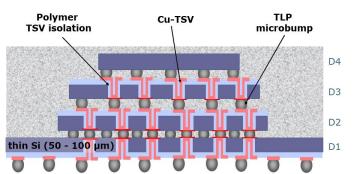


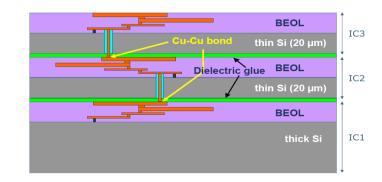
Efficient Design Practices for Thermal Management of TSV based 3D IC System

Min Ni, Qing Su, <u>Zongwu Tang</u>, Jamil Kawa Synopsys Inc.

ISPD 2010, SF, CA

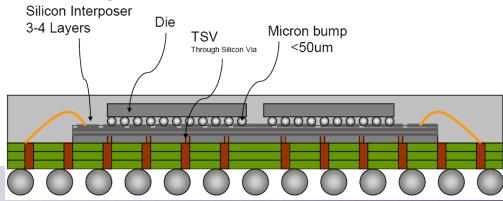
Outline


- Introduction: TSV based 3D IC
- A Review of 3D IC Thermal Management
- 3D IC Thermal Evaluation
- Thermal Impact of TSV Arrays in Close Proximity to Hotspots
- Thermal Effects of TSV as a Function of TSV Density
- Summary & Conclusions


TSV based 3D IC – Two Configurations

Vertical Stacking (source: IMEC)

Includes face-to-face, and face-to-back (with TSV)


stack.

Lateral Interposer (south

(source: Panasonic)

3D (TSV) IC Design Flow

TSV Modeling

- Thermo-mechanical stress analysis
- Electrical variation

Synthesis & DFT

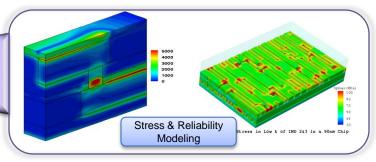
 TSV connectivity checking w/JTAG

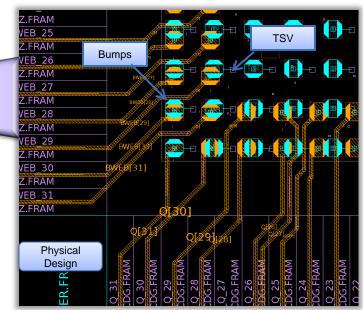
• 1000x compression

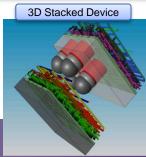
Physical Design

- Multi-die bump & TSV floorplan
- TSV P&R

Parasitic Extraction


 Extract TSV, u-bump, backside RDL metal


Physical Verification


TSV aware LVS/DRC

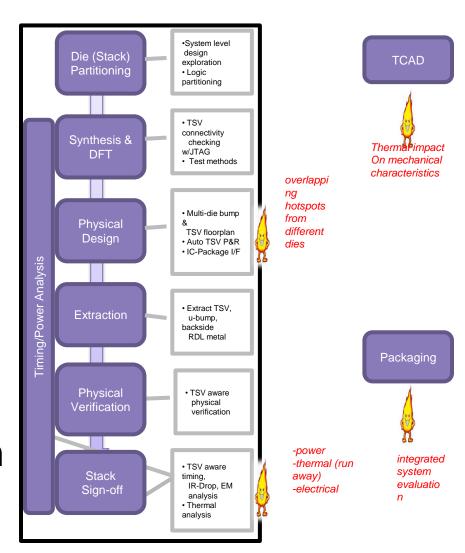
Stack Sign-off

- TSV aware timing, IR-Drop, EM analysis
- Thermal analysis*

*application dependent

Verification

య

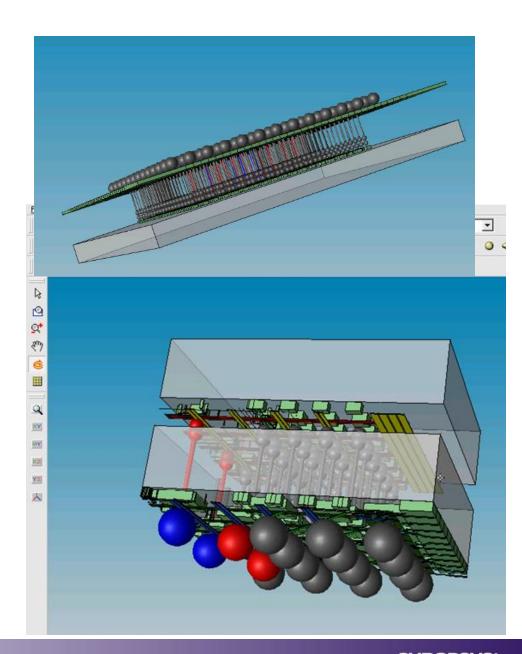

Design

3D IC

Background

- Vertical stacking exacerbates thermal problem
 - Higher peak temperature
 - Risk of hotspot alignment
 - Performance and reliability implications
- Thermal management needed early in design flow

EDA Design Methodology


Thermal Management Perspectives

- Thermal vias & thermal TSVs
 - Pros
 - can utilize existing vias and TSVs
 - no additional processing steps needed
 - Cons
 - non-scalable due to vertical heat path.
 - area penalty for extra thermal TSVs
- Fluidic channels
 - pros
 - scalable with chip area and number of tiers
 - cons
 - design complexity
 - Extra reliability
 - needed vertical resources

TSVs

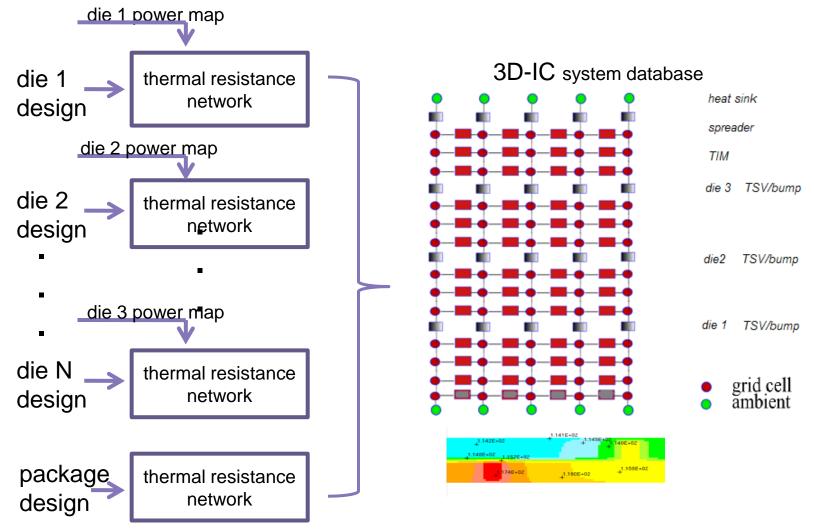
- TSVs
 - Signal TSVs
 - PG TSVs
 - Thermal TSVs

Single uniform diameters

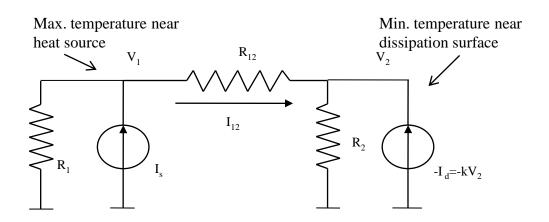
Thinking Loud

- Placement of TSVs
 - Use TSV array clusters to minimize area penalty on silicon and interconnect
 - Need to pay attention to mechanical structural balance in TSV placement

exclusion zone (to active)


- Are dedicated thermal TSVs really needed?
 - Introduced at design planning stage?
 - Academia papers on inserting extra TSVs suggests so
 - hotspots are not necessarily known at this stage
 - In post routing stage?
 - Hotspots are known
 - Better assessment of need for extra TSVs
 - Exploit metal density and PGS TSVs requirements
 - proximity to hotspot planning

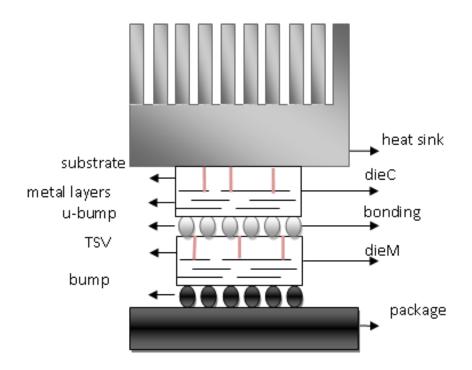
A single TSV and a TSV array. Exclusion zone is minimum space of TSV to active devices- usually 5um


Thermal Simulation Considerations

- Consider whole system vs. 1 die at a time
 - Eliminates artificial boundary conditions
 - Eliminates need for large number of iterations
 - Smaller run time
- Used numerically based thermal simulator solving a ciruit-equivalent thermal network
 - heat source is analogous to a circuit's current source
 - thermal resistance is analogous to electric resistance
 - temperature gradient is analogous to electric potential (voltage) in circuits

An EDA Evaluation of a Thermal Structure – Our Experiments Setup

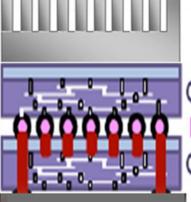
Thermal circuit equivalence



- R₁ is the relative thermal resistivity between the heat source and ambient
- R₂ is the relative thermal resistivity between the dissipation surface and ambient.
- R₁₂ is the effective thermal resistivity between the hot spots and cold spots

Setup

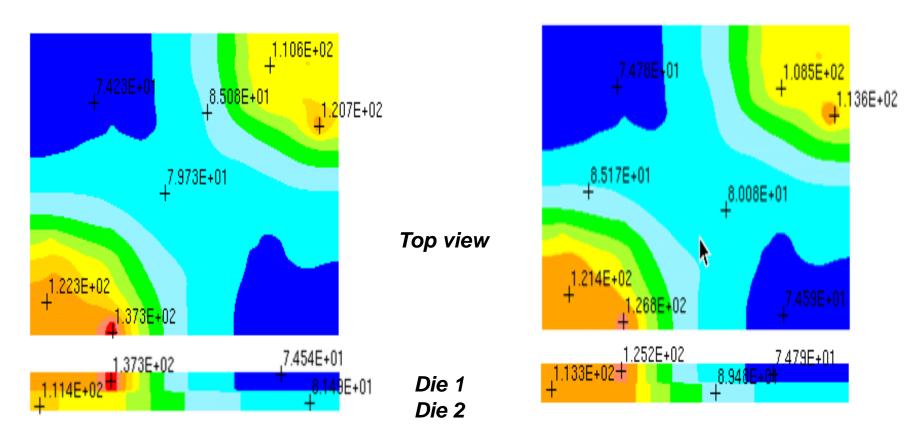
6x6 mm2 50um thin silicon substrate


Added "connectivity" to heat sink makes thermal TSVs, in experiment

Name	Туре	Power(W)	MinT(°C)	Max T(°C)	DT(°C)
M	mem ory	1.18	38.9	44.0	5.1
С	logic+mem	4.05	51.8	135	83.2

3D IC construction

```
TIER {
    TYPE
                  = BUMP
    NAME
                  = die1 die2
    ;dimension of the bump *rray
    XDIM
                  = 10
    YDIM
                  = 10
    DIAMETER
               = 15
               = 20
    PITCH
    ;thickness of the bump layer
    THICK
                  = 30
    XCRD
                  = 0
    YCRD
                  = 0
    TCCU
               = 273
    TCOX
                  = 66
    DEBUG THNET
                  = bump diea dieb
}
                               -Bump
  TIER {
      TYPE
                    = TSV
      NAME
                    = tsvLayer
      NARRAY
                    = 2
      ARRAY {
          THRGH
                    = NO
                    = dieA
          START
               XDIM
               YDIM
               XCRD
               YCRD
               DIAMETER = 15
               PITCH
                         = 20
               TCON
                         = 273
```

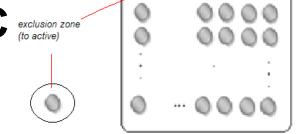


```
TIER {
    TYPE
                = DIE
                = die2
    NAME
    COPY
                 null
                  /remote/atg5/mni/sandbox2/PR TA Lab
    DB PATH
    RDF
                = ta cfg.rdf
                = XFLIP
    FLIP
    XCRD
    YCRD
    POW R RAMPUP
                = dieb.prp
    D'.BUG PMAP
                         = dieb.map
    DEBUG THNET
                = dieb.mtx
```

Chip 2

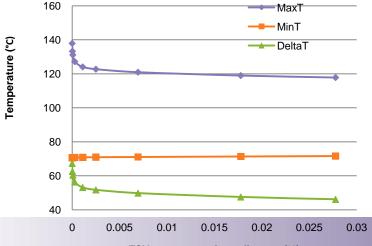
```
Bonding layer
```

```
Chip 1
                       = DIE ;
                       = die1
        NAME
        COPY
                       = null
        DB PATH
   /remote/atg5/mni/sandbox2/PrimeRail TA Lab
        RDF
                       = ta cfg.rdf
        XCRD
                       = 0
        YCRD
                       = 0
        FLIP
                       = NFLIP
        POWER_RAMPUP
                       = diea.prp
        DEBUG PMAP
                       = diea.map
        DEBUG THNET
                       = diea.mtx
```

Thermal effects of TSVs in close proximity to hotspots



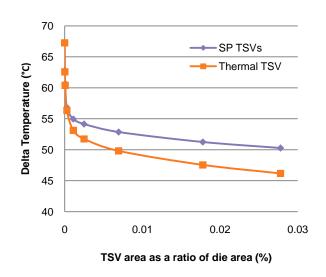
Before and after TSV array insertion


Impact of signal/power TSV array on temperature of 3D IC

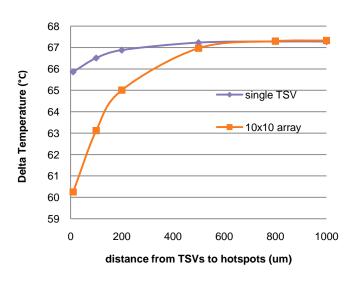
with different size (one array for each of the 4 hot spots)

TSV	TSV	Temperature (°C)		
array	density	Max	Min	DT
0	0%	137.9	70.6	67.3
3x3	0.003%	133.4	70.7	62.7
5x5	0.007%	131.4	70.7	60.7
10x10	0.03%	127.6	70.8	56.8
20x20	0.11%	125.8	70.9	54.9
30x30	0.25%	125.1	71.0	54.1
50x50	0.69%	123.9	71.0	52.9
80x80	1.79%	122.4	71.2	51.3
100x100	2.78%	121.6	71.3	50.3

A single TSV and a TSV array. Exclusion zone is minimum space of TSV to active devices- usually 5um



The maximum temperature decreases as TSVs are inserted, however, the effects saturate quickly. The minimum temperature does not drop.


The net effect of TSV insertion in 3D IC is to reduce the peak temperature and the temperature gradient.

TSV thermal effects as a function of TSV density

with different size (one array for each of the 4 hot spots)

The ability of reducing thermal gradient is similar for both signal/power TSV and thermal (direct connection to sink)TSV arrays.

Relation between the distance from TSVs to hotspots and the reduction of temperature gradient.

Summary

- Signal and power TSV arrays are practically as efficient as thermal TSVs.
- The proximity of thermal TSV arrays to hot spots is more critical than array size. Also, for close proximity arrays size matters but benefits from increased array size saturates quickly.
- Better practice is to place TSVs in array format to minimize area penalty, close to hotspot to maximize heat conduction, with compliance to other mechanical and electrical constraints
- It is the boundary heat transfer coefficient that dictates the steady state temperature of chips, not the amount of TSVs