR

e
g

h

f

G4.
.

AND
G5

i
NAND

G8

and

and
not

and

Latch
G9

c

j
.
.

k
..

.. .

b

d

NAND
G1

a

INV

NOR
G2

NAND
G3

AND
G6

G7
OR

e
g

h

f

G4.
.

AND
G5

i
NAND

G8

and

and

and
not

and

and
and

and
not
and

and
not
and

Latch
G9

c

j
.
.

k
..

.. .

b

d

NAND
G1

a

INV

NOR
G2

NAND
G3

AND
G6

g

h

f

G4

AND
G5

i

c

e

j
k

Tree Restructure
 Rebuild SFFT trees for shorter wire length

 Keep the leaf input nets and root output net unchanged
 Remove all internal gates/nets
 Use AND/NOT gates to rebuild the tree

 Restructure algorithms
 Dynamic programming based restructure

 Optimal solution for a given tree
 Long runtime

 Steiner-Tree based restructure
 The new tree follows the shape of a Steiner Tree for shorter

wire length
 Build sub-trees with DP based tree restructure
 Balance quality and runtime

DP based Tree Restructure

SFFT_DP (TreeRoot)

1. Build connectivity graph
2. Let each leaf/Steiner node be a tree,

and push them to Queue
3. While (!Queue.empty) {
4. subtree = Queue.pop_front
5. for parent node P of subtree.TreeRoot
6. merge trees related to P with subtree
7. prune redundant trees
8. push the new trees in Queue
9. }
10. Return a tree at TreeRoot with

max leaf set and min wire length

(1) (2) (3)

(4) (5) (6)

T1

R

T2

T3

T4

S1

S2

T1

R

T2

T3

T4

S1

S2

T1

R

{T1}

{R}

T2

{T2}

T3 {T3}

T4

{T4}

S1
{S1}

S2
{S2}

T1

R

{T1}

S1

S2

T1}}{{S2},{S2

{{S1},{S1 T1}}

{{R},{R T1}}

S1
{S1 T1

T2}}

{{S1},{S1 T1},
{S1 T2},

T1

R

T2

T3

T4

S2

T1

R

T2

T3

T4

S1

S2

Steiner Tree based Restructure

root

T1

T2

T3

T4

T5

T6

T7

T8

T9
T10

T11 root

T1

T3

T4

T5

T6

T7

T8

T9
T10

T11

T2 S2

S3

S4

S5

S6

S7

root(0, 11)

(1, 10)
(2, 1)

(1, 1)

(2, 9)
(3, 1)

(3, 8)(4, 3)

(5, 1)

(5, 1)

(5, 1)
(5, 2)

(4, 5)

(5, 2)

(6, 1)
(6, 1)

(5, 1)

(6, 1)

(6, 1)

(level, children)

T1

T2

T3

T4

T5

T6

T7

T8

T9
T10

T11

S1 S2

S3

S4

S5

S6

S7

root(0, 11)

(1, 10)
(2, 1)

(1, 1)

(2, 9)
(3, 1)

(3, 8)(4, 3)

(5, 1)

(5, 1)

(5, 1)
(5, 2)

(4, 5)

(5, 2)

(6, 1)
(6, 1)

(5, 1)

(6, 1)

(6, 1)

(level, children)

T1

T2

T3

T4

T5

T6

T7

T8

T9
T10

T11

S1 S2

S3

S4

S5

S6

S7

root(0, 7)

(1, 6)
(2, 1)

(1, 1)

(2, 5)
(3, 1)

(3, 4)(4, 3)

(5, 1)

(5, 1)

(5, 1)
(4, 1)

(level, children)

T1

T2

T3

T4

T5

T6

T7

T8

T9
T10

T11

S1 S2
S4

S5

S6

S7

root(0, 7)

(1, 6)
(2, 1)

(1, 1)

(2, 5)
(3, 1)

(3, 4)(4, 3)

(5, 1)

(5, 1)

(5, 1)
(4, 1)

(level, children)

T1

T2

T3

T4

T5

T6

T7

T8

T9
T10

T11

S1 S2
S4

S5

S6

S7

root(0, 4)

(1, 3)
(2, 1)

(1, 1)

(2, 2)
(3, 1)

(3, 1)

(level, children)

T1

T3

T4

T5

T6

T7

T8

T9
T10

T11

T2 S2
S4

S5

S6

S7

root

(3, 1)

(level, children)

T1

T3

T4

T5

T6

T7

T8

T9
T10

T11

T2 S2
S4

S5

(1) (2) (3) (4)

(5) (6) (7) (8)

Experimental Results
 Algorithms were implemented in C, and have been

integrated into a physical-synthesis system
 Tested on linux workstations (2.6GHz)
 Test cases were derived from industrial designs

Experimental Results (cont)

STWL: Total wire length of SFFT trees
TWL: Total wire length
AEC: Average edge congestions
ANC: Average net congestions
AEC20: AEC20: Average Edge Congestions of top 20% congested edges
ANC20: AEC20: Average Net Congestions of top 20% congested nets
Net90: Number of nets whose congestion ≥ 90%
Net100: Number of nets whose congestion ≥ 100%

Restructuring Results with Re-placement

Experimental Results (cont)

STWL: Total wire length of SFFT trees
TWL: Total wire length
AEC: Average edge congestions
ANC: Average net congestions
AEC20: AEC20: Average Edge Congestions of top 20% congested edges
ANC20: AEC20: Average Net Congestions of top 20% congested nets
Net90: Number of nets whose congestion ≥ 90%
Net100: Number of nets whose congestion ≥ 100%

Restructuring Results with Legalization

Experimental Results (cont)

(a) Original Tree

Wire Length: 5627

(b) Steiner Tree

Wire length: 1594

(c) Restructured Tree

Wire Length: 2719

(d) Legalized Tree

Wire Length: 2523

Conclusion

 SFFT tree is a fanout-free cone of logic
that computes a symmetric function, so
that all of the leaf nets in its support set
are commutative.

 Propose efficient algorithms to identify
SFFT trees and restructure them.

 SFFT tree restructure helps to get better
tree shapes, reduce wire length and
congestion on some designs.

	Logical and Physical Restructuring of Fan-in Trees
	Introduction
	Symmetric-Function Fan-in Tree (SFFT)
	Tree Restructure
	AND SFFTs
	Stack-based Tree Identification
	Tree Restructure
	DP based Tree Restructure
	Steiner Tree based Restructure
	Experimental Results
	Experimental Results (cont)
	Experimental Results (cont)
	Experimental Results (cont)
	Conclusion

