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Outline

• What is 3D about?

• Why 3D?

• 3D-specific challenges

• 3D analysis and optimization
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Planning a city: Land usage
[Somewhere in the American midwest; pop. density typically about 20 persons/km2]

[Minneapolis, p.d. = 2,700/km2] [SF= 6,688/km2] [New York=10,600/km2]



Types of 3D circuits
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Example of a commercial application

5[Beyne, IMEC]



Example 3D processes
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[H. Hedler, ISSCC 2007 Qimonda]
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[IBM]

[Koyanagi, Tohoku U./Zycube]

[Hedler, Qimonda]



Through-silicon vias (TSVs)
Keep-out distance
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[Nowak, Qualcomm]

[Tezzarron]
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Schematic of a 3D IC

SOI wafers with bulk 
substrate removed

Adapted from [Das et al., ISVLSI, 2003] by B. Goplen
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• What is 3D about?

• Why 3D?

• 3D-specific challenges

• 3D analysis and optimization
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Another “dimension” to scaling

3D provides an alternative avenue towards increasing system sizes

Orthogonal to device scaling

[Intel]
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3D Interconnects
• Reduced wire lengths

• Theoretically
– For an L×L 2D chip, max

wire length reduces from 2L to
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Why are shorter wires good?

• Sequential critical length (“cycle reach”) trends

• Critical interbuffer length also 
shrinking (i.e., buffer count increasing)
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Other benefits
• Improved isolation in 3D

– Critical for analog/RF ckts
– Lower digital/mixed-signal 

noise
– Shielding is possible either 

using metal layers, or by 
leveraging bonding material

• Heterogeneous integration
– Different layers can be made of 

different materials
– Can integrate, for example

• CMOS
• GaAs
• Optical elements (VCSELs)
• MEMS/NEMS
• Exotic cooling technologies 

(micropumps, piezoelectric 
devices, microrefrigerators)
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Geometrical challenges

SOI wafers with bulk 
substrate removed

Adapted from [Das et al., ISVLSI, 2003] by B. Goplen
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Thermal challenges
• Each layer generates heat
• Heat sink at the end(s)

• Simple analysis
– Power(3D)/Power(2D) = m

• m = # layers
– Let Rsink = thermal resistance of heat sink
– T = Power × Rsink

• m times worse for 3D!

• And this does not account for
– Increased effective Rsink
– Leakage power effects, T-leakage feedback

• Thermal bottleneck: a major problem for 3D
Layer 1
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Thermal impact on circuit performance
• Gate delays change with T

– Mobility goes down

– Vth goes down

– Which effect wins?
– Positive, negative, mixed T 

dependency

• Wire delays change with T
• Leakage increases with T
• Reliability degrades with T

– NBTI, electromigration

• Can use better heat sinks, but…
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The same circuit at various process corners Heat sink cost vs. Power

SiH + h+ → Si+ + ½H2

Si H
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Power delivery challenges
• Each layer draws current from the power grid
• Power pins at the extreme end tier(s)

• Simple analysis
– Current(3D)/Current(2D) = m

• m = # layers
– Let Rgrid = resistance of power grid
– Vdrop = Current × Rgrid

• m times worse for 3D!

• And this does not account for
– Increased effective Rgrid
– Leakage power effects, increased current

due to T-leakage feedback

• Power bottleneck: a major problem for 3D
Layer 1
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Layer 5
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• Greater challenge in 3D due to via 
resistance, limited number of supply pins

Power supply integrity in 3D

The Trend of Current per Power Pin from ITRS
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[Zhan, ICCAD07]
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Yield/test challenges
• Yield due to spot defects reduces exponentially with area

– Smaller areas imply better yield
– Stack together smaller die; yield improves!
– (Note that stacking wafers together does not help!)

• Problem
– Need to have known-good die (KGD)
– Must test die prior to 3D assembly

• Testing thinned die is hard: mechanically too weak for probe pressure!
• Can test die prior to thinning – but then, connections to other layers 

are untested!

[Mak, Intel]
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• 3D analysis and optimization
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Thermal analysis

• Heat generation
– Switching gates/blocks act as heat sources
– Time constants for heat of the order of ms or more

• Thermal equation: partial differential equation

• Boundary conditions corresponding to the ambient, heat sink, etc.

• Self-consistency
– Power = f(T)
– T = g(Power)
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Thermal solution techniques
• Numerical: solve large, sparse systems of linear equations

– Finite difference method: thermal – electrical equivalence
• System structure is similar to power grids (good!)

– Current sources ↔ power, voltage ↔ temperature
– Finite element method

• Semi-analytical
– Green functions (fast, appropriate for early analysis)
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Thermal optimization

• Minimize power usage

• Rearrange heat sources 

• Improved thermal conduits

• Improved heat sinking Heat Sink

Chip

Rchip

Pcells

Rheat sink



3D floorplanning
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[Zhou, ICCAD07]



3D placement

• Incorporate thermal
issues

• Force-directed vs. 
partitioning methods
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Interlayer via count vs. wirelength (ibm01)
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Thermal vias

• Thermal vias
– Electrically isolated vias
– Used for heat conduction

• Thermal via regions
– Contains thermal vias
– Predictable obstacle for routing
– Variable density of thermal vias
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Temperature profile

Before Thermal Via Placement After Thermal Via Placement
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Thermal via insertion

Thermal Via RegionsTemperature Profile
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3D routing with integrated thermal via insertion

• Build good heat conduction path through dielectric:
• Thermal vias: interlayers vias dedicated to thermal conduction.
• Thermal wires: metal wires improves lateral heat conduction.
• Thermal vias + thermal wires a thermal conduction network.

• Thermal wires 
compete with lateral 
signal wire routing.

• Thermal vias: 
large, can  block 
lateral signal routing 
capacity.

thermal vias thermal wires

[Zhang, ASPDAC06]



Active cooling techniques
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Microfluidic cooling
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3D and multicore systems
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[Karnik, Intel]

[Xie, Penn State]

NoCs

3D bus/NoC hybrid



3D NoCs
• Need to build custom NoCs for 3D 

architectures

• Floorplanning + NoC design

• 3D-specific challenges
– Technology constraints, like TSV#  
– Tier assignment
– Placement of switches
– Accurate power and delay modeling 
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Presenter
Presentation Notes
NoC has been proposed as a solution to communication challenges in future architectures. 
NoCs come with their inherent advantages such as:
 1) packet based asynchronous communication between switches, 
 2) high scalability (a standard interface like the standard backplane bus PCI), 
 3) and the ability to support high bandwidth by distribution of signal delay among switches, and isolated and concurrent communication



Conclusion

• Numerous challenging problems in 3D IC design
• Significant research already in floorplanning, placement, 

routing
• New challenges in architectural-level issues, NoCs, power 

delivery, test

36
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Thank

You!

Any

Questions?
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