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Introduction
 As feature sizes shrink and design complexity 

increases, the use of integrated logic synthesis 
and physical design is expanding.

 Tree restructure for SFFT (Symmetric-Function 
Fan-in Tree)
 Trees are created during logic synthesis without 

placement information
 Tree placement may be far from optimal since tree 

structure is fixed during physical design
 Tree restructure can produce a more placeable and 

wire-efficient design.



Symmetric-Function Fan-in Tree (SFFT)

 A symmetric-function fan-in tree is a fanout-free logic cone
 Compute a symmetric function
 All of the leaf nets in its support set are commutative
 The tree can be implemented with various structures of a uniform set of 

gates (i.e., AND, OR, XOR)

 SFFT trees are frequently found in designs, especially when the design 
originated as two-level logic

 Rebuild SFFT trees based on the placement information to reduce wire 
length
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Tree Restructure

 Algorithm outline
SFFT_Restructure (TreeRoot, Threshold)
1. Identify SFFT tree with root TreeRoot
2. Get the locations of all leaf pins and root pin
3. If #leaf pins < Threshold
4. Apply Dynamic programming based algorithm
5. else
6. Apply Steiner-Tree based restructure algorithm
7. Output the new SFFT tree



AND SFFTs
 Possible gates in AND SFFTs

 Any gates whose logic can be expressed by 
AND/NOT operations 

F = a·b·c·d·e·f
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 Build look-up table to convert 
gates to AND/NOT gates

 Build the initial stack based on 
the tree root

 Traverse from top to bottom to 
identify tree nodes

 Traverse stops
 Multiple-pin net
 Infeasible gates
 Invalid logic

Stack-based Tree Identification
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Tree Restructure
 Rebuild SFFT trees for shorter wire length

 Keep the leaf input nets and root output net unchanged
 Remove all internal gates/nets
 Use AND/NOT gates to rebuild the tree

 Restructure algorithms
 Dynamic programming based restructure

 Optimal solution for a given tree 
 Long runtime

 Steiner-Tree based restructure
 The new tree follows the shape of a Steiner Tree for shorter 

wire length
 Build sub-trees with DP based tree restructure
 Balance quality and runtime



DP based Tree Restructure

SFFT_DP (TreeRoot)

1.  Build connectivity graph
2.  Let each leaf/Steiner node be a tree,

and push them to Queue
3.  While (!Queue.empty) {
4.     subtree = Queue.pop_front
5.     for parent node P of subtree.TreeRoot
6.        merge trees related to P with subtree
7.        prune redundant trees
8.        push the new trees in Queue
9.   }
10. Return a tree at TreeRoot with

max leaf set and min wire length

(1) (2) (3)

(4) (5) (6)

T1

R

T2

T3

T4

S1

S2

T1

R

T2

T3

T4

S1

S2

T1

R

{T1}

{R}

T2

{T2}

T3 {T3}

T4

{T4}

S1
{S1}

S2
{S2}

T1

R

{T1}

S1

S2

T1}}{{S2},{S2

{{S1},{S1 T1}}

{{R},{R T1}}

S1
{S1 T1

T2}}

{{S1},{S1 T1},
{S1 T2},

T1

R

T2

T3

T4

S2

T1

R

T2

T3

T4

S1

S2



Steiner Tree based Restructure
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Experimental Results
 Algorithms were implemented in C, and have been 

integrated into a physical-synthesis system
 Tested on linux workstations (2.6GHz)
 Test cases were derived from industrial designs



Experimental Results (cont)

STWL: Total wire length of SFFT trees
TWL: Total wire length
AEC: Average edge congestions
ANC: Average net congestions
AEC20: AEC20: Average Edge Congestions of top 20% congested edges
ANC20: AEC20: Average Net Congestions of top 20% congested nets
Net90: Number of nets whose congestion ≥ 90%
Net100: Number of nets whose congestion ≥ 100%

Restructuring Results with Re-placement



Experimental Results (cont)

STWL: Total wire length of SFFT trees
TWL: Total wire length
AEC: Average edge congestions
ANC: Average net congestions
AEC20: AEC20: Average Edge Congestions of top 20% congested edges
ANC20: AEC20: Average Net Congestions of top 20% congested nets
Net90: Number of nets whose congestion ≥ 90%
Net100: Number of nets whose congestion ≥ 100%

Restructuring Results with Legalization



Experimental Results (cont)

(a) Original Tree

Wire Length: 5627

(b) Steiner Tree

Wire length: 1594

(c) Restructured Tree 

Wire Length: 2719

(d) Legalized Tree

Wire Length: 2523



Conclusion

 SFFT tree is a fanout-free cone of logic 
that computes a symmetric function, so 
that all of the leaf nets in its support set 
are commutative.

 Propose efficient algorithms to identify 
SFFT trees and restructure them.

 SFFT tree restructure helps to get better 
tree shapes, reduce wire length and 
congestion on some designs.
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