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Planning a city: Land usage

[Somewhere in the American midwest; pop. density typically about 20 persons/km?]

[Minneapolis, p.d. = 2,700/km?]  [SF= 6,688/km?]
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Types of 3D circuits

Memory vertical TFTs Wafer stacking

[Fraunhofer 1ZM]
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Example of a commercial application

STMicroelectronics CMOS camera

Febr. 2008 - STMicroelectronics announces that its single-chip
camera sensors are now available in ST's TSV (Through Silicon Via)
wafer-level package techneology. Unit pricing is in the $2 range,
depending on the production period and quantities. ST's VD6725 single-
chip camera sensor is available in two package options, as a COB
(Chip On Board) die or in the TSV wafer-level package. The sensor fits
in phone camera modules smaller than 6 x 6 x 3.8 mm thanks to its

‘y l 1.75-micron pixel design and ST's advanced sensor architecture.

38

[Beyne, IMEC] 5
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Example 3D processes

Glass
Wafer thinning l

Burried [nterconection l

[Koyanagi, Tohoku U./Zycube]
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[Hedler, Qimonda] [1BM]
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Through-silicon vias (TSVs)

Keep-out distance
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Schematic of a 3D IC

Detailed view  Generalized view

Interlayer Via

SOl wafers with bulk
substrate removed
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Adapted from [Das et al., ISVLSI, 2003] by B. Goplen 8
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Another “dimension” to scaling

Scaling Calculator +

g JTEAYVES
ode Cycle Time:
Moore's Law N dE 1}’ IE me % Actual -
Means More Performance Jrlyves

Tag = ™ Processor

1%': — a_s_ﬂ ..._'-:456"*‘ DX F‘rocsssr r Q?X I 0?){ 1

s T 250 -> 180 -> 130 -> 90 -> 65 -> 45 -> 32 > 22 -> 16

Togg I_ 0.5x _t Mode Cycle Time

2000 i Pantium® 4 (T m}:
100,000,00¢ [ Ml N2 *CARR(T) =

[(0.5)"(1/2T yrs)] - 1
" CARR(T) = Conpound Amnicl  CARR(3 yrs) = -10.9%
(@ cycle time period, T) CARR(2 yrs) = -15.9%

Figwre 6 Sealing Calcwlator

[Intel]

3D provides an alternative avenue towards increasing system sizes

Orthogonal to device scaling
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3D Interconnects

* Reduced wire lengths

2D = N

|
30~

DRAM
» Theoretically DRAM
— For an LxL 2D chip, max |
wire length reduces from 2L to 2L L2 Cache
Jm

3D Global Net Distributions

=>=4 Strata
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=O=1 Stratum

Net Density (#/mm),

Heat Sink

15 20
Length (mm)
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Why are shorter wires good?

) trends

ﬁ
6,
Relative 5-
critical 4
se(. 3
length 2
17 .
g 4x wire
0- M6
90nm M3 :
65nm i
45nm 32nm = " @
S i A 2X wire
[Intel] e R
P6, ~core cycle reach @
- . 65nm, ~5.2 GHz [1BM] 1x wire
o Critical interbuffer length also

shrinking (i.e., buffer count increasing)
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Other benefits

* Improved isolation in 3D  Heterogeneous integration
— Critical for analog/RF ckts — Different layers can be made of
— Lower digital/mixed-signal different materials
noise — Can integrate, for example
— Shielding is possible either « CMOS
using metal layers, or by « GaAs
leveraging bonding material  Optical elements (VCSELS)

« MEMS/NEMS

Iner-layer _ _ _
" Inlerconnect » Exotic cooling technologies
: (micropumps, piezoelectric
Device layer 2 . . .
devices, microrefrigerators)

* Bonding
inlesfaca (Cu)

ﬁ m.um H'I‘E"' i

[Das et al., ISPD04]
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Geometrical challenges

Detailed view  Generalized view

Interlayer Via

SOl wafers with bulk
substrate removed

Inter-layer
bonds
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Adapted from [Das et al., ISVLSI, 2003] by B. Goplen 15
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Thermal challenges

« Each layer generates heat
* Heat sink at the end(s)

« Simple analysis
— Power(3D)/Power(2D) = m
e m=# layers
— Let Ry, = thermal resistance of heat sink
— T =Power x Ry«
* m times worse for 3D!

« And this does not account for
— Increased effective R,
— Leakage power effects, T-leakage feedback

* Thermal bottleneck: a major problem for 3D

16
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Thermal impact on circuit performance

Wire delays change with T
Leakage increases with T

Reliability degrades with T
— NBTI, electromigration

« Gate delays change with T
— Mobility goes down

W) =ulto) ()

— V,, goes down Lo
Vin(T') = Vin(To) — w(T — To)

SiH + h* — Si* + %H,

_ _ SITTH
— Which effect wins? Si=™H e Ha :
— Positive, negative, mixed T = _
dependency Substrate Gate Oxide Poly
e Can use better heat sinks, but...
,;\1_15 40 . . . . .
EJ ——Slow 2
o, == Nominal %
= —+—Fast o 30
5 1.1 E
E‘ ;:D 20¢
51_05' bc
sé. 10,
Z
L
20 40 60 80 100 120 140 % 30 40 50 60 70 80
Temperature (DC) Power Dissipation (W)
The same circuit at various process corners Heat sink cost vs. Power
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Power delivery challenges

« Each layer draws current from the power grid
* Power pins at the extreme end tier(s)

« Simple analysis
— Current(3D)/Current(2D) = m
e m=#layers
— Let R,,4 = resistance of power grid
— Varop = Current x Ry
* m times worse for 3D!

* And this does not account for
— Increased effective R g
— Leakage power effects, increased current
due to T-leakage feedback

* Power bottleneck: a major problem for 3D
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Power supply integrity in 3D

e Greater challenge in 3D due to via
resistance, limited number of supply pins

Current per power pin (2D) — ITRS

The Trend of Current per Power Pin from ITRS

Pins

' 300
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E /—/
2D =
& 200
[Zhan, ICCADO7] 5 /
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Single-story logic Multi-story logic
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Yield/test challenges

* Yield due to spot defects reduces exponentially with area
— Smaller areas imply better yield
— Stack together smaller die; yield improves!
— (Note that stacking wafers together does not help!)

o Wafer (unsorted) +«— Dies (sorted)

[Mak, Intel]
e Problem

— Need to have known-good die (KGD)
— Must test die prior to 3D assembly
« Testing thinned die is hard: mechanically too weak for probe pressure!

« Can test die prior to thinning — but then, connections to other layers
are untested!
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Thermal analysis

Heat generation
— Switching gates/blocks act as heat sources
— Time constants for heat of the order of ms or more

Thermal equation: partial differential equation

Ky

o°T

Ox?

+Ky

o°T

8y2

+ K,

o°T
—+0Q(xy,2)=0
0z°

Boundary conditions corresponding to the ambient, heat sink, etc.

Self-consistency

— Power =f(T)
— T =g(Power

)
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Thermal solution techniques

 Numerical: solve large, sparse systems of linear equations

— Finite difference method: thermal — electrical equivalence
« System structure is similar to power grids (good!)

@ﬁ__

(x,y,z+1)

heat sources

ﬁ% < wafer

@ <+«—— ambient temperature

(x,y.z-1)

— Current sources <> power, voltage «» temperature
— Finite element method

e Semi-analytical
— Green functions (fast, appropriate for early analysis)

23
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Thermal optimization

 Minimize power usage P

O

« Rearrange heat sources =

* Improved thermal conduits

» Improved heat sinking Ricasine > 7 Heat Sink

24
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3D floorplanning

Model the 3D chips
and blocks

y
Thermal-aware

lateral spreading

|

Global optimization in
continuous 3D space

-

Y
Layer assignment

3D force-directed
optimization

y
Layer ass1gNMeNt pemammmcmccme========-

i

Final legalization

[Zhou, ICCADO7]
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Interlayer via count vs. wirelength (ilom0O1)
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hermal vias

III I Thermal Via

Thermal Via Region

Row Region
Inter-Row

e Thermal vias Region

— Electrically isolated vias
— Used for heat conduction

 Thermal via regions
— Contains thermal vias

— Predictable obstacle for routing
— Variable density of thermal vias

/ / } Inter-layer
} Layer
} Bulk Substrate

28
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Temperature profile

Before Thermal Via Placement After Thermal Via Placement
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3D routing with integrated thermal via insertion

 Build good heat conduction path through dielectric:

* Thermal vias: interlayers vias dedicated to thermal conduction.
e Thermal wires: metal wires improves lateral heat conduction.
 Thermal vias + thermal wires = a thermal conduction network.

thermal vias thermal wires
_ I~ - /\
® Thermal wires I ~a /7 \

compete with lateral
signal wire routing.

® Thermal vias:
large, can block
lateral signal routing
capacity.

[Zhang, ASPDACO6]
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Active cooling techniques

5 I I I 0 0 I I I } “Trimodal 1/0”
o o

H_l

Fluidic 1/0 Electrical /10 Optical I1/0

Optical I1/0 Fluidic I/0

[Bakir, GaTech - CICC 07] 32
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Microfluidic cooling

a

Si Die
11T T T 11

@ TSV-E

1T © U 11
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=
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I/Os 90

—o— Flow rate = 34 ml/min
—— Flowrate =78 ml/min  ~--------------ooo o

—=— Flow rate = 104 ml/min Area: 8 mm2

—o— Flow rate = 125 ml/min
O T e

Fluidic 80

channel

K
‘/

Optical waveguide

Temperature rise on heaters (C)

0 50 100 150 200 250 300 350

Localized power density (W/cm2)

[Bakir, GaTech] 33
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3D and multicore systems

| NoCs
On-die Mesh
Interconnect _
+ Audio
rocessor III%‘[ Pgﬁﬂt‘g
(PE) b-bit "
} ¥ Links *,
CPU i K\b b %
Bus =
L2$ ] Router___,_.-"
[R}

Sig-n'als and power from package, through
memory, to the processor tile

3D bus/NoC hybrid

4x4x4 3D NoC-Bus Hybrid NoC

TSV Pitch 190pm

SRAM die size | 275mm?

SRAM size 256KB per tile, 20MB total
SRAM Power | 7W SRAM +2.2W 10

Bandwidth 12GB/secltile, ~1TB/sec
total

¥
_ 83¢5¢y0g
[Karnik, Intel] =28 5

[Xie, Penn State]
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3D NoCs

e Need to build custom NoCs for 3D

architectures @ 105
: . 20
* Floorplanning + NoC design 0

« 3D-specific challenges

. . Core graph
— Technology constraints, like TSV#
— Tier aSS|gnment_ l tier 1
— Placement of switches S2\ /

— Accurate power and delay modeling

3D custom NoC architecture

[Zhou, ASPDAC10] 35


Presenter
Presentation Notes
NoC has been proposed as a solution to communication challenges in future architectures. 
NoCs come with their inherent advantages such as:
 1) packet based asynchronous communication between switches, 
 2) high scalability (a standard interface like the standard backplane bus PCI), 
 3) and the ability to support high bandwidth by distribution of signal delay among switches, and isolated and concurrent communication
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Conclusion

 Numerous challenging problems in 3D IC design

« Significant research already in floorplanning, placement,
routing

 New challenges in architectural-level issues, NoCs, power
delivery, test

36
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Questions?
/

Any

You!
Thank
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